[image: image1.jpg]Microsoft

-~
COMTeam
|

Project 42 Managed

Configuration Interfaces

 (ASCI)

(Note until the App Server or Project 42 logo is available, the COM logo is a place holder)

Aug 3, 1999, Draft Rev 1.2

Emily B. Kruglick

21.
Purpose of document

2.
Usage of Interface
3
2.1
Customers
3
2.2
Non-Customers
3
3.
Requirements and Requests
4
3.1
Requirements
4
3.2
Requests
7
3.3
Rejections
9
4.
ASCI Definition
10
5.
ASCI Implementation Notes
18
6.
Collections, Properties, Query Lists
19
7.
ASCI Sample Code
20
8.
Questions/Issues
22
8.1
Requirements and Request Issues
22
8.2
ASCI Open Issues
23
9.
Revision History
23

Purpose of document

This document has two purposes. The first is to describe why we are building “ASCI” and what the governing requirements and requests are. The second is to describe the objects that customers will interact with to configure URT Services and the Application Server.

The interfaces described in this document can be referred to as either the “Project 42 managed code configuration interfaces” or the “Application Server Configuration Interfaces (ASCI)”. They are the interfaces used to configure the URT Services in the 1.0 release of the URT and the Application Server in the 2.0 release of AppServer. They are managed code interfaces.

The requirements section of this document has three purposes:

1) Clearly express the requirements for the Project 42 configuration API (no matter what the implementation is). This means that these are the requirements for the URT Config API as well as the Application Server API.

2) Discuss the issues around these requirements.

3) To prioritize these requirements against each other so that the correct choices can be made to define the configuration API.

This document was created from the requirements specification and is now the document of record for requirements that govern the creation of ASCI as well as the document of record on the design of ASCI.

Usage of Interface

Before going into the specific requirements and requests of the configuration interface it needs to be clear by whom this interface will be used. There are four possible users for this interface and one user, which should specifically be called out as not a customer. For ASCI, all customers are assumed to be written in managed code.

1.1 Customers

1.1.1 User configuration code

This is basically setup code. It is usually scripts that are run to configure the system to run a certain way or to host a certain application. The configuration UI is the best (and probably most advanced) example of this type of user.

1.1.2 User runtime code

This is user code that is running during applications that a user built. It is most likely used to find out a specific piece of information about one or more object on the system or to toggle a specific property to change the behavior of an application at runtime.

1.1.3 ISV Management Tools

These are other (non-AppServer) management tools that ISVs will write to provide configuration ability in their chosen view.

1.1.4 Application Server and Universal Runtime Management Tools

This is the equivalent to the MMC COM+ Snap-in COM+ Services 1.0 currently ships. For more information on these tools see the Application Server User Interface specifications.

1.2 Non-Customers

1.2.1 System runtime code

This is Microsoft code (or possibly in the future other system runtime code) that needs to access information about objects in-order to support things like CoCreateInstance. In COM+ 1.0 this path was handled by the Catalog Queries. In Application Server it will be handled separately than by the configuration API.

Issue: There is still debate about whether or not these interfaces should cover this customer. The current thinking is that we will have a managed code IST definition that these interfaces and the system runtime code can write to directly.
Requirements and Requests

(Note this section should remain completely free of specific interface descriptions, it should be able to be used to govern the creation of both managed and non-managed configuration interfaces for Application Server and the URT.)

1.3 Requirements

These requirements are agreed to as a must for the configuration API. The items listed in these areas are listed in order of priority from the most important down to the least.

1.3.1 Schema dynamically read from IST. (catalog infrastructure)

All metadata about collections and properties should be exposed to the configuration API from IST so that when a developer adds a property or table, he will simply add it to the XML schema and it will appear in the configuration API without requiring the configuration API to be rebuilt.

Why: This requirement exists to allow other teams to quickly extend the Catalog to support their tables and properties without having to re-compile the catalog dlls. It is a development time feature that will not affect our final code or our customers, since we will do “official” builds with the metadata compiled into the code for performance reasons.

1.3.2 Collections not tied to collection names (catalog infrastructure)

This basically means that we can have one collection name represent different views or queries of a collection. If we go with the configuration API, this is taken care of by the use of the query telling us what the collection’s parent is instead of the name of the collection.

Why: During COM+ 1.0 we had several collections that had multiple parent collections, because the name was the only identifying source we had to use separate names for each of the children collections even if they were the same “type” of collection. An example is RolesForInterface and RolesForMethod.

1.3.3 Scriptable Interface

By being a scriptable interface coders in VC, VB, VB Script, Java Script, and COM+ Runtime should all be able to code to it.

Why: Most users of configuration data are programming in scriptable environments. This also is in line with users writing to the URT.

1.3.4 Unified Configuration Model for IIS, COM+ Services, and COM+ Runtime

Why: Users want one way to administer a product, not several separate ones per the part they are using.

1.3.5 Ability to save changes to all objects in a collection with one call.

This is just like COMAdmin. It is batch update (per collection) instead of direct updates of changes to the data store.

Why: For performance and transaction reasons, updating all changes to a collection at one time makes a lot of sense. For COMAdmin you have this ability. All changes done in one SaveChange call, are done in one transaction (unless composed transactions are used and then multiple SaveChanges are done in one transaction).

1.3.6 Expose both a managed interface and unmanaged interface.

Why: Customers will want to code to the configuration API from both managed code and unmanaged code. This is also a requirement from the ducktape folks. We will provide a set of managed code interfaces to ship with the URT, and then will most likely also provide unmanaged code interfaces (possibly WMI) for the users who don’t code in managed code.

1.3.7 Distributed, transacted, compose-able configurations.

This means allowing multiple updates to one or more configurations (same machine or different machine) to be composed into one transaction.

Why: This is a requirement, in order to manage both homogeneous (webfarms) and heterogeneous (multi-tier, app-to-app) distributed apps. It also provides for basic data integrity and avoids having to write recovery logic for the data stores.

1.3.8 Direct access to collections at any level.

A way of directly accessing collections off at most one main object. This is the no hierarchy approach.

Why: Customers grow tired very quickly of navigating collections to get to a collection that they can identify with a query from the beginning, without needing the parent collections.

1.3.9 Relationship Navigation

The public relationships between parent collections and children collections still need to be exposed to the users so they can write generic GUI’s.

Why: Some applications will still want to expose the configuration information in a generic way and there must be a way to tell them how that should be modeled.

1.3.10 Direct property read/update

This is direct property read/update for specific objects without navigating collections or having to call a save change method.

Why: Many customers want to get at information only about a specific object and don’t want to worry about the collections or hierarchies involved. An example of this is a user just wanting to know what the ProgId is for a specific CLSID that the user has.

Issue: Could we allow a multiple-row-returning query to be passed in when updating a property? Then update all the rows to that property value?
1.3.11 Uplevel/Downlevel Interoperability with URT 1.0 and App Server.

· 1.0 config clients should be able to see a reasonable subset of 2.0 servers/apps (local and remote).

· 2.0 config clients should be able to see all of a URT 1.0 servers/apps (local and remote).

The infrastructure for this should come from side-by-side operations. However, the API must be able to support this as well.

Why: Customers will want to be able to administer servers from client machines and clients from server machines.

1.3.12 Automatic population for collections

Users will be able to request an empty collection, but if they don’t then it will be populated when it is returned.

Why: In COMAdmin customers almost always wanted a populated collection so it makes sense to make this the default and not require them to do two separate steps.

1.3.13 Refresh collection

Users will need a way to refresh the data in a collection from the server.

Why: In COMAdmin today you have a populate method that you can recall to get the new data from the data store. Since we are killing Populate we should still have a way that would allow the user to ask for the data from the data store to be refreshed.

1.3.14 Automatic Re-Populate when changes to a collection are saved.

This means that when a user requests that changes to a collection be saved and the request succeeds, the collection will automatically be updated with the new data from the data store (including any changes that happened backdoor to the data).

Why: The majority of COMAdmin users call the “populate method” directly after successful SaveChanges, so it should be the default instead of requiring them to call two methods to get this functionality.

1.3.15 Way to not re-populate when collection save occurs is called.

Why: Since some users will want to stay on a static cache, the configuration API must provide a way to not re-populate when a save occurs.

Requests

These requests are functionality that people have requested be supported by the configuration API. They will not necessarily be supported, but we are evaluating if it makes sense to support them. The items listed in these areas are listed in order of priority from the most important down to the least.

1.3.16 Using enumerations instead of strings for collection names and properties.

This is under research. The basic idea is to use enumerators for arguments to functions. By doing this VB would be able to let users use statement completion to fill in the parameters to the functions.

Why: To enable argument list drop down in Visual Basic and to provide clear lists for the user of the options for arguments to method calls the configuration API could take enumerations instead of “Magic” strings. Today users are unhappy with having to know the “Magic” strings from the docs to use COMAdmin interfaces. This would also eliminate the question of localizing these “Magic” strings.

1.3.17 Expose configuration per a Standard API

This request takes the requirement of merging the IIS, COM+ Services and COM+ Runtime configuration models together one step further. It asks that the configuration interfaces be a Standard Microsoft interface or a Standard Industry interface. The main interface we are evaluating for this request is WMI.

Why: If the configuration data and functionality can be exposed by an existing standard API that users are all ready be familiar with and that is convenient for them to use then exposing our data and functionality via that path makes sense.

1.3.18 *DTC Administration

Why: DTC was part of COMAdmin’s scope to administer in COM+ 1.0. If it is still the configuration APIs responsibility then it should be exposed via the API. Customers want full control from the SDK, and in COMAdmin this is the biggest hole where programmatic control is lacking.

Issue: This is the biggest place where COMAdmin fails to provide administration interfaces.

Issue: Is the configuration API responsible for admin for DTC?
1.3.19 Error Handling

1) Using Error Objects to send back error info.

2) Localizing error strings

3) Possibly providing strings back or a look up for the strings.

Why: The error handling provided in COMAdmin has had many requests for improvements. The configuration API needs to do a much better job of providing errors and information about errors to the customers.

1.3.20 Wait for changes to a data store to be completed

This would basically let the user wait on, for instance, a RegDB file being written to disk before trying to use the data that he just updated in the RegDB.

Why: In COMAdmin today, if a user is using composed transactions, when the outer most transaction completes the RegDB file is updated. However, there is no guarantee that the changes are finished writing to the disk, so a user could try to access the information too quickly after the transaction finishes. Providing a way for the user to wait for the write to finish after the transaction completes would allow the user to know that the changes are ready for use. If a user is not using composed transactions, COMAdmin all ready will not return until the file has been written.

1.3.21 Support for blob properties

Why: In COMAdmin there were a few properties that could not be exposed since blob data was not supported. An example of this is the security descriptor.

Issue: COMAdmin did not expose any blob properties in COM+ 1.0, should the config API now do it?
1.3.22 Supporting a Direct Remove

This is the equivalent to doing Direct updates, only removing the object. It would remove all objects in a query and would not require a save on the collection to be called.

Why: To be consistent with the direct property gets and sets.

1.3.23 Having add take properties

This is just a short cut for doing an add and then setting some properties. This would still require a save on the collection to be called to save the new object.

Why: Customer request from devlab. They like being able to do this in ADO.

Recommendation: Reject, it will not buy the user that much and will be more confusing than it is worth.

1.3.24 Supporting a Direct Add

This is like the direct property get or set but for adding a whole row. It will take affect immediately and is equivalent to doing an add on a collection immediately followed by a SaveChanges.

Why: To be consistent with the direct property gets and sets.

Recommendation: Reject this, it is not necessary and it would be more complicated for the users than it would simplify their lives.

Rejections

These rejections are functionality that has been requested but that we do not plan on supporting in the configuration API. They are not listed in any specific order.

1.3.25 Transactional configuration API methods

This means giving the users a BeginTrans, AbortTrans, and CommitTrans methods.

Why: Instead of requiring users who want composed transactions to build another object to be marked as transaction required and then having this object call the configuration API, the configuration API could provide direct BeginTrans, AbortTrans and CommitTrans calls to the configuration API.

Why Rejected: The MTS programming model is all about removing transaction control from code and instead having the runtime control the transactions for the user. This would completely break that model.

ASCI Definition

1.4 Overview

It is easiest to understand the Application Server Configuration Interface (ASCI) if you think of it as two parts. One being the generic “data access” interfaces that let you retrieve data about your configuration and review and alter it. The second being sets of functional method calls that package some of the more complex configuration actions.

In order to provide more friendly coding in Visual Basic, ASCI will consist of two sets of classes for handling the “data access” portion of configuring the URT Services and Application Server. The first set is very similar to the COMAdmin Classes currently shipping in NT 5. Users will create the top level object AppServerConfig. From this object users can request connections to different machines or clusters and can retrieve AppServerQuery objects that allow them to provide information about the configuration data they which to work with. Once they have provided the appropriate information to the AppServerQuery object they can request the AppServerCollection that packages up all the data from the server and returns it to the client process. Users can than use AppServerObjects to view or update specific pieces of configuration information. All updates are processed in batches based on the AppServerCollection. It is also possible to access and set properties directly from the AppServerQuery object by using the DirectProperty array.

The second set of classes for “data access” is the “specific object” classes. These will be created automatically on the top of the generic interfaces. Where in the “generic” interfaces users will retrieve AppServerObjects from the AppServerCollection, users could also set those objects into the “specific” object that they are working on. For instance, they can retrieve an AppServerObject but have assigned it into a variable that represents an AppServerApplicationObject. This specific object will have properties that match to the defined columns of data for an “Application”. Under the covers these “specific” objects will actually call the generic object with the appropriate arguments to simulate reading and setting data.

Besides from the “data access” type activities, ASCI will also support complex actions. These will be supported through additional function calls on AppServerConfig.

Decision Point: I looked at factoring these additional “complex” action function calls into other objects for two reasons. 1) To allow for future growth without breaking existing code. 2) To group functional calls by functionality or use to make it easier for users to understand. I came to the conclusion that reason 1 is not really a reason when working in managed code. We no longer need to worry about changing other method calls affecting the use of method calls that stay the same. We will be able to add on new functions or remove functions as we go and only break the pieces we are changing. As for the second reason, I believe that while we will have some “complex” actions, we will not have an excess number of them, so having them all on one class will actually be easier for users than having them change variable types to access different functions.

1.5 Generic Objects (“Data Access”)

1.5.1 AppServerConfig (“Data Access” definition)

There will be other methods and possibly properties defined on the AppServerConfig object, but they will be defined below in the “complex” action section.

1.5.1.1 Properties

1.5.1.1.1 ASCIMajorVersion

Type:

Long

Behavior:
ReadOnly

Description:
Returns the Application Server Configuration Interfaces major version.

1.5.1.1.2 ASCIMinorVersion

Type:

Long

Behavior:
ReadOnly

Description:
Returns the Application Server Configuration Interfaces minor version.

1.5.1.2 Methods

1.5.1.2.1 Connect

Return Value:
String

Arguments:
String strConnectionString

bool bConnectToCluster

Description:
Connects to the machine or cluster that is requested. The string that is returned is the version of the catalog server that it connected to.

Impl Note:
When connect is set to a new machine we will bring back the meta data (queries) for that machine.

1.5.1.2.2 Get_Query

Return Value:
AppServerQuery

Arguments:
eAS_QUERY eQuery

Description:
Retrieves a query object that the user can fill in it’s requested data pieces and retrieve the collection information from..

1.5.1.2.3 Get_DirectProperty

Return Value:
Variant

Arguments:
long lPropIndex

AppServerQuery QueryObj

Description:
Executes the query and returns the value of the property from the collection information represented by the query. It is an error to use this method to read from a property if the collection represented by the query returns more than one object.

1.5.1.2.4 Set_DirectProperty

Return Value:
void

Arguments:
long lPropIndex

AppServerQuery QueryObj

Variant varNewValue

Description:
Executes the query and updates all the returned collection information to have the new value for the property.

1.5.1.2.5 Get_Collection

Return Value:
AppServerCollection

Arguments:
long lOptions

AppServerQuery QueryObj

Description:
Passes the query to the server and retrieves the collection data. It will have an enumeration of options, but takes a long so the enumerated values can be or’d together.

1.5.1.2.6 Get_CollectionItemCount

Return Value:
long

Arguments:
long lOptions

AppServerQuery QueryObj

Description:
Returns the number of items in the collection that will be returned if this query is executed. It will have an enumeration of options, but takes a long so the enumerated values can be or’d together.

Issues:

May not be supported by IST.
1.5.2 AppServerQuery

1.5.2.1 Properties

1.5.2.1.1 Value

Type:

Variant

Behavior:
ReadWrite

Index:

long lPropIndex

Description:
Returns or sets the value that the property must match in order to be included in the result set.

Decision Points:
We are returning variants instead of objects because VB users will want to be able to simply set the value into an integer or long if that is what we are returning and that does not work with Objects.

We are using a long for the reference to a property so we can provide enumerations that will list the properties to the users for each type of query and string. The index will not necessarily be sequential. For instance if the query is for CLSID and the CLSID column is column 10 in the table the only valid setting or reading of this property will be Value[10] when it represents the CLSID query.

1.5.3 AppServerCollection

Issue: How do we make this object an enumerated object? Do we just need to implement the GetObject and NextObject functions? This still needs more research, but I am not sure that VB has implemented this so I am not sure if we can be sure of how it should be.
1.5.3.1 Properties

1.5.3.1.1 Count

Type:

long

Behavior:
ReadOnly

Description:
Returns the number of items in the collection.

Issues:
When this object becomes enumerated, it may be possible to replace this function with one of the enumeration functions
1.5.3.1.2 Name

Type:

String

Behavior:
ReadOnly

Description:
Returns the name of the collection.

Decision Point:
This property is a string because it is the user readable format. There is no place that the collection will need to take in this value, so it does not need to be an enumerated value.

1.5.3.1.3 Item

Type:

AppServerObject

Behavior:
ReadOnly

Index:

long lIndex

Description:
Returns the object represented by the index in the collection..

Issues:
When this object becomes enumerated, it may be possible to replace this function with one of the enumeration functions
Issues:
Need to investigate whether or not we want to retrieve data via key’s instead of indexes.
1.5.3.1.4 AddEnabled

Type:

bool

Behavior:
ReadOnly

Description:
Tells whether or not the user can add to this collection.

1.5.3.1.5 RemoveEnabled

Type:

bool

Behavior:
ReadOnly

Description:
Tells if the user can remove items from this collection..

1.5.3.1.6 CollectionType

Type:

long

Behavior:
ReadOnly

Description:
Tells which options were used when creating the collection (or refreshing). For instance, if the collection is read/only.

Issue: We may want to have a property that tells the user what the Key Field is for the collection. We might also want a property that tells the user what the Name Field is. If we do this, we could drop those from the object.
1.5.3.2 Methods

1.5.3.2.1 Add

Return Value:
AppServerObject

Arguments:
None

Description:
Creates a new object in the collection’s cache and holds the object until the collection is either saved or released.

1.5.3.2.2 Remove

Return Value:
void

Arguments:
long lIndex

Description:
Removes the object from the collection cache that is referred to by the index. The object is not removed from the data store until the collection’s changes have been saved. The collection’s cache is re-numbered to hide the deleted value.

1.5.3.2.3 Refresh

Return Value:
void

Arguments:
long lOptions

Description:
Refreshes the collection’s data from the data store. Any changes that have not been saved are lost. All collection objects that have been handed out to the user become invalid. The choices for lOptions come from the enum for getting the collection from the query object.

1.5.3.2.4 SaveChanges

Return Value:
void

Arguments:
eASCollSaveChangesOptions lOptions (see enumerations section)

Description:
Saves the current changes to the collection. Automatically refreshes the collection. This will in-validate any AppServerObjects the user is holding. The user may pass a flag that will force ASCI not to repopulate the collection at the end of the save.

Decision Point: MTS and COMAdmin told the user the number of rows that changed after the SaveChanges completed. Since we will always be saving all or none, SaveChanges no longer will tell the users the number of updates that went through.

1.5.4 AppServerObject

1.5.4.1 Properties

1.5.4.1.1 Value

Type:

Variant

Behavior:
ReadWrite

Index:

long lPropIndex

Description:
Returns or sets the value of the specified property.

Decision Points:
See AppServerQuery, Value Decision Points.

1.5.4.1.2 PropertyFlags

Type:

eASO_PROPERTYFLAGS

Behavior:
ReadOnly

Index:

long lPropIndex

Description:
Tells if the property is ReadOnly, ReadWrite, or WriteOnly.

Decision Points:
See AppServerQuery, Value Decision Points.

Issues:
Do we need to tell if the property is valid? If we do, then we either want to change this to a bit mask of option values that can be or’d or create another property for it.

1.5.4.1.3 Key

Type:

Variant

Behavior:
ReadOnly

Description:
Returns the key value that represents this object..

Decision Points:
See AppServerQuery, Value Decision Points.

1.5.4.1.4 Name

Type:

String

Behavior:
ReadOnly

Description:
Returns the name value that represents this object..

Definitions of Specific Objects (“Data Access”)

While this section is part of the class description it is not going to list methods and properties for different classes. That is because the classes that will be created to fill this section will be dynamic based on the objects defined in the XML schema for the catalog.

Let’s take an example. Suppose we declare there is an Application Object that exists in the XML schema that is suppose to be exposed to users. User code can use the generic “data access” classes to work with the object, or they can use the “specific” classes.

If they used the generic “data access” classes they would:

1) Create the AppServerConfig Object

2) Request one of the Application Queries from the Object

3) Fill in the needed Query fields for getting the collection data

4) Request the collection which comes back as an AppServerCollection Object

5) Walk through each of the AppServerObjects in the collection and use the Value array to access the properties.

If they used the specific “data access” classes they would:

1) Create the AppServerConfig Object still

2) Request one of the Application Queries from the Object but set it into a Query specific object. For instance if the query we were doing was looking for a specific application based on the Applid, we would set the generic query class into a AppServerApplicationSpecifiedQuery object. The AppServerApplicationSpecifiedQuery object will wrap the AppServerQuery object, but will replace the Value property with a list of properties that represent the specific fields the user needs to fill in for the query.

3) Request the AppServerCollection object from the AppServerApplicationSpecifiedQuery object.

4) Get AppServerObjects from the AppServerCollection but assign them into an AppServerApplicationObject instead of an AppServerObject. The user can then use these objects to

Issue: Do we want to have query specific objects as well as object specific objects. That would create a lot of extra objects for users, but is the only way the objects properties would show easily through VB.
Implementation Notes: The specific objects would always wrap the generic objects for getting and setting objects. These wrapper implementations will be automatically generated from the XML definitions of data.

Implementing these specific objects should be second priority after implementing the generic objects. Everything that the user can do from these objects will be possible from generic objects, these objects will just enable statement completion and easier reading of code.

Issue: Can we use Dynamic Classes to implement these?
1.6 Complex Action Methods

1.6.1 Existing Functions from COMAdmin that will be in AppServer

1.6.1.1 StartApplication

Issue: Would there be a Start/Stop Sites?
1.6.1.2 StopApplication

Issue: Would there be a Start/Stop Sites?
1.6.2 New Functions

1.6.2.1 KickOffCookdown

1.6.3 Functions in COMAdmin not in AppServer

1.6.3.1 Backup/Restore RegDB

Just copy xml files for backup.

1.6.3.2 Start/Stop/Refresh/Check if it is running Router

Not a URT feature.

Issue: Will this be a AS’s NLB/CLS feature?
1.6.3.3 Start/Stop/check if it is running IMDB

Not a URT / AS feature.

1.6.3.4 Install/Export/Query Applications

Use “xcopy /s” to do.

1.6.3.5 Import Component

XCopy

1.6.3.6 Install Component or multiple components

XCopy

1.6.3.7 Get component information or multiple component information

Users will use reflection for this.
1.6.3.8 RefreshComponents

Replaced by KickOffCookdown method
1.6.3.9 Install Event Class (or multiple event classes)

LCE does not exist in the URT 1.0.

1.6.3.10 GetEventClsidsforIID

LCE does not exist in the URT 1.0.

Enumerations

1.6.4 Static enumerations

These enumerations will exist no matter what collections or objects ASCI supports

1.6.4.1 eASCollSaveChangesOptions

eASCollSaveChangeNoRefresh = 1

1.6.4.2 eASQueryGetCollectionOptions

eASQueryGetCollectionNoPopulate = 1

eASQueryGetCollectionReadOnly = 2

eASQueryGetCollectionRuntimeMode = 6 // runtimemode contains readonly as well

1.6.4.3 eASPropertyFlags

eASPropertyFlagReadOnly = 1

eASPropertyFlagWriteOnly = 2

eASPropertyFlagReadWrite = 3

1.6.5 Dynamic enumerations

These enumerations will be generated off the XML that defines our RegDB Schema.

Todo: Fill in the enumerations once the schema for RegDB has been created.
ASCI Implementation Notes

This section is meant to describe the specifics of how ASCI will use the managed code IST interfaces to retrieve collection and query information. Since the managed code IST interfaces have not yet been defined this section is currently a place holder.

Collections, Properties, Query Lists

Issue: These will need to be defined. All this information will be retrieved from the Catalog either on start of ASCI or on the Connect to the remote machine.

1.7 Query lists

1.7.1 Navigation Queries

1.7.1.1 RootLevelQueries Query

Input: None

Output: All Queries that need no input.

1.7.1.2 ChildLevelQueries Query

Input: ParentCollection

Output: All Queries that need the parent’s key (and possibly grandparent keys) but no others.

1.7.1.3 PropertiesForCollection Query

Input: Collection

Output: The properties that collection supports

1.7.1.4 QueriesForCollection Query

Input: Collection

Output: All queries that will give you the collection filled with different sets of data.

1.8 Collections

1.8.1 Navigation Collections

1.8.1.1 Queries

Collection type that supports telling user about different possible queries to use. This will contain a friendly name and a query id.

1.8.1.2 Properties

Collection type that supports telling users about the different possible properties on a collection. This will contain data types, friendly names, and behaviors like readonly or readwrite.

Generic coding discussion

For the generic objects, one might want to understand how you can be guided through related collections and queries that exist for each collection. By retrieving meta-data collections users can write generic code that does not need to understand the objects it is dealing with. For instance, to implement ASCIView (the next generation of the explore.exe sample of COMAdmin and MTSAdmin) you would need to provide the user with a list of top level objects they could ask for without needing to provide any keys. To do this, you would simply request the “RootLevel” query, which comes with no parameters and then request the collection from this query object. It will return you a list of queries you can select that don’t expect any key information provided. Say the user selects the applications query, then you can use that query id to get the Applications real data, shown here in the Data box.

Query Box
Data Box

(Applications
<empty>

(LocalComputer

(Sites

So the generic code would fill the Data box with data from the collection brought back by using the Applications query. And then it would fill the Query Box with data brought back by using the Applications Sub Collection Query.

Query Box
Data Box

(Components
(MyApplication

(Roles
(YourApplication

(Properties
(System Application

(Utility Application

(IIS Application

Hopefully this shows how the developer would simply use to separate query objects together to handle generic coding. One would provide the possible meta options and the other would provide the data behind the chosen meta option.

2. ASCI Sample Code

2.1 Calling a top level method

2.1.1 Visual Basic Example

Dim ASConfig as New AppServerConfig

ASConfig.StartApplication g_My_File_Name

2.1.2 Visual C++ Example

{

AppServerConfig myAppServerConfig = new AppServerConfig;

myAppServerConfig.StartApplication(g_My_File_Name);

}

2.2 Get all components from an application and update their Descriptions

2.2.1 Visual Basic Example

Dim ASConfig as New AppServerConfig

Dim ASQuery as AppServerQuery

Dim ASColl as AppServerCollection

Dim ASObj as AppServerObject

Set ASQuery = ASConfig.Get_Query(eComponentsInAppQuery)

ASQuery.Value("ApplID") = gMY_GUID_FOR_MY_APP

Set ASColl = ASConfig.Get_Collection(0, ASQuery)

For each ASObj in ASColl

ASObj.Value("Description") = "Part of my app"

Next ASObj

ASColl.SaveChanges

2.2.2 Visual C++ Example

{

AppServerConfig myAppServerConfig = new AppServerConfig;

AppServerQuery myAppServerQuery = NULL;

AppServerCollection myAppServerCollection = NULL;

AppServerObject myAppServerObject = NULL;

myAppServerQuery = myAppServerConfig.Query(eComponentsInAppQuery);

myAppServerQuery.Value[“ApplID”] = gMY_GUID_FOR_MY_APP;

myAppServerCollection = myAppServerConfig.Get_Collection(0, myAppServerQuery);

long lCount = myAppServerCollection.Count();

String s = “Part of my app”;

for (LONG i; i < lCount; i++)

{

myAppServerObject = pAppServerCollection.Item[i];

myAppServerObject.Value["Description"] = s;

}

long lNumSaved = myAppServerCollection.SaveChanges();

}

Update one method’s description using the direct path

2.2.3 Visual Basic

Dim ASConfig as AppServerConfig

Dim ASQuery as AppServerQuery

Dim ASDirectObj as AppServerObject

Set ASConfig = new AppServerConfig

Set ASQuery = ASConfig.Get_Query(eMethodQuery)

ASQuery.Value("CLSID") = gMY_GUID_FOR_MY_COMPONENT

ASQuery.Value("IID") = g_MY_IID

ASQuery.Value("Method Index") = g_MY_METHOD_INDEX

ASConfig.DirectProperty(ASQuery , eMethodDescription, "My Method");

2.2.4 Visual C++

{

AppServerConfig myAppServerConfig = new AppServerConfig;

AppServerQuery myAppServerQuery = NULL;

myAppServerQuery = myAppServerConfig.Get_Query(eMethodQuery);

myAppServerQuery.Value[eQuery_CLSID] = gMY_GUID_FOR_MY_COMPONENT

myAppServerQuery.Value[eQuery_IID] = gMY_IID;

myAppServerQuery.Value[eQuery_MethodIncex] = gMY_METHOD_INDEX;

String s = “My Method”

myAppServerConfig.DirectProperty(myAppServerQuery, eDescripiton, s);

}

Programtically display queries that can be used on the components collection.

2.2.5 Visual Basic Code

Dim ASConfig as AppServerConfig

Dim ASColl as AppServerCollection

Dim ASQuery as AppServerQuery

Dim ASObj as AppServerObject

Set ASConfig = new AppServerConfig

' Request the query to find the queries for an object

Set ASQuery = ASConfig.Get_Query(eQuerysList)

ASQuery.Value(eCollection) = "Components"

Set ASColl = ASConfig.Get_Collection(0, ASQuery)

Set ASQueryCellsQuery = ASConfig.Get_Query(eQueryCells)

For each ASObj in ASColl

debug.print ASObj.Value[eQueryName] & ": " & ASObj.Value[eQueryID]

' Now get the cells that would need to be filled in for this query

ASQueryCellsQuery.Value[eQueryID] = ASObj.Value[eQueryID]

set ASQueryCellsColl = ASConfig.Get_Collection(0, ASQueryCellsQuery)

for each ASQueryCellsObj in ASQueryCellsColl

debug.print " " & ASQueryCellsObj.Name

next ASQueryCellsObj

Next ASObj

Visual C++ Code

{

AppServerConfig myAppServerConfig = new AppServerConfig;

AppServerQuery myAppServerQueryForQueries = NULL;

AppServerCollection myAppServerQueryCollection = NULL;

AppServerObject myAppServerQueryObject = NULL;

AppServerQuery myAppServerQueryForQueryCells = NULL;

AppServerCollection myAppServerQueryCellsCollection = NULL;

AppServerObject myAppServerQueryCellObject = NULL;

myAppServerQueryForQueries = AppServerConfig->Get_Query(eQueryList);

String s = “Components”

myAppServerQueryForQueries.Value[eObject] = s;

AppServerQueryCollection=myAppServerConfig.Get_Collection(0,

 myAppServerQueryForQueries);

long lCount = myAppServerQueryCollection(0);

myAppServerQueryForQueryCells = myAppServerConfig.Get_Query(eQueryCells);

for (LONG i; i < lCount; i++)

{

myAppServerQueryObject = pAppServerQueryCollection.Item(i);

var = myAppServerQueryObject.Value[eQueryName];

PrintData (var);

var = myAppServerQueryObject->get_Value[eQueryKey];

myAppServerQueryForQueryCells.Value[eQueryKey] = var;

myAppServerQueryCellsCollection=

 myAppServerConfig.Get_Collection(0, myAppServerQueryForQueryCells);

LONG lCountCells = myAppServerQueryCollection.Count;

for (LONG i; i < lCountCells; i++)

{

myAppServerQueryCellsObject = myAppServerQueryCellsCollection.Item[i];

var = myAppServerQueryCellsObject.Value[eCellName];

PrintData (var);

}

}

}

Questions/Issues

2.3 Requirements and Request Issues

These are questions or issues surrounding possible requirements or requests. If a requirement / request is not completely formed and needs more research to determine exactly what it means it will be listed here. They are not listed in any particular order and will be prioritized when/if they move to the requests or requirements section.

2.3.1 Configuration Security

This needs to be defined completely. Is it security per configuration of object, or collection, or subcollection?

It came from a response to this doc by Markush (listed here to help research what this should be in the end):

Fine grained, local and remote, administrative security. Per collection/subcollection in some cases (Ducttape Site), maybe even per column. This is probably more an infrastructure requirement, but the config API must at least not interfere with the underlying security model and/or return reasonable error codes/messages.

My response being:

I assume what this means is configuration security? I.E. Something like John Doe has permission to configure AppX and Jane Doe can configure AppY? Do to there not being anywhere else that this requirement should be caught right now I will add it to the spec. Is it actually a requirement (would we not ship if we did not do this) or is it a very important request?

2.3.2 Asynchronous calls?

Should the configuration API support any amount of asynchronous calls? Or should it remain the responsibility of the caller to use threads for this? Also is there an other approach we may want to use, one where we layer an Asynchronous provider on top of the configuration API?

2.3.3 Thin Client – what requirements does this add?

Ability to have a web client do AS Administration without any controls being downloaded to the client.

2.3.4 Other passed over administration functionality from COM+ 1.0, IIS, MSMQ, and other areas.

Need to look through raid and other sources to make sure we are not skipping anything that we should be doing.

2.3.5 Eventing and Monitoring

The eventing and monitoring story may affect the configuration API in that it would be nice to have a common data model between them.

Does any other part of the eventing or monitoring story affect the configuration API?

This question includes what becomes of tracking and whether or not the configuration API exposes it.

Auditing of changes: an infrastructure requirement? Should probably use terminology of the config APIs, rather than internal schema.

Change notifications being expressed in terms of the configuration API, but coming from the infrastructure.
2.3.6 Performance

We know that we need to provide exceptable performance for customer runtime usage, but we need to clarify exactly what that is and any other requirements we may have.

Issue: What are the requirements and for what usage cases?

2.3.7 Application Server Requirements

Are there any Application Server features that may drive what our configuration API looks like in the end? For instance, can the clustering data information be modeled into our data access portion of the configuration APIs?

2.3.8 URT Requirements

Are there any URT features that may drive what our configuration API looks like in the end?

2.3.9 Customer Extensibility

Cut from email:

[Markush] Customer extensibility (for the real customers, not the internal ones), including custom consistency validation logic etc.: this requirement comes from at least URT Context and Ducttape/XSP (metabase feature parity).

[rcraig] Supporting name-value pairs will be important. Custom validation logic: that's a request, and I believe, a reject.

[Emily Kruglick] Markus I would like to know more about this one. Are you talking about users being able to add their own properties to say an application? And adding their own edit rules (basic and logic)? What exactly does URT Context and Ducttape/XSP support in this area that we have to match. I will add this as an issue for now.

2.4 ASCI Open Issues

2.4.1 Error Handling – what will the methods throw?

2.4.2 Asynchronous design

2.4.3 Random Queries being supported

2.4.4 Different Query formats being supported

For instance query strings verse query cells.

2.4.5 Evaluation of sooo many enumerations

2.4.6 When do we retrieve meta-data from catalog? On startup or connect?

2.4.7 How do we make collection object be enumerated?

2.4.8 What are all the complex methods?

2.4.9 What are the specific managed code IST calls that need to be made to support ASCI?

2.4.10 What collections, properties, and queries will be supported from the xml?

2.4.11 Security on different levels of configuration?

2.4.12 Eventing relating to any of ASCI?

2.4.13 Monitoring relating to any of ASCI?

2.4.14 Evaluation of requests that are not covered by current design.

2.4.15 Review against File System Class (for Add and Remove Enabled)

2.4.16 Review against Dictionary Class for collection implementation

2.4.17 Review against XDO for basic data management

2.4.18 Review with BillDev that SaveChanges not returning a count is acceptable.

3. Revision History

Date
Change By
Description

8/3/99
EmilyK
Updated with first set of changes from RaduP

8/2/99
EmilyK
Update with comments from first review.

7/23/99
EmilyK
Prepared document for first review.

7/20/99
EmilyK
Created ASCI.doc from the original requirements specification.

6/23/99
EmilyK
Very small updates and fixes

6/9/99
EmilyK
Updated with comments from first review

5/28/99
EmilyK
First Draft Released

* Requirement/Request is from previous versions of COM+ and MTSAdmin and has been shelved before so if it is still valid it may be important to get done.

Microsoft Confidential
Page 14
7/22/99

