Catalog Event Notification

Overview

This is the design spec on how the event notification works in the Catalog. This includes initial requirements, the event notification technology considerations, how a consumer subscribes to events, what the catalog notification infrastructure looks like and unresolved issues.

Requirements:

· The event notification mechanism should be simple and easy to consume events.

· It shouldn’t pull other dependencies onto internal/external consumers.

· It should be reasonably fast, not causing performance bottlenecks on the provider (catalog server) and on the consumer.

· The catalog events will be served to transient-only listeners.

· Providing events to consumers written in managed code is critical.

· The consumer should be able to specify the table and optionally the rows that it wants to receive change notification from.

· The catalog must be able to figure out whether there are any consumers who are listening for events and shouldn’t fire events if there aren’t any. Even when there are consumers listening to events, the catalog shouldn’t fire events from tables that are not being listened to. Similarly, within a table, events should be fired only for those rows that the consumer is interested in.

· The schema could have knowledge as to whether a table can fire events or not. (Talked to Michel Murstein on this, the scenario he had in mind was for persistent consumers.)

Eventing Technology

WMI:

Pros:

WMI is the most commonly used instrumentation technology. It is easy to use. It is asynchronous. People are writing generic tools for event viewing. WMI ships or is freely distributable on all platforms (Win9X, NT4SPX, W2K)

Cons:

It is a heavyweight dependency. Do we want to force any product that wants to consume our events install WMI? Even though it ships with most products it is not installed by default, it is an option.

WMI event notificating mechanism lives on another process. That means even for internal events there will be two process hops until the event reaches the comsumer. Why build in such a performance bottleneck into the product from the beginning?

There is no easy way to provide events to managed code consumers.

LCE

Don’t want COM+ Services dependency.

Exists only on W2K.

Doesn’t provide an out of the box filtering or rule based firing.

LCE for managed code is not implemented yet.

Managed Code Consumers:

There are two types of notification mechanisms evolving for managed code. Delegates (Tightly Coupled Events) and LCE (Publisher/Subscriber). Even though LCE provides more functionality and features it is not an option for the short term because the URT team will not implement this for the URT 1.0 release. Delegates sound like the managed form of COM Connection Points.

Connection Points:

We are inclined to go with Connection Points because:

The Cons of WMI.

It is not clear whether the Catalog needs the sophisticated filtering mechanism that WMI provides. It would be nice.

It would be an easy transition from Connection Points to Delegates (managed code).

Connection points won’t have the extra process round-trip that WMI does.

Having the connection point interfaces doesn’t prevent us from using WMI in the future. We would have an additional thin layer to provide WMI events.

Issues:

It is not totally asynchronous, but we will have the events fired from a separate thread.

Types of events

The following is a list of events that should fire change notifications:

· Insertion of a row to a simple table.

· Deletion of a row to a simple table.

· Update of a row to a simple table.

As a consequence, the outgoing interface for the change notifications will look like this:

interface ISimpleTableEvent : IUnknown

{

HRESULT OnChange([in] ISimpleTableWrite2** i_apISTWrite,

[in] DWORD i_dwCookie);

}

i_apISTWrite:
An array of simple tables containing the changes that happened. The order of the tables is the same order as specified in the MultiSubscribe array (i_ams) specified in SimpleTableAdvise. If the user has subscribed for multiple events, the cookie can be used to identify the notification.

i_dwCookie:

If the user has subscribed for multiple events, the cookie can be used to identify the notification. The user needs to remember the cookie provided by SimpleTableAdvise.

How does a client get event notifications?

The client application that wants to receive notifications for catalog events needs to implement the ISTEvent interface. This is the outgoing interface defined by the catalog. This means the catalog will call the notification methods on this interface every time the corresponding event takes place. The client needs to go through some process to get to the IConnectionPoint interface. This can be either through the IConnectionPointContainer interface, or we can chose not to implement this container logic and return the connection point interface via a method call. The latter is a more efficient way of building the connection between the consumer and the provider because it requires less roundtrips. (This is a suggestion in Effective COM).

Once the client obtains the connection point interface it will call the Advise method to let the catalog know about its interest to listening to Simple Table events. Here again, the client should be able to specify what table and what rows he is interested in. This will require us to implement an interface that the client can use to provide the catalog with more specific filtering information.

interface ISimpleTableAdvise : IUnknown

{

HRESULT SimpleTableAdvise([in] ISimpleTableEvent* i_pISTEvent,

[in] DWORD i_snid,

[in] MultiSubscribe *i_ams,

[in] ULONG i_cms,

[out] DWORD *o_pdwCookie);

HRESULT SimpleTableUnadvise([in] DWORD i_dwCookie);

};

typedef struct

{

LPCWSTR i_wszDatabase;

LPCWSTR i_wszTable;

LPVOID i_QueryData;

LPVOID i_QueryMeta;

DWORD i_eQueryFormat;

} MultiSubscribe;

i_pISTEvent:

This is the ISimpleTableEvent interface pointer that the user provides to the catalog. The catalog will use this interface to communicate with the consumer.

i_snid:

The id of the snapshot from which the consumer wants to get events. This means the consumer will get notified by the changes that happen to this snapshot and any following snapshots.

i_wszDatabase, i_wszTable:

The combination of a database and table uniquely identifies a table. Both identifiers are “virtual”. A table name identifies a table having a certain logical schema independent of where its rows are actually stored. A database name identifies a logical grouping of related table IDs.

i_QueryData, i_QueryMeta, i_eQueryFormat:

The query data, meta and format information. The content of these parameters depends on the query format specified. For more information on these parameters read the Technical Specification for Simple Tables v2.

o_pdwCookie, i_dwCookie:

The cookie passed back and forth between the catalog and the consumer. The cookie is used by the catalog to identify the consumer. For more information read IConnectionPoint::Advise and IConnectionPoint::Unadvise documentation.

Snapshots and event notifications

Using snapshots identifiers a catalog user can guarantee that multiple GetTable() calls will use the same snapshot of the underlying database. The snapshot ids (snid) can also be used with the notification system. By specifying a snid, a client tells the event manager that it wants to receive notifications from that snapshot onwards. For the event manager to be able to provide these events the snapshot that the consumer requested needs to be around. This can be done by getting a reference to the snapshot.

 interface ISnapshotManager : IUnknown

{

HRESULT ReferenceLatestSnapshot([in] DWORD* i_psnid);

HRESULT ReleaseSnapshot([in] DWORD i_snid);

};

The following is a sample that shows how a client would be able to subscribe to simple table events. The client has to implement the ISTEvent interface. The client would query for the connection point interface (ISimpleTableAdvise) off of the simple table dispenser object. Depending on what the client is interested in, it would call the Advise method specifying the Database name, Table name and the query of interest. The query format is the one used by the Simple Table infrastructure. In STConsumer::Init() the client specifies that he is interested in listening to the changes on a particular row in the namespace table. Once the connection is established, the catalog will call the client’s ISTEvents methods depending on what action has happened. When the client is done processing the simple table events, he calls the Unadvise method to notify the catalog that he isn’t interested in the events anymore. The connection will be removed.

class STConsumer : public ISimpleTableEvent

{

 HRESULT Init();

 HRESULT Uninit();

 HRESULT OnChange(in] ISimpleTableWrite2** i_apISTWrite, [in] DWORD i_dwCookie);

private:

ISimpleTableAdvise *m_pISTAdvise;

DWORD

m_dwCookie;

};

HRESULT STConsumer::Init(DWORD i_iNamespaceID)

{

ISnapshotManager *pISnap;

HRESULT hr;

STQueryCell filter;

ULONG
cCells
= 1;

// Get the Advise interface.

hr = GetSimpleTableDispenser (L”URT”, 0, &pISTDisp);

hr = pISTDisp->QueryInterface(IID_ISnapshotManager, &pISnap);

hr = pISnap->ReferenceLatestSnapshot(&snid);

hr = pISTDisp->QueryInterface(IID_ISimpleTableAdvise, &m_pISTAdvise);

// Specify the database, the table and optionally the columns

// that you want to listen to.

STQueryCell filter = { &i_iNamespaceID, eST_OP_EQUAL, iTBLNAMESPACEIDS_ID, DBTYPE_UI4, sizeof(DWORD};

MultiSubscribe ms = { wszDATABASE_WONS, wszTABLEWONSIDS, &filter, 1, E_ST_QUERYFORMAT_CELLS}
hr = m_pISTAdvise->SimpleTableAdvise(this, snid, &ms, 1, &m_dwCookie);

hr = pISnap->ReleaseSnapshot(snid);

return hr;

}

HRESULT STConsumer::OnChange([in] ISimpleTableWrite2** i_apISTWrite,

[in] DWORD i_dwCookie);
{

ULONG
cColumns, cRows;

LPVOID *apData;

hr = i_apISTWrite[0]->GetTableMeta(NULL, NULL, &cRows, &cColumns);

apData = new LPVOID[cColumns];

for (int i = 0; i < cRows; i++)

{

hr = i_apISTWrite[0]->GetWriteColumnValues(i, cColumns, NULL,

NULL, NULL, apData);

// Do useful stuff with the column information.

}

i_apISTWrite[0]->Release();

}

HRESULT STConsumer::Uninit()

{

HRESULT hr;

hr = m_pISTAdvise->SimpleTableUnadvise(m_dwCookie);

m_pISTAdvise->Release();

return hr;

}

…Under construction…

…Not up to date…

The interception mechanism:

(This is a description of the notification implementation. Consumers don’t need to know these details. It assumes that the reader has detailed information on the simple table implementation.)

The catalog code that deals with notification has two main components. These are the event manager and the event logic table. The event manager is a data member of the simple table dispenser. Therefore it is a singleton. The two interfaces that are relevant to event notification, namely ISimpleTableAdvise and ISimpleTableEventMgr, are served by the dispenser object. But all that the dispenser does is to delegate the calls on these interfaces to the corresponding methods on the event manager object.

The event logic table is responsible for providing the changes in simple tables to the event manager. This logic table will be wired to a table only if the table is a writable table and there exists a consumer who has subscribed to the events (ISimpleTableEventMgr::IsTableConsumed) of the table. If there are multiple logic tables that will be wired on to a data table, the event logic table will be the closest one to the data table. This way if another logic table performs some changes or cancels some updates, the event logic table will be able to pick up these changes. The logic table goes through the write cache and provides the event manager the changes that occurred (ISimpleTableEventMgr::CollectEvents). The event manager decides whether an update is interesting to some of the consumer. If it finds the change interesting then it will cache the row that has changed for the consumer. Once the data table successfully commits the changes, the event manager will fire the events to the consumers (ISimpleTableEventMgr::FireEvents). This will be done on a separate thread. Basically the event manager will have a queue of events to fire, and the worker thread will wake up when this queue is not empty and fire the events. In case of a failure the events won’t be fired. They will get cancelled and deleted (ISimpleTableEventMgr::CancelEvents).

interface ISimpleTableEventMgr : IUnknown

{

 HRESULT IsTableConsumed([in] LPCWSTR i_wszDatabase, [in] LPCWSTR i_wszTable);

 HRESULT CollectEvents ([in] LPCWSTR i_wszDatabase, [in] LPCWSTR i_wszTable,

[in] ISimpleTableWrite2 *i_pISTWrite, [in] ULONG i_iWriteRow);

 HRESULT FireEvents();

 HRESULT CancelEvents();

};

IsTableConsumed() is used by the wiring to figure out whether or not to hook up the event logic table. The event manager returns S_OK if there exists at least one consumer who subscribed to listen to events from this table.

CollectEvents() is used by the event logic table to provide changed rows to the event manager. The logic table goes through every row and provides the event manager those that are marked as inserted, deleted, or updated. The event manager goes through the list of consumers and their queries. For each consumer that has subscribed to this change, it adds this row to the consumer’s cache.

FireEvents() and CancelEvents() should be used by the transaction coordinator. Once the transaction commits, FireEvents() should be called to notify the event manager to fire the events it has collected. In the same way, if the transaction aborts, CancelEvents() will be called. So the unit of work boundary is a transaction.

Details to resolve:

How will the event calls be marshaled? Will we have a client side object that consumers will talk to?

Will the user query contain filenames? If so what do we do?

What if there are multiple threads updating the same or different table? The events should be isolated.

