

Change Notification
October 26, 1999, Draft Rev 0.1

Markus Horstmann, Murat Ersan
This document describes how changes to configuration files are picked up by the configuration system and how consumers are notified of these changes.

TOC \o "1-3"
1.
Scenarios/Requirements
1
1.1
Ducttape
1
1.2
XSP
2
1.3
Lightning (EXE/Browser)
2
2.
Change Notification mechanisms
2
2.1
Notifying config consumers
2
2.2
File change notification
2
2.2.1
Native Config System
3
2.2.2
Managed code Config System
3
3.
Persistent Cache updates (“Cookdown”)
4
3.1
Snapshots
4
3.2
Change notifications
4
3.3
Modes
4
3.3.1
Manual
4
3.3.2
Automatic with time-out
5
4.
In-memory Cache updates
5
5.
Open Issues
5
6.
Revision History
5


Note: This document is an early release of the final specification. It is meant to specify and accompany software that is still in devel​opment. Some of the information in this documentation may be inaccurate or may not be an accurate representation of the func​tionality of the final specification or software. Microsoft assumes no responsibility for any damages that might occur either directly or indirectly from these inaccuracies. Microsoft may have trademarks, copyrights, patents or pending patent applications, or other intellectual property rights covering subject matter in this document. The furnishing of this document does not give you a license to these trademarks, copyrights, patents, or other intellectual property rights.

1. Scenarios/Requirements

 Need other team’s notification requirements.

1.1 Ducttape

Ducttape uses a persistent cache for its configuration information.

· Changes to configuration files must update the persistent cache.

· It must be possible to turn off automatic Cache update and trigger manual updates.

· If a group of files change (or the same file changes repeatedly), it should be possible to bundle the changes into a single cache update.

· Ducttape’s Web Admin Service (WAS) must be notified of changes to the cache. The granularity of change notification should be at the item (= row) level.

· While WAS is performing the initial read, no changes must occur to the persistent cache (or at least to the snapshot that is being read). WAS must be notified of all file changes that might have occurred during the initial read.

 Do other consumers (Worker Processes etc.) have the same requirements for snapshoting/notifications? Does WAS need to be able to tell a worker process which snapshot to use?

· The number of directories on which change notification is monitored should be minimized. 

1.2 XSP

XSP relies on in-memory caching.

· Changes to configuration files must flush the in-memory cache.

 Is it sufficient to flush all cache contents for a URL node+children? Selective for only those config objects that are actually affected by the change?

· It is not a requirement to repopulate the cache; instead the cache will be refilled on-demand as requests for configuration information are processed.

 Are there any consistency issues between Ducttape and XSP? Ex. a Ducttape worker process is running off an “old” snapshot finishing old requests/sessions while a new worker process is handling new requests. How will XSP in this worker process continue to use the old config?

1.3 Lightning (EXE/Browser)

· For some config (version policy, security policy, search path), a running app domain should not pick up changes (i.e. run off a consistent snapshot), but a new instance of the same app (domain) should run with the new config.

· Other config needs to be picked up immediately and the consumer must be notified of the change.

 Need more details about notification granularity/content, managed vs. unmanaged.

2. Change Notification mechanisms

2.1 Notifying config consumers

Consumers must be able to receive change notifications. The Catalog Event Notification spec describes the change notification delivery mechanism for unmanaged code consumers.

When working over a persisted cache / snapshot, the change notifications will be guaranteed to give the consumer a complete and consistent view of the new snapshot. Change notifications will only be sent for items that have actually changed from the previous snapshot. The change notifications will also include an indication that no more notification for a snapshot will be sent.

When working without a persisted snapshot, change notifications cannot guarantee consistent views, nor can the set of changes be minimized to items that have truly changed. However, all changes to config files are guaranteed to be reported to the consumer.

 Do we really need granular change notification for managed code or is cache invalidation sufficient? If we need it, at which level (collection, item, property)? How exact (we don’t always have a snapshot to compare against…).

2.2 File change notification

The configuration system itself needs to monitor changes to the configuration files from which it has served/cached configuration information. 

2.2.1 Native Config System

The native config system will use a wrapper interface over the Win32 file change notification APIs, to facilitate possible sharing of change notification requests/processing with other system consumers in the same process:

interface ISimpleFileAdvise : IUnknown

{

HRESULT SimpleFileAdvise(
[in] ISimpleFileEvent* i_pISTEvent,






[in] LPCWSTR i_wszDirList,






[in] LPCWSTR i_wszExtensionList,






[in] DWORD i_eFlags,








[out] DWORD *o_pdwCookie);



HRESULT SimpleFileUnadvise([in] DWORD i_dwCookie);

};

The user would need to implement ISimpleFileEvent interface to handle the changes in the file system.

interface ISimpleFileEvent : IUnknown

{


HRESULT OnFileCreate([in] LPCWSTR i_wszFilename);


HRESULT OnFileModify([in] LPCWSTR i_wszFilename);


HRESULT OnFileDelete([in] LPCWSTR i_wszFilename);

}

How to track changes in the file system:

1. Use Find*ChangeNotification methods and cache the filenames of interest so that we can figure out which files have changed.

2. Use ReadDirectoryChangesW, which gives detailed info on what changed. This method is not available on Win95/98 and WinNT3.51.

Once the event manager gets a request for file notification it will cache information (name, last modification time) about the files of interest. Then it will spawn a thread that will listen for file change notifications. As changes occur in the file system, this thread will need to update the cache of the files and report to the consumers the changes that occurred.

 The file information cache could get too big.

 Multiple directories in the search path would require multiple subscriptions for file change notification. This is because the FindFirstChangeNotification api works on a single directory and its subtree.

 What kind of filenames are we dealing with? Absolute, relative, UNC?

 What process will the file change listener live in?

 How do we batch multiple file changes into a single notification? Should this be at the file change notification level or at the consumer level?

2.2.2 Managed code Config System

The managed config system will likely use the XSP cache and the XSP file change notification system.

 How do we manage the circular dependency here? 

 How do we avoid duplicate notification requests from XSP/Managed Configsystem and DT/Unmanaged catalog? Do we want to tie this into the listener process?

 On W2K we can get file level notifications from the OS. At least on NT4/Win9x we only get directory level or even directory tree-level change notifications and have to check the individual files for changes. Should this be shared processing between XSP, config and potentially other file readers? Who should provide this infrastructure?

 Do we require XSP on all URT installations? 

 Should the cache/change notification be factored out of XSP? How can we keep cross assembly interfaces private (should we)?

3. Persistent Cache updates (“Cookdown”)

3.1 Snapshots

In order to provide a consistent view to readers, the configuration system provides the ability to guarantee that all requests for configuration information come from a single snapshot. Snapshots require persistent caching of the configuration information.

 How do we manifest snapshots in the UI? Should this be an option on the table dispenser / config manager, making the dispenser statefull? Should all queries pass in a snapshot ID?

When the persistent cache is created, the cached data contains references to 

a) The files that contributed to the cache and

b) Which files contributed to which collection in the cache.

During update of the persistent cache, this information is used to compute the new snapshot from the old snapshot, applying only the minimal changes, i.e. if all the config files were edited, but the content did not change (i.e. only comments were added etc.), no new snapshot needs to be saved.

Update of the persisted cache is triggered by invoking a configuration system API (currently CookDown entry point in cat.lib).

3.2 Change notifications

Change notifications for the persistent cache are computed at the time the new snapshot is written back to disk. Notifications include 

· added items (new values only)

· deleted items (primary key only)

 Do we need to provide the entire item?

· changed items (new values only, no information on which property has changed)

 Do we need property level notification?

· Indication on which snapshots the changes cover (old and new snapshot “ID”)

· Indication that no more changes will be received for this snapshot.

3.3 Modes

3.3.1 Manual

A update to the persistent cache is triggered by invoking the “Cookdown” API. This API will be exposed as part of the administrative URT interfaces.

There should also be a mechanism to trigger a complete recomputation of the entire persistent cache (currently forced by deleting the snapshot file). Although strictly not necessary, it is useful in recovery scenarios (corruptions of the persistent cache file, bugs in the cookdown mechanism etc.).

 Should this be a flag on the Cookdown API?

 How do we expose “methods” on the config manager/admin interfaces?

The Admin UI should provide mechanisms to trigger both the manual cache update, as well as the full cache recomputation.

 Need to discuss with Lara/Boyd.

 Should the full recompute really be in the UI?

3.3.2 Automatic with time-out

A listener process must register for file change notification on all the files that contributed to the cache, as well as directory locations / files that would have contributed to the cache had they existed at the time of cookdown.

On Windows 2000, the listener process will be implemented as a Win32 Service using the Services Host (svchost.exe) mechanism. This enables sharing the process with other services (likely WAS).

 Ducttape (SethP) is planning to write an equivalent wrapper for NT4.

 What do we do on Win9x?

The listener process will use the file change notification wrapper interfaces described above to register for all the files that contributed to the current persisted cache, as well as files/directories that would have contributed, if they had existed when the cache was computed.

The listener process will buffer file change notifications over a configurable interval (“BufferFileChangeInterval” in machine.cfg). This interval is reset with every new file change notification. 

A second interval (“MaxFileChangeDelay” in machine.cfg), starts when the first file change notification is received.

As soon as either of these intervals expires, the listener process triggers the update of the persistent cache by invoking the “Cookdown” API. 

If during the cache update further file change notifications are received, the listener process buffers these as per the above algorithm, however it does not invoke the “CookDown” API again, even if one or both of the intervals expire. If upon completion of the cache update one or both intervals have expired, the listener process immediately invokes the CookDown API.

Note that the cache update may pick up changes for which change notification is still queued in the listener process. However, since the cache update keeps track of the timestamp (and indirectly the content) of the files, a subsequent notification will simply have no effect.

 Do we want to leverage TxF to avoid these (benign) race conditions?

4. In-memory Cache updates

Currently only consumers of the managed configuration system require in memory caching. The managed config manager is likely going to use the XSP cache implementation, which already provides cache flushing on file change notification.

 See section 2.2.2 above.

5. Open Issues

In addition to the issues outlined throughout the document, the following items require further attention:

6. Revision History

October 26, 1999
Rev 0.1 (MarkusH): Created.







Page 1 of 5

