

COM+ 2.0 Configuration System - PDC
May 25, 2000, Draft Rev 0.2

Markus Horstmann
This document describes the configuration system from a developer perspective.

TOC \o "1-3"
1.
Configuration as part of the Programming Model
2
2.
Configuration Files
2
2.1
Configuration File Format
3
2.1.1
Example 1: Singleton item – COM+ 2.0 AppDomain configuration
3
2.1.2
Example 2: Collection of items – COM+ 2.0 CodeBase hints
3
2.1.3
Example 3: Nested Collections – Window/Toolbar positions
4
2.2
Configuration File Hierarchies
4
2.2.1
Application configuration files
5
2.2.2
Machine configuration files
5
2.2.3
User configuration files
5
2.2.4
Merged View
6
2.2.5
Example 4: Directives
6
3.
Accessing Configuration Information
6
3.1
Reading Configuration Information
7
3.1.1
Example 1: Singleton property – AppDomain ShadowCopy
7
3.1.2
Example 2: Singleton Item – AppDomain
7
3.1.3
Example 2a: Singleton Item – strongly typed/early bound
7
3.1.4
Example 3: Collection of items – Codebase hints
8
3.1.5
Example 4: Generic configuration reader
8
3.1.6
Example 5: Reading Configuration for the current Application
9
3.1.7
Example 6: Queries
9
3.1.8
Example 7: Nested Collections – Window/Toolbar positions
9
3.1.9
Example 8: Directives – assemblies
10
3.2
Writing Configuration Information
10
3.2.1
Example 1: Singleton property – AppDomain ShadowCopy
10
3.2.2
Example 2: Singleton Item – AppDomain
10
3.2.3
Example 3: Collection of items – Codebase hints
11
4.
Managing your own Configuration Information
11
4.1
Adding a property to an existing ConfigType (MS INTERNAL ONLY!)
11
4.1.1
Example 1a: Add a property to the “AppDomain” collection
12
4.2
Defining your own ConfigType
13
4.2.1
Configuration Schema Files
13
4.2.2
Example 1: "Shape" ConfigType
13
4.2.3
Configuration Schema Format
15
4.2.4
Example 2: Contained "ShapeLabels" collection
17
4.3
Collection Behavior: Selecting Interceptors
19
4.3.1
Example 3: Making "Shapes" an inheritable URL configuration
19
4.4
Writing a custom configuration object
21
4.4.1
Extending the Base Configuration classes
22
4.4.2
Replacing the configuration classes
22
4.5
Writing a custom merge interceptor
23
4.6
Writing a custom validation interceptor
23
4.7
Writing a custom store interceptor
23
4.8
Writing a custom hierarchy interceptor
23
5.
Accessing Configuration information from native code
24
5.1
WMI Provider: COMPlus20 namespace
24
6.
Open Issues
24
7.
Revision History
24

Note: This document is an early release of the final specification. It is meant to specify and accompany software that is still in devel​opment. Some of the information in this documentation may be inaccurate or may not be an accurate representation of the func​tionality of the final specification or software. Microsoft assumes no responsibility for any damages that might occur either directly or indirectly from these inaccuracies. Microsoft may have trademarks, copyrights, patents or pending patent applications, or other intellectual property rights covering subject matter in this document. The furnishing of this document does not give you a license to these trademarks, copyrights, patents, or other intellectual property rights.

1. Configuration as part of the Programming Model

The Configuration System is designed to give system runtimes, administrative tools, applications and other consumers of configuration information easy and efficient access to configuration information, regardless of the details of the storage format and location of the configuration information.

By simply defining schema information for their application’s configuration information, application developers obtain a large number of benefits:

· Common, human readable XML format for configuration information.

· Common APIs to read and write configuration information at runtime.

· Discoverability of configuration information to administrative tools.

· Automatic exposure through Microsoft’s WMI infrastructure.

· Command-line scriptability from WSH (through WMI).

· Programmatic remote administration (through WMI).

In the PDC release, some of the core COM+ 2.0 system components already use the configuration system to retrieve their configuration information at runtime (assembly binding resolution, AppDomain configuration). Other system components define their configuration information in such a way that it can be accessed through the configuration system (most ASP+ configuration), while others are currently only configurable by direct file manipulation or through specific APIs (code access security policy). The details on the configuration of COM+ 2.0 system components can be found in the respective specifications/documentation.

2. Configuration Files

While the configuration system is designed to be storage independent, and any applications or administrative tools written against configuration system APIs can be easily moved to a different backing store in the future, it is highly recommended to store configuration information in XML text files.

Using XML text files has the following advantages:

· Low barrier of entry to configuration: any text-based tool can be used. Any file protocol (Windows’s SMB/CIFS, FTP etc.) can be used for basic administration.

· XCOPY deployment: no registration is needed on application install, no cleanup is needed on application uninstall.

· XML editors can provide relatively rich consistency checking.

Most COM+ 2.0 system configuration is stored in user-editable XML text files.

2.1 Configuration File Format

The XML format for configuration files is optimized for human readability: Configurable properties are expressed as XML attributes and related properties are grouped under XML elements, to render a compact, yet legible representation.

Configurable properties should have a well-defined XML schema that can be used by XML editors and other XML-aware applications to perform validation or provide syntactic hints to the user. The XML schema also makes all configurable properties discoverable to generic consumers, like some administrative tools and development tools.

2.1.1 Example 1: Singleton item – AppDomain configuration

<?xml version ="1.0"?>

<configuration xmlns="x-schema:catalog.xms">

<AppDomain

 PrivatePath=".\bin;.\blaa"

 SharedPath="c:\common\bin;c:\suite\utils"

 ShadowCopy="True"

/>

</configuration>

2.1.2 Example 1a: Singleton item – COM+ 2.0 AppDomain configuration

Another example of a singleton configuration entry is the COM+ 2.0 AppDomain configuration: AppDomain settings can be specified at most once in each application configuration file:

<?xml version ="1.0"?>

<configuration xmlns="x-schema:catalog.xms">

<AppDomain

 PrivatePath=".\bin;.\blaa"

 SharedPath="c:\common\bin;c:\suite\utils"

 ShadowCopy="True"

/>

</configuration>

The first line (“<?xml …>”) declares that this file is an XML document. It is optional, but should be specified to leverage XML editing tools.

The second line (“<configuration …>”) defines the root element of the XML document and declares the XML schema to be used to validate the content of the root element. The “xmlns” attribute on the root <configuration> element is optional, but in order to fully leverage XML editing tools (ie. VS7’s XML editor with autocomplete etc.) it is highly recommended to include the “xmlns” attribute. The root element in URT configuration files must have the name “configuration”. XML is case sensitive. For more details on XML refer to http://www.w3c.org/xml.

The subsequent lines (<AppDomain…/>) carry actual configuration information, in this example the settings for the Application Domain. Individual configuration properties are expressed as XML attributes (“ShadowCopy” and “PrivatePath”). An XML element (“AppDomain>”) groups these properties into logical units.

The last line (“/configuration>”) closes the root element and thus the XML document.

2.1.3 Example 2: Collection of items – COM+ 2.0 CodeBase hints

<?xml version ="1.0"?>

<configuration xmlns="x-schema:catalog.xms">

 <CodeBase>

 <CodeBaseHint Name="wininet" Version="0.5.0.10" CodeBase="http://ie" />

 <CodeBaseHint Name="urlmon" Version="0.5.0.11" CodeBase="http://ie" />

 <CodeBaseHint Name="mshtml" Version="0.5.0.9" CodeBase="http://ie" />

 </CodeBase>

</configuration>

The Assembly Codebase hint – used here again merely as an example of configuration information - is typically specified in an application configuration file and allows the COM+ 2.0 runtime to install or reinstall an assembly from the indicated location. There is one codebase hint for every assembly that is to be downloaded from a specific location. A code base hint has several properties (“Name”, “Version” and the actual “Codebase”).

In the configuration file, each code base hint is represented by an XML element (“CodeBaseHint”), while each of its properties is an attribute of this element. All code base hint elements are grouped together by a containing element (“<CodeBase>”), to ensure that all code base hints are stored in a single location in the file.

Note: Refer to the Fusion binding specification and the Lightning Configuration specification for the actual/current definition of code base hints.

2.1.4 Example 3: Nested Collections – Window/Toolbar positions

Often, configuration information is more complex and requires one or more sub-items for each configuration entry.

Take the example of a (fictitious) Windows application that needs to store information for each of its windows: the window position, the background color and the applicable toolbars and their position:

<?xml version ="1.0"?>

<configuration xmlns="x-schema:catalog.xms">

 <Windows>

 <Window Name="MainWindow" PosX=“0“ PosY=“0“ Width=“100“ Height=“100“ Color=“Green“ >

 <Toolbar Name=“Formatting“ PosX=“0“ PosY=“0“ />

 <Toolbar Name=“Standard“ PosX=“0“ PosY=“40“ />

 </Window>

 <Window Name="StockTicker" PosX=“0“ PosY=“101“ Width=“100“ Height=“20“ Color=“Red“>

 <Toolbar Name=“BuySell“ PosX=“0“ PosY=“0“ />

 </Window>

 </Windows>

</configuration>

This example represents the definition of two “Windows” (a collection of “Window” items). Each Window in turn has one or more “Toolbar” items. The simple properties of a “Window” are expressed as XML attributes (“Name”, “PosX” etc.). The “Toolbars” that the used chose for each Window are expressed as “Toolbar” sub-elements of the “Window” element, which in turn have attributes.

The last line (“/configuration>”) closes the root element and thus the XML document.

2.2 Configuration File Hierarchies

Applications and hosting platforms have different requirements on their configuration and the levels at which configuration information must be specified. While the configuration system provides an open, flexible architecture to accommodate these different requirements, application and hosting platform authors are encouraged to strive for uniformity by choosing one or more of the following, commonly used configuration levels, when determining their configuration file hierarchy.

2.2.1 Application configuration files

Most applications have a well-defined root, typically corresponding to a root directory in the file system. The exact mechanism for determining the application root depends on the kind of application (more precisely: on the host that creates the application domain). For applications hosted in a web server, for example, the application root directory is the physical directory associated with the root URL of the application. For standalone executables, the application root directory is the directory containing the PE image. Other hosts can define their own semantics for determining the application root.

Applications should store any configuration that applies to all instances of the application, regardless of currently logged on user or other context, in a configuration file in the application root directory. The configuration file name should be some derivative of the application.

Example: For standard EXEs, the exe host uses the root name of the executable with a “.cfg” file extension as the file name of the configuration file (i.e. “Foo.cfg” for “Foo.exe”). This naming schema supports more than one EXE per file system directory.

Example: For ASP+ applications, the web server host uses the same file name (“config.web”) for all its configuration files (it assumes at most one application per directory).

2.2.2 Machine configuration files

Some configuration information applies to all applications on a machine. This includes policy (security, version binding etc.) as well as defaults that should be applied if an application does not specify it’s own configuration.

In the PDC release, the COM+ 2.0 system itself uses several machine-level configuration files:

1. %windir%\admin.cfg: administrative overrides for assembly binding policy.

2. %windir%\complus\<complusversion>\config\machine.cfg: the machine-level defaults for application-specific configuration.

3. %windir%\complus\<complusversion>\config.web: the default configuration file for web server (including MyWeb).

4. %windir%\complus\<complusversion>\config\security.cfg: the default code-access security policy.

2.2.3 User configuration files

Some applications/hosts need to support per-user configuration information. This configuration information is typically stored in configuration files that reside in the user profile (%appdata% environment variable on Windows 2000).

2.2.3.1 Per-user application settings

Application specific settings that should only be visible to a single user, not to all users of an application, should be stored in a separate configuration file in the user profile. Hosts can define the name and location of the per-user/per-application configuration file as part of their configuration file merge hierarchy. Hosts should use a derivative of the application name as the filename (i.e. %appdata%\foo.cfg, for an application “foo.exe”).

Applications can of course also choose to store their own configuration file in arbitrary locations, including the user profile. However, the configuration system’s “merge view” will not include these file and administrative tools might not be able to discover these custom configuration files.

2.2.3.2 Per-user system defaults

Some system settings (example: code access security policy) need to be specified for each user, but apply to all applications
. Hosts typically choose to store these settings in a well-known configuration file in the user profile (%appdata%\config.cfg).

2.2.4 Merged View

It is often desirable that the actual configuration for an application be a merge of the settings specified in the application’s configuration file with any defaults specified in the machine configuration file and other configuration files.

Instead of the application (developer) doing this “merge” across different hierarchy levels for each configuration setting (and for each hierarchy/host that the application might need to support), an application can use the configuration system to compute a merged view across multiple configuration files. The caller only needs to indicate the kind of configuration information to retrieve; the configuration system computes the configuration file hierarchy (based on the host, and potentially the kind of configuration information) and performs the merge.

This configuration system feature is not currently used for COM+ 2.0 system configuration (ASP+ configuration uses a different mechanism), but the COM+ 2.0 SDK contains samples that illustrate the mechanisms.

2.2.5 Example 4: Directives

In some cases, configuration information needs to be accumulated across a hierarchy of configuration files. Directives can be used to control the accumulation (or merge) process across the hierarchy:

<?xml version ="1.0"?>

<configuration xmlns="x-schema:catalog.xms">

 <assemblies>

 <add assembly="System.Data"/>

 <add assembly="System.Web.Services"/>

 <remove assembly="System.Xml.Serialization"/>

 <add assembly="System"/>

 <add assembly="System.Text.RegularExpressions"/>

 <add assembly="System.Drawing"/>

 <add assembly="*"/>

 </assemblies>

</configuration>

In this example, the element name of each of the items in the <assemblies> list controls if the item is to be added to or removed from the list during merge of configuration files.

Each item can carry one or more additional attributes, just like any configuration item. The only difference to regular configuration is that the element name is replaced with the directive.

3. Accessing Configuration Information

The configuration system provides uniform read and write access to all configuration information, regardless of the storage format or the location of the configuration. Some configuration information is not stored in XML files: In some cases the information might be operational information that changes frequently at application execution time and thus requires a more robust, higher performing store than a text file; in yet other cases, the information comes from legacy configuration stores (i.e. IIS meta base, COM+ 1.0 registry etc.) that application or other parts of the system access directly.

However, both the XML-based and the non-XML configuration information are programmatically accessible through the same configuration system APIs, and care has been taken to ensure that underlying stores can change in future releases, without requiring major rearchitecture of the calling system runtimes or applications.

Configuration information is also automatically exposed through Microsoft’s WMI infrastructure.

3.1 Reading Configuration Information

System runtimes, modules that extend the system runtimes, applications, as well as administrative tools, can retrieve configuration information through the Get*() methods on the Configuration Manager class.

The “ConfigType” parameter indicates the type of configuration information to be retrieved. A configuration type usually contains more than one configuration property.

The “Selector” parameter determines a subset of the configuration information to be accessed. It typically indicates the location of a configuration file or implies the location of all other configuration files in a configuration file hierarchy (machine/user etc.). It can also contain a simple query to limit the configuration information.

3.1.1 Example 1: Singleton property – AppDomain ShadowCopy

In this example, the configuration information consists of a single named value, which occurs exactly once in a configuration scope (file).

The COM+ 2.0 system setting for application domains (as used by the EXE host) consists of such singleton properties: there can be only one “ShadowCopy” flag for each application.

// Reading a single value:

Boolean ShadowCopy = (Boolean)

 ConfigManager.GetProperty("AppDomain", "c:\myapp\foo.cfg", "ShadowCopy”);

3.1.2 Example 2: Singleton Item – AppDomain

The AppDomain configuration consists of more than one property, but still each of the properties can appear at most once in a configuration scope (file).

The configuration system makes it easy to retrieve all properties in a ConfigType at once:

// Reading all AppDomain values at once:

IConfigItem appdomain = ConfigManager.GetItem("AppDomain", "c:\myapp\foo.cfg");

if ((Boolean) appdomain["ShadowCopy"]) { … }

String spath = (String) appdomain[“SharedPath”];

String ppath = (String) appdomain[“PrivatePath”];

3.1.3 Example 2a: Singleton Item – strongly typed/early bound

In addition to the late bound access in the previous examples, callers can also use strongly typed accessor classes to

a) Avoid the explicit type casting,

b) Improve compile time error checking

c) Obtain syntax checking/autocomplete in development environments

By convention, configuration accessor classes reside in a namespace beginning with “System.Configuration”, and using part of the namespace of the class that they configure as a subnamespace. For example, the accessor class for AppDomain configuration is System.Configuration.Core.AppDomain.

The strongly typed accessor classes can be automatically generated from configuration schema. In the PDC release this class generation is not publicly available, but application authors can manually define their own strongly typed accessor classes and have them returned by the configuration manager.

System.Configuration.Core.AppDomain appdomain =

 ConfigManager.GetItem("AppDomain", "c:\myapp\foo.cfg");

// Note: no casting necessary, development tools list available properties

if (appdomain.ShadowCopy) { … }

String path = appdomain.SharedPath;

3.1.4 Example 3: Collection of items – Codebase hints

In this example, the configuration information is slightly more complex: every property in a ConfigType can actually occur more than once within a given configuration scope (file).

The COM+ 2.0 system setting for assembly download location (“CodeBaseHint”), is a good example of such a configuration setting: every assembly that could potentially be loaded into an application can have it’s own CodeBaseHint entry.

IConfigCollection hints = ConfigManager.Get("CodeBase", "c:\myapp\foo.cfg");

for (int i=0; i<hints.Count(); i++) {

CodeBaseHint codebase = hints[i];

Console.WriteLine(codebase.Name+": "+codebase.CodeBase);

}

// Output:

//
wininet: http://ie

//
urlmon: http://ie

//
mshtml: http://ie

3.1.5 Example 4: Generic configuration reader

In some cases (administrative tools, generic applications), it is necessary to process arbitrary configuration information without prior knowledge.

The configuration system provides schema (property names, types etc.) discovery mechanisms for sophisticated tools, but also lets simple tools read configuration information in a generic way, by letting a caller enumerate the available properties in a configuration item.

The example code below outputs an arbitrary set of configuration information, by only modifying the ConfigType and Selector passed to the ConfigManager.Get method:

// Late bound, generic

IConfigCollection collection = ConfigManager.Get(“CodeBase”, "c:\myapp\foo.cfg");

for (int i = 0; i < collection.Count(); i++) {

IConfigItem item= collection [i];

Console.WriteLine("");

for (int property = 0; property<item.Count(); property++) {

Console.WriteLine(item[property]);

}

}

3.1.6 Example 5: Reading Configuration for the current Application

Instead of directly specifying a file location, applications can read from their own configuration file by using the AppDomainSelector instead of a FileSelector. The AppDomainSelector retrieves the location of the configuration file from the currently running application domain:

Boolean ShadowCopy =

 (Boolean) ConfigManager.GetProperty("AppDomain", new AppDomainSelector(), “ShadowCopy”);

3.1.7 Example 6: Queries

A caller can limit the items returned into a collection by specifying a ConfigQuery class, instead of a FileSelector (or AppDomainSelector):

ConfigQuery query = new ConfigQuery("Name=Wininet");

Query.Selector=new AppDomainSelector();

IConfigCollection hints = ConfigManager.Get("CodeBase", query);

foreach (CodeBaseHint codebase in hints) {

 Console.WriteLine(codebase.Name+": "+codebase.CodeBase);

}

Query capability is particularly useful for larger collections.

3.1.8 Example 7: Nested Collections – Window/Toolbar positions

IConfigCollection windows= ConfigManager.Get(“Windows”, new AppDomainSelector());

for (int i = 0; i < windows.Count(); i++) {

 Window window = windows[i];

 Console.WriteLine(window.Name+”: “+window.PosX+”.”+window.PosY);

 QuerySelector q = new QuerySelector(“Name=”+window.Name);

 q.Selector=new AppDomainSelector();

 IConfigCollection toolbars = ConfigManager.Get(“Toolbar”, q);

 for (int j = 0; j<toolbars.Count(); j++) {

 Toolbar toolbar = toolbars[j];

 Console.WriteLine(“ “ + toolbar.Name+ ”: “ + toolbar.PosX + ”.” + toolbar.PosY);

 }

}

// Output for the example configuration file above:

//
MainWindow: 0.0

//
 Formatting: 0.0

//
 Standard: 0.40

//
StockTicker: 0.101

//
 BuySell: 0.0

3.1.9 Example 8: Directives – assemblies

ASP+ gives the application developer/administrator the flexibility to specify which assemblies to use during compilation. At each level in a configuration file hierarchy assemblies can be added or removed from the list.

IConfigCollection assemblies =

 System.Configuration.ConfigManager.Get(“assemblies”,

 "http://myserver/mysite");

for (int j=0; j<assemblies.Count; j++)

{

 System.Configuration.Web.Assembly a = assemblies[j];

 Console.WriteLine(a.Type);

}

Note that the resulting list contains only assemblies that have not been removed along the configuration file hierarchy.

3.2 Writing Configuration Information

Administrative tools can write to the configuration system using the Put*() methods on the Configuration Manager class.

There are three separate methods for writing individual properties, an item or an entire collection of items.

3.2.1 Example 1: Singleton property – AppDomain ShadowCopy

// Writing a single value:

ConfigManager.PutProperty("AppDomain", "c:\myapp\foo.cfg", "ShadowCopy”, true);

3.2.2 Example 2: Singleton Item – AppDomain

// Writing all AppDomain values at once:

IConfigItem appdomain = new AppDomain();

appdomain.ShadowCopy=true;

appdomain.SharedPath=”c:\foo”;

appdomain.PrivatePath=”.\bin”;

appdomain.Selector=new FileSelector(“c:\myapp\foo.cfg”);

ConfigManager.PutItem(appdomain);

3.2.3 Example 3: Collection of items – Codebase hints

BaseConfigCollection hints = new BaseConfigCollection();

hints.ConfigType=”CodeBaseHint”;

hints.Selector=new FileSelector(“c:\foo.cfg”);

CodeBaseHint hint = new CodeBaseHint();

hint.Name=”foo.dll”

hint.CodeBase=”http://ie”;

hints.Add(hint);

ConfigManager.Put(hints);

4. Managing your own Configuration Information

The configuration system is designed to be extensible in several dimensions:

· New properties can be added by the original author of a ConfigType.

· New ConfigTypes can be defined.

· Custom collection and item classes (accessor classes) can be defined by the author of a ConfigType.

· Custom merge logic for hierarchical configuration information can be defined by the author of ConfigType.

· Custom validation logic can be defined by the author of a ConfigType.

· "Drivers" for arbitrary stores can be plugged in by the author of a ConfigType to read from stores other than XML.

· Custom configuration hierarchy computations can be plugged in.

4.1 Adding a property to an existing ConfigType (MS INTERNAL ONLY!)

This section is MS INTERNAL ONLY!

The set of properties in a ConfigType are defined in a configuration schema file. In order to add a new property, it is usually sufficient to add the new property declaration to the schema of the ConfigType.

The configuration system core schema is compiled into the configuration system binaries and can not be modified.

The configuration system's schema compiler utility (catutil.exe) uses this source schema to generate:

· The strongly typed configuration collection and configuration item classes.

· An XML schema (catalog.xms), that XML parsers can use to validate configuration files and that configuration file authors should specify as the namespace of the configuration root element, i.e. <configuration xmlns="x-schema:catalog.xms">.

· C++ header files for callers of the native configuration system.

· An optimized binary representation of the schema information for use by the configuration system itself, compiled into the configuration system binary (catalog.dll).

 In current config system drops, this binary schema is stored in the catalog.dll binary itself, but can be updated through the CATUTIL tool without recompiling DLL. Multiple binary schema files will be supported, to facilitate independent development for internal MS groups.

· Schema representation for the Component Library Engine (used by the Configuration System's Persisted Cache). The persistent cache is optional, and currently only used for IIS+ UL configuration.

The schema compiler utility (catutil.exe) is invoked as follows:

catutil /compile

 catutil.exe and catmeta.xml are internally available on \\urtdist\builds\<build#>\<platform>\config.

 We are not planning to ship catutil.exe to external customers (see note about annotated schema above!).

4.1.1 Example 1a: Add a property to the “AppDomain” collection

1. Edit catmeta.xml as follows:

<?xml version ="1.0"?>

<MetaData xmlns="x-schema:CatMeta.xms">

…

<DatabaseMeta InternalName="URTGLOBAL">

 …

<Collection
InternalName ="AppDomain" ConfigType="AppDomain"

PublicRowName="AppDomain"
SchemaGeneratorFlags="EMITXMLSCHEMA">

 <Property
InternalName ="PrivatePath" Type="String" />

 <Property
InternalName ="GlobalPath" Type="String" />

 <Property
InternalName ="ShadowCopy" Type="Boolean" />

 <Property
InternalName ="MyNewProperty" Type="int32" />

</Collection>

 …

</DatabaseMeta>

</MetaData>

 Current config drops use "PublicName" instead of "ConfigType" and require "InternalName" in addition to "PublicName". Types for properties are WSTR instead of String, UI4 instead of int32. This will change soon!

2. Run catutil /compile.

3. Edit config.cfg to contain the new property as desired:

<?xml version ="1.0"?>

<configuration xmlns="x-schema:catalog.xms">

<AppDomain

 PrivatePath=".\bin;.\blaa"

 GlobalPath="c:\common\bin;c:\suite\utils"

 ShadowCopy="True"

 MyNewProperty=”42”

/>

</configuration>

4. Start consuming the new property:

// Reading a single value:

int myprop = (int) ConfigManager.GetProperty ("AppDomain", AppDomain.Selector, "MyNewProperty");

// Reading all AppDomain values at once:

IConfigItem appdomain = ConfigManager.GetItem ("AppDomain", AppDomain.Selector);

if (appdomain["MyNewProperty"] > 41) { … }

5. In order to use early binding: Run generate.exe to generate strongly typed accessor classes for managed code.

 Customers can also write their own classes. Ideally dev tools would generate these classes…

// Reading all AppDomain values at once (early bound):

AppDomain appdomain = ConfigManager.GetItem ("AppDomain", new AppDomainSelector());

if (appdomain.MyNewProperty > 41) { … }

4.2 Defining your own ConfigType

ConfigTypes are defined in a configuration schema file. In order to add a new ConfigType it is usually sufficient to add the definition of the ConfigType and it's properties to the configuration schema.

If the behavior of the new ConfigType is to be similar to the behavior of an existing ConfigType, it is usually sufficient to add the new ConfigType to the same <Database> element, as each Database has it's own default behavior. If the behavior needs to be customized, refer to section 4.3 below.

4.2.1 Configuration Schema Files

Configuration schema files must be listed in the machine configuration file. For this purpose, the machine configuration file contains a “SchemaFiles” collection:

<?xml version ="1.0"?>

<configuration xmlns="x-schema:catalog.xms">

 <SchemaFiles>

 <SchemaFile Name=”MySchema” Path="c:\myschema.xml" />

 </SchemaFiles>

</configuration>

4.2.2 Example 1: "Shape" ConfigType

This example defines a fictitious "Shape" ConfigType that is to be read from an XML file. Each shape can either be a square, a triangle or a circle. Shapes have a size, expressed as width and height, as well as a color.

The following source schema definition defines the ConfigType:

<?xml version ="1.0"?>

<MetaData xmlns="x-schema:CatMeta.xms">

 <DatabaseMeta InternalName="MyApp">

 <ServerWiring Interceptor="Core_XMLInterceptor"/>

 <Collection

 InternalName="SHAPES" PublicName="Shapes"

 SchemaGeneratorFlags="EMITXMLSCHEMA NOTSCOPEDBYTABLENAME"

 >

 <Property InternalName="ShapeName" Type="String" MetaFlags="PRIMARYKEY" />

 <Property InternalName="ShapeType" Type="int32" DefaultValue="Triangle" >

 <Enum InternalName="Square" Value="1"/>

 <Enum InternalName="Triangle" Value="2"/>

 <Enum InternalName="Circle" Value="3"/>

 </Property>

 <Property InternalName="SizeX" Type="int32" DefaultValue="100" />

 <Property InternalName="SizeY" Type="int32" DefaultValue="100" />

 <Property InternalName="Color" Type="int32" DefaultValue="Red" >

 <Enum InternalName="Red" Value="1"/>

 <Enum InternalName="Green" Value="2"/>

 <Enum InternalName="Blue" Value="3"/>

 </Property>

 <QueryMeta InternalName="All" MetaFlags="ALL" />

 <QueryMeta InternalName="QueryByFile" CellName="__FILE" Operator="EQUAL" />

 </Collection>

</DatabaseMeta>

</MetaData>

After adding the following entry to the machine configuration file:

<?xml version ="1.0"?>

<configuration xmlns="x-schema:catalog.xms">

 <SchemaFiles>

 <SchemaFile Name=”MySchema” Path="c:\myschema.xml" />

 <SchemaFile Name=”ShapeSchema” Path="c:\Program Files\Shapes\ShapeSchema.xml" />

 </SchemaFiles>

</configuration>

and providing a "c:\Program Files\Shapes\Shapes.cfg" file with the following content,

<?xml version ="1.0"?>

<configuration xmlns="x-schema:catalog.xms">

 <Shape ShapeName="triangle1" />

 <Shape ShapeName="square1" Type="Square" />

 <Shape ShapeName="BigSquare1" Type="Square" SizeX="200" SizeY="200" />

 <Shape ShapeName="BlueTriangle1" Color="Blue" />

</configuration>

the "Shapes" collection can be accessed as follows:

IConfigCollection shapes = ConfigManager.Get(

 "Shapes",

 FileSelector("c:\Program Files\Shapes\shapes.cfg"));

for (int j=0; j<shapes.Count; j++)

{

 IConfigItem s=shapes [j];

 Console.WriteLine(s[“ShapeName”] + " type: "

 + s[“Type”] + " sx=" + s[“SizeX”] + " sy="

 + s[“SizeY”] + " Color: + s[“Color”]);

}

// Output:

//
triangle1 type: 2 sz=100 sy=100 Color: Red

//
square1 type: 1 sz=100 sy=100 Color: Red

//
BigSquare1 type: 1 sz=200 sy=200 Color: Red

//
BlueTriangle1 type: 2 sz=100 sy=100 Color: Blue

4.2.3 Configuration Schema Format

4.2.3.1 Database Definition

A database scopes several ConfigType definitions together, mainly for the purpose of applying common behavior to a set of ConfigTypes.

It does not scope the ConfigType names in any way; ConfigType names must be globally unique, and should use COM+ 2.0 class naming conventions.

4.2.3.2 Collection Definition

4.2.3.2.1 InternalName

The InternalName is the primary identifier for the collection: it is used internally by the configuration system (and throughout the configuration schema). It provides the ability to change programmatically visible names, without changing schema and even some application private code or queries.

4.2.3.2.2 PublicName

The PublicName indicates the publicly accessible name of the collection. The PublicName is the string that is passed in as the ConfigType parameter to the ConfigManager APIs.

4.2.3.2.3 Schema GeneratorFlags

The SchemaGeneratorFlags instructs the configuration system on how to process the schema for this collection.

4.2.3.2.3.1 EMITXMLSCHEMA

The "EMITXMLSCHEMA" flag indicates that this collection can be stored in XML files.

4.2.3.2.3.2 NOTSCOPEDBYTABLENAME

The "NOTSCOPEDBYTABLENAME" flag on a collection declares that items in this collection should appear as top level XML elements under the <configuration> root element, rather than being contained in an element that corresponds to the collection (in this case < Shapes></ Shapes> can be omitted). Specifying this flag disallows the use of the collection parent element in XML files. The advantage of using this flag is that the XML content is more compact.

The disadvantage of using this flag is that items for the collection may be "sprinkled" all over the configuration file, which may make diagnosing a configuration problem harder.

The “NOTSCOPEDBYTABLENAME” flag is often used in conjunction with the USECONTAINMENT flag for nested collections.

4.2.3.2.4 ItemClass

The ItemClass declares what name the configuration system should use when returning items.

4.2.3.3 Property Definition

4.2.3.3.1 InternalName

The name of the property being defined. Again, this name is for internal use by the configuration system (and within schema files).

4.2.3.3.2 PublicName

The publicly visible name of the property. This is the string that can be passed to the ConfigManager.GetProperty API.

4.2.3.3.3 Type

Properties must have a name and a type. Permissible types are:

· int32

· String

· Byte[]

· Bool

4.2.3.4 DefaultValue

The schema can specify a default value for a property, which the configuration system applies if the store (XML file etc.) does not specify a value for the property.

4.2.3.5 Enumerated Properties

Properties of type int32 can be declared as enumerations, in which case the configuration system enforces that the property value is within the declared set of (string) values. Enumeration values for enumerated properties are declared as one or more <Enum> elements under the <Property> element. The <Enum> element must have an "InternalName" attribute, which indicates the symbolic name for the enumeration value, and a "Value" attribute, which indicates the numeric value.

The XML configuration file for enumerated properties must use the symbolic name, rather than the numeric value.

Programmatic access to an enumerated property must use the numeric value.

4.2.3.6 Primary Key

The primary key flag on a property indicates that this property should be considered part of the unique identity of any item in this collection. The configuration system enforces that a configuration collection does not contain more than one item with the same primary key property values.

At least one of the properties in an item must be declared to be part of the primary key. It is permissible to declare all properties in a collection as part of the primary key, if no smaller unique identity can be established.

4.2.3.7 Supported Queries

The <QueryMeta> element indicates the set of queries that are recommended to be performed on the collection. The primary purpose of this information is to enable administrative tools to provide more powerful user interface for unknown configuration information. Query Information is optional, but it is highly recommended to provide these hints to generic consumers.

The InternalName attribute provides a human readable name for the kind of query being declared as supported.

The QueryCell attribute indicates the InternalName of a property on which query is supported. The special QueryCell attribute “__FILE” indicates that the collection requires a file location in order to be retrieved.

The Operator attribute indicates which comparison operators are supported for this property (currently the only supported comparison operator is “EQUAL”).

The MetaFlag "All" indicates that it is permissible to query for all items in this collection.

The MetaFlag "Any" indicates that queries on any combination of properties are supported.

4.2.4 Example 2: Contained "ShapeLabels" collection

Suppose that our fictitious "Shapes" collection needs to be enhanced: each shape should have one or more text labels, either at the center of the shape or along one of the edges of the shapes area.

The following source schema definition (again added to catmeta.xml) adds a child collection under the Shapes group:

<?xml version ="1.0"?>

<MetaData xmlns="x-schema:CatMeta.xms">

 <DatabaseMeta InternalName="MyApp">

 …

 <Collection InternalName="SHAPELABELS" PublicName="ShapeLabels"

 SchemaGeneratorFlags="EMITXMLSCHEMA NOTSCOPEDBYTABLENAME"
 >

 <!-- this property relates the ShapeLabels collection to the Shapes collection -->

 <Property InternalName="ShapeName" Type="String" MetaFlags="PRIMARYKEY" />

 <!-- these are the actual Label properties -->

 <Property InternalName="LabelName" Type="String" />

 <Property InternalName="AppliesTo" Type="int32" >

 <Enum InternalName = "Center" Value="1" />

 <Enum InternalName = "TopEdge" Value="2" />

 <Enum InternalName = "BottomEdge" Value="3" />

 <Enum InternalName = "LeftEdge" Value="4" />

 <Enum InternalName = "RightEdge" Value="5" />

 </Property>

 </Collection>

</Database>

<RelationMeta PrimaryTable="SHAPES" PrimaryColumns="ShapeName"

 ForeignTable="SHAPELABELS" ForeignColumns="ShapeName"

 MetaFlags="USECONTAINMENT" />

</MetaData>

After editing the "c:\Program Files\Shapes\Shapes.cfg" file as follows,

<?xml version ="1.0"?>

<configuration xmlns="x-schema:catalog.xms">

 <Shape ShapeName="triangle1" />

 <Shape ShapeName="square1" Type="Square" />

 <Shape ShapeName="BigSquare1" Type="Square" SizeX="200" SizeY="200" >

 <ShapeLabel Label="BIGSQUARE" AppliesTo="Center" />

 <ShapeLable Label="Text on lower edge" AppliesTo="BottomEdge" />

 </Shape>

 < Shape ShapeName="BlueTriangle1" Color="Blue" />

</configuration>

the labels for a shape can be accessed as follows:

FileSelector f = new FileSelector("c:\Program Files\Shapes\shapes.cfg");

IConfigCollection shapes = ConfigManager.Get("Shapes", f);

for (int j=0; j<shapes.Count; j++)

{

 IConfigItem s=shapes [j];

 Console.WriteLine(s[“ShapeName”] + " type: "

 + s[“Type”] + " sx=" + s[“SizeX”] + " sy="

 + s[“SizeY”] + " Color: + s[“Color”]);

 QuerySelector q =

 new QuerySelector(“Select * from ShapeLabels where ShapeName=”+s[“ShapeName”]);

 q.Selector=f;

 IConfigCollection labels = ConfigManager.Get(“Labels”, q);

 for (int k=0; k<labels.Count; k++)

 {

 IConfigItem l = labels[k];

 Console.WriteLine(" Label: " + l["LabelName"] +

 " Position: " + l["AppliesTo"]);
 }

}

// Output:

//
triangle1 type: 2 sz=100 sy=100 Color: Red

//
square1 type: 1 sz=100 sy=100 Color: Red

//
BigSquare1 type: 1 sz=200 sy=200 Color: Red

//
 Label: BIGSQUARE Position: 1
//
 Label: Text on lower edge Position: 3
//
BlueTriangle1 type: 2 sz=100 sy=100 Color: Blue

Explanation of the additional source XML format concepts:

4.2.4.1 Containment / Relations

The <RelationMeta> element - defined outside of any <DatabaseMeta> section - declares two collections as related. The PrimaryTable attribute indicates the InternalName of the collection that defines the properties to which another collection relates itself. The PrimaryColumns attribute lists the InternalNames of the properties in the primary collection to which the other collection relates itself; properties are listed by InternalName and names are separated by a space character.

The ForeignTable attribute names the InternalName of the collection that relates itself to the PrimaryTable. The ForeignColumns attribute indicates which properties in the ForeignTable reference the primary collection.

4.2.4.2 USECONTAINMENT

The MetaFlag "USECONTAINMENT" on a relation, declares that the XML representation of the foreign collection is to be contained within the XML element of the primary collection. This flag allows one to many relationships to be expressed using XML element hierarchy.

4.3 Collection Behavior: Selecting Interceptors

In the previous examples, the default collection behavior was used: reading through the XML store interceptor from a single configuration file, whose location must be specified by the caller (using the FileSelector).

Custom interceptors can be selected in the mwiring.xml file in the machine configuration directory. Interceptors can be selected on a per collection basis, by using the <Intercept> element in the <ManagedWiring> section of mwiring.xml.

4.3.1 Example 3: Making "Shapes" an inheritable URL configuration

The COM+ 2.0 SDK contains a hierarchy interceptor for Web Server configuration file hierarchies.

The following behavior definitions makes the Shapes and ShapeLabels groups queryable along the configuration file hierarchy of the COM+ 2.0 Web Server; Shapes and Labels are inherited from the parent config file (if any), definitions in child config files are added to the inherited shapes, overriding any inherited shapes with the same name.

Add to mwiring.xml:

<?xml version ="1.0"?>

<configuration xmlns="x-schema:catalog.xms">

<ManagedWiring>

 <!-- Definition for Shapes collection -->

 <Intercept ConfigType="Shapes" Protocol="http" Order="1"

 Interceptor="Microsoft.Configuration.Samples.WebHierarchyInterceptor"

 InterceptorType="Transformer" />

 <Intercept ConfigType="Shapes" Protocol="list" Order="2"

 Interceptor="System.Config.ListMerge"

 InterceptorType="Merger" />

 <Intercept ConfigType="Shapes" Protocol="query" Order="1"

 Interceptor="System.Config.NativeCatalogInterceptorRO"

 InterceptorType="Merger" />

 <!-- Definition for ShapeLabels collection -->

 <Intercept ConfigType="ShapeLabels" Protocol="http" Order="1"

 Interceptor="Microsoft.Configuration.Samples.WebHierarchyInterceptor "

 InterceptorType="Transformer" />

 <Intercept ConfigType="ShapeLabels" Protocol="list" Order="2"

 Interceptor="System.Config.ListMerge"

 InterceptorType="Merger" />

 <Intercept ConfigType="ShapeLabels" Protocol="query" Order="1"

 Interceptor="System.Config.NativeCatalogInterceptorRO"

 InterceptorType="Merger" />

</ManagedWiring>

</configuration>

After copying the contents of shapes.cfg file into an application configuration file (i.e. %systemdrive%\inetpub\wwwroot\mysite\myapp\Config.web from Example 1), adding the following to the web server’s machine configuration file:

<?xml version ="1.0"?>

<configuration xmlns="x-schema:catalog.xms">

 …

 <Shape Name="MasterTriangle from machine’s config.web " />

 …

</configuration>

and adding the following the site configuration file (%systemdrive%\inetpub\wwwroot\mysite\myapp\Config.web):

<?xml version ="1.0"?>

<configuration xmlns="x-schema:catalog.xms">

 …

 <Shape Name="MySiteCircle from Mysite config" Type="Circle" />

 …

</configuration>

will result in the following output (using the code from Example 6a):

IConfigCollection shapes = System.Config.ConfigManager.Get(

 "Shapes", "http://mysite.com/myapp");

…

// Output:

//
MasterTriangle from Machine.cfg type: 2 sz=100 sy=100 Color: Red

//
MySiteCircle from Mysite config type: 3 sz=100 sy=100 Color: Red

//
triangle1 type: 2 sz=100 sy=100 Color: Red

//
square1 type: 1 sz=100 sy=100 Color: Red

//
BigSquare1 type: 1 sz=200 sy=200 Color: Red

//
 Label: BIGSQUARE Position: 1

//
 Label: Text on lower edge Position: 3

//
BlueTriangle1 type: 2 sz=100 sy=100 Color: Blue

Explanation of the behavior declaration format:

4.3.1.1 ConfigType

An interceptor is associated with a specific collection by specifying the collection's ConfigType (= PublicName) in the Intercept element.

4.3.1.2 Protocol

An interceptor can be associated to a specific kind of selector. Every selector provides a protocol string; URL selectors return "http", query selectors "query" etc. Refer to the class reference section for details on selectors.

4.3.1.3 Order

If more than one interceptor is associated with the same ConfigType and Protocol the order attribute decides in which order the interceptors will be invoked by the configuration system. Depending on the InterceptorType, interceptors are either invoked until the first interceptor returns ("Reader" type) or chained ("Transform" - if protocol doesn't change, "Reader", "Merger" types).

4.3.1.4 InterceptorClass

Indicates the interceptor to invoke.

4.3.1.5 InterceptorType

Indicates the kind of interceptor. Valid types are:

· "Merger": merges two configuration collections into one. Typically used with hierarchical configuration files.

· "Reader": retrieves a new configuration collection.

· "Transform": modifies the selector (sometimes even the configtype), but doesn't return any configuration information.

· "Validate": validates and potentially modifies an already retrieved configuration collection.

In the above example, three interceptors are selected for each collection:

1. Web Server Hierarchy interceptor, for protocol "http": computes the list of configuration files that correspond to a URL.

2. List Merge interceptor, for protocol "list" (the output of a hierarchy interceptor): merges two configuration collection, preserving primary key identity and optionally (if column 0 is called "Directive" and of type int32) providing add/remove/clear/final directive semantics. The config system invokes the List Merge interceptor on pairs of parent collection and child configuration file.

3. Native Catalog Interceptor, for protocol "query": the native config system acts as the XML storage interceptor (while there is no managed code XML interceptors) , since the native config system behavior defaults to XML storage for most databases.

Refer to the reference section for information on the interceptor interfaces.

4.4 Writing a custom configuration object

By default, the configuration system provides two generic classes (BaseConfigItem and BaseConfigCollection) to access configuration information. This generic data representation is desirable for most administrative (generic) consumers. Strongly typed accessor properties can be defined to provide added convenience for developers that want to access a specific type of configuration information in an early bound fashion. They can also be used to add custom methods to configuration classes.

These classes can be easily implemented by deriving from the BaseConfigItem and BaseConfigCollection classes and declaring their names in the schema for the ConfigType (ItemClass, CollectionClass attributes).

It is also possible to provide completely independent implementations of configuration accessor classes. One reasons for doing so is the need to change the internal data representation from a collection/item basis to a more optimized structure for custom methods or for the typical access pattern of a consumer.

The configuration system allows the author of a ConfigType to provide custom implementations of one or both of the generated configuration classes, or even to entirely replace the configuration classes and disabling the automatic generation of any configuration classes.

4.4.1 Extending the Base Configuration classes

4.4.1.1 Example 6c: Adding a custom method to "Shape"

<?xml version ="1.0"?>

<MetaData xmlns="x-schema:CatMeta.xms">

…

<Database InternalName="URTGLOBAL">

 …

 <Collection ConfigType="Shapes" InternalName="SHAPES"
 SchemaGeneratorFlags="EMITXMLSCHEMA NOTSCOPEDBYTABLENAME"
 ItemClass="Shape"

 >

 …

 </Collection>

</Database>

…

</MetaData>

The author of the configuration information can now define his/her own class for Shape items:

public class Shape : System.Configuration.BaseConfigItem

{

 public int Area {

 get {

 return (int) this[“SizeX”]* (int) this[“SizeY”];

 }

 }

 public float Ratio {

 get {

 return (int) this[“SizeX”]/ (int) this[“SizeY”];

 }

 }

 public Bool IsLargerThan (Shape x) {

 return (x.Area > Area);

 };

}

4.4.1.2 ItemClass

This collection attribute indicates the accessor class that the configuration system should return for this ConfigType. The class must implement the IConfigItem interface.

4.4.2 Replacing the configuration classes

The author of the configuration group can choose to implement his or her own configuration classes without using the automatically generated configuration classes.

4.4.2.1 Example 6c: Changing the data representation of "Shape"

In our fictitious example it turns out that consumers are using the Area and Ratio much more frequently than the SizeX and SizeY properties. The configuration item should cache these values once they are computed, and since it can derive the SizeX/SizeY from Area/Ratio with sufficient precision, it should not store SizeX/SizeY at all to reduce memory overhead:

The author of the configuration information can define his/her own class for Shape items. In order to be able to continue to use the generic interceptors and to be accessible to generic configuration consumers, the new item class must implement the IConfigItem interface.

The COM+ 2.0 SDK contains a sample illustrating this.

4.5 Writing a custom merge interceptor

If the existing merge interceptors (Property Override, List Merge, List Append/Prepend) do not cover the desired inheritance semantics for a configuration collection, a custom merge interceptor can be written and added to the behavior declaration of the collection. A merge interceptor is added to the behavior definition of a collection by indicating InterceptorType="Merger".

A merge interceptor must implement the IConfigMerger interface.

The Merge method typically:

1. Clones the parent config collection

2. Modifies the cloned parent collection by merging in the items from the source collections.

3. Returns the cloned collection.

If the parent collection is to be inherited without changes, the merge interceptor can return the original collection.

4.6 Writing a custom validation interceptor

If additional validation for a collection is required, for example the two properties are interdependent and the value of one property governs the set of permissible values of the other property, this validation is preferably implemented in the form of a validation interceptor. This ensures that both application code reading at runtime and any administrative scripts or UI use the same validation logic.

Validation interceptors must implement the IConfigReader interface.

The Read method for a validation interceptor typically reads the configuration collection passed to it through the currentObject parameter and performs the validations. If any validation fails, the validation interceptor can either fail the operation by throwing an exception, or it can correct the error and modify the collection and individual items.

A validation interceptor is added to the behavior definition of a collection by indicating InterceptorType="Validater".

4.7 Writing a custom store interceptor

If a new store needs to be made accessible through the configuration system, a store interceptor must be written.

Store interceptors must implement the IConfigReader interface (refer to the Configuration System Architecture specification for the definition of the interface). Store interceptors must create configuration collections and items. They typically call the configuration system (ConfigManager.GetEmptyConfigCollection and ConfigManager.GetEmptyConfigItem methods) in order to create instances of the correct collection and item classes for the requested ConfigType.

The configuration system currently provides the following store interceptors:

· System.Config.NativeCatalogInterceptorRO: Read-only interceptor that invokes the native configuration system.

A store interceptor is added to the behavior definition of a group by indicating InterceptorType="Reader" and/or InterceptorType="Writer".

4.8 Writing a custom hierarchy interceptor

A hierarchy interceptor receives a selector object (typically a host specific selector), and turns this selector into a selector that encapsulates the list of file from which to generate a merged view. This list selector represents the configuration file hierarchy. The configuration system processes the list selector and inductively invokes the appropriate merge interceptor for pairs of the files in this list selector.

5. Accessing Configuration information from native code

The configuration system does not currently offer publicly accessible, high-performance (in-process) APIs for native code consumers. However, a WMI provider exists that ties the COM+ 2.0 configuration system into the Microsoft WMI infrastructure.

5.1 WMI Provider: COMPlus20 namespace

The WMI Provider is a class provider, which means that by just defining the configuration schema, the provider automatically generates the necessary WMI classes and instances. Currently these classes are not related to any other WMI/CIM classes.

COM+ 2.0 configuration system information is exposed into the root\COMPlus20 namespace.

Among other features, the WMI infrastructure offers

· Command line scripting against COM+ 2.0 configuration information.

· Programmatic remote administration of COM+ 2.0 configuration information.

· Queries across configuration collections (currently not supported by the configuration system itself).

· Queries across other WMI classes and COM+ 2.0 configuration information.

6. Open Issues

In addition to the issues outlined throughout the document, the following items require further attention:

7. Revision History

May 25, 2000
Rev 0.1 (MarkusH): Sections 4 and 5 are not finished yet!

Rev 0.2: Done. Pending review.

July 10, 2000
Rev 0.3: (MarkusH): Fixed typos in samples.

� It is possible for a schema definer to indicate that the containing element (“<CodeGroup>”) should be omitted. This reduces the amount of text, but allows the individual items (“<CodeBaseHints>”) to be spread across the XML file.

� Advanced hosts may even choose to not define their root to be in the file system at all, by defining their own selector and interceptor mapping.

� Not all hosts may have the concept of a “current user”. For example the web server host does probably not need to support per-user defaults, but rather per-site defaults.

� Note that the “Get” method can return both singletons and collections of items, thus providing a single, generic API to read all configuration information.

� When reading directly from an individual configuration file (i.e. Get(“assemblies”,”file://c:\foo.cfg”)), directives are not applied (unless explicitly modified by the config schema author) and the caller can obtain all entries, including the directives. This is useful for administrative tools that need to modify the content of a configuration file.

� The elements of the list selector are actually in turn selectors, which typically are file selectors, but can also be arbitrary selectors.

Page 18 of 18

