Configuration Error Reporting

Application Center 2000
Microsoft Confidential

	Author
	Omar Kouatly

	Area
	Config

	Feature
	Error Reporting

	Program Management Contact
	Omar Kouatly

	Development Contact
	Stephen Rakonza

	Test Contact
	Rajesh Mishra

	Docs Contact
	

	Priority
	

	Current Status
	Proposal Draft

	Last updated
	9/8/2000

Microsoft Confidential

1Configuration Error Reporting

31.0
Overview

31.1
Error Reporting Goals

31.2
Error Reporting Non-Goals

32.0
Error Conditions

32.1
Configuration Text Parsing Errors

32.1.1
Invalid XML

42.1.2
Internal Configuration Error

42.2
Configuration Logical Errors

42.2.1
Ambiguous Binary Data

42.2.2
Element found does not match enumeration group list

42.2.3
Custom element found not under a parent node

42.2.4
Missing location attribute

52.2.5
Undefined Attribute found

52.2.6
Custom element expected

52.2.7
ID on Custom property does not match Well-Known property’s ID.

52.2.8
Missing ID on Custom Element

52.2.9
Missing Type on Custom Property

52.2.10
Custom property ID matches Well-Known property ID

62.3
Configuration File Errors

62.3.1
Unable to open file (file is write locked)

62.3.2
Unable to open file (file is not found)

62.3.3
Unable to write file (file is read only)

62.3.4
Unable to write file (file is write locked by another process)

63.0
Error Processing

74.0
Error output locations

74.1
NT Event Log

84.2
Text base error log

94.2.1
Errors writing text based log

94.3
WMI Events

9Logging and error messages

9Use unique and consistent identifiers

9Benefits

9How to implement

10Include a URL to PSS information in every event

10Benefits

10How to implement

10Meet error message guidelines available on http://uitext

10How to implement

115.0
Error Handling

115.1
Mechanism

125.2 DetailedError Column Descriptions

155.2
Persistence

156.0
Application specific issues

156.1
IIS Configuration

156.1.1
Location and size of Text based error log

156.1.2
Critical read errors

156.1.3
Critical write errors

166.1.4
Critical write errors (can’t write backup)

16Change History

[image: image1]
1.0 Overview

The configuration system provides a highly flexible mechanism for configuration support via a text based configuration store. While this is a highly desirable feature for applications for which “headless” operation is critical, it does present new challenges. In particular, because users can enter text free-form into the configuration file a wide variety of errors need to be considered to insure that users understand the error and can identify its source and the system can proceed as best it can. This document describes configuration system error reporting requirements.

[image: image2]
1.1 Error Reporting Goals

Identification:

· Identify where the offending text is

· If possible, describe what steps need to be taken to correct the error

· Pass detailed errors back to the caller

· All error strings will begin with “Line %d1, Char %d2:” where d1 is the # of lines into the configuration file with the error and d2 is the # of characters into the line at question.

System actions:

· Continue loading configuration and collect list of detailed errors until a critical error is encountered
· Report back to caller that an error occurred and whether it’s possible to continue or not (critical == cannot continue, non-critical == processing can continue)
1.2 Error Reporting Non-Goals

· Recovery from catastrophic errors

[image: image3]
2.0 Error Conditions

2.1 Configuration Text Parsing Errors

2.1.1 Invalid XML

When invalid XML syntax is encountered, processing cannot continue. Send details of what token was found and what token was expected in addition to line and char counts to caller. A critical error is returned to the caller.

Error Message:

“Invalid XML syntax. Found %s expected %s”

XML Error:

<MetaData xmlns="x-schema:CatMeta.xms"?

XML Corrected:

<MetaData xmlns="x-schema:CatMeta.xms">
2.1.2 Internal Configuration Error

Either when the DOM parse succeeds but Node Factory fails or there is an internal fast cache error, we will report this as an “internal configuration error”. This is a critical error condition.

Error Message:

“Internal error while reading configuration. Last successfully processed node was <%s>”

2.2 Configuration Logical Errors

2.2.1 Ambiguous Binary Data

This happens when a property typed as BINARY_METADATA has an odd number of characters (i.e.. SomeSecureProperty="DB6"). This value cannot be represented as a single type; but it is ambiguous to treat it as two bytes: should it be "0DB6" or "DB60".

Because this is a property in error processing can continue.

A non-critical error is returned to the caller.

Error Message:

“Processing of the %s property is ambiguous, it will be skipped. An odd number of characters were specified for a binary data value.”
XML Error:

<MetaData xmlns="x-schema:CatMeta.xms"?

XML Corrected:

<MetaData xmlns="x-schema:CatMeta.xms">

2.2.2 Element found does not match enumeration group list

An invalid keytype element is specified. This fact should be recorded and a non-critical error returned to the caller. When listing legal values, include up to 80 chars and append “…” if there is data beyond 80 characters.

Error Message:

“Element found (%s) does NOT match the defined list of legal values. Legal values include: %s”

2.2.3 Custom element found not under a parent node

Custom elements MUST appear beneath the parent keytype element. This is required because otherwise we won't have a Location filled in. Return non-critical error to caller.

Error Message:

“ ‘Custom’ elements must be expressed in XML with a parent node."

2.2.4 Missing location attribute

The only attribute that is REQUIRED on a keytype element, is the location. Without it we can't create legal property rows. This is a non-critical error.

Error Message:

"No Location attribute found on node %s”
2.2.5 Undefined Attribute found

Attributes must be found in the name table. We will ignore undefined attributes, but will record the presence of an undefined attribute and return a non-critical error to the caller. This may be common if someone is updating the schema but the schema doesn't get propagated to the Metabase XML interceptor.

Error Message:

"Ignoring undefined attribute (%s)”
2.2.6 Custom element expected

The only element allowed to follow a keytype element is a custom element. When a non-custom element is found following a keytype element we record this fact and ignore the unknown element. Return a non-critical error to the caller.

Error Message:

“Only ‘Custom’ elements are allowed as a child at this location. %s will be ignored.

2.2.7 ID on Custom property does not match Well-Known property’s ID.

It is legal to specify an ID on a Custom property. It is even legal to specify a Well-Known property's ID when listed as a Custom property. But it is not OK to specify an ID that doesn't match the Well-Known property's ID. Log it the details of the error and return a non-critical error to the caller.

Error Message:

“This ‘Custom’ property has a mismatching ID and Name. Ignoring this element”

2.2.8 Missing ID on Custom Element

This happens when a Custom property is specified, the name doesn't match a Well-Known name, and an ID is NOT specified. Since all properties must have an ID, this property will be ignored. Record the details of the error and return a non-critical error to the caller.

Error Message:

“This ‘Custom’ element requires an 'ID' attribute. Ignoring this element"
2.2.9 Missing Type on Custom Property

A Custom property that is not Well-Known must have a valid Type. A String type will be assumed, the property will NOT be ignored. Record details of the error and return a non-critical error to the caller.

Error Message:

 “A Custom property (%s) was found at line %d, char %d but contained no Type attribute. Defaulting to String type and continuing"
2.2.10 Custom property ID matches Well-Known property ID

If an ID is specified for a Custom property that is NOT Well-Known, and the ID matches a Well-Known property's ID we will ignore the property. Record error details and return a non-critical error to the caller

Error Message:

 “A Custom property (%s) was found at line %d, char %d with an ID that matches a Well-Known property’s ID. Ignoring the custom property."

2.3 Configuration File Errors

2.3.1 Unable to open file (file is write locked)

If the system is unable to open a configuration file for reading this is a non-continuable error. Record the details of the file and path along with corrective action needed. Return a critical error to the caller.

Error Message:

“The %s configuration file could not be opened for reading. The file is write locked by the %s (user/process/resource). Release the lock to make the file available for reading.”

2.3.2 Unable to open file (file is not found)

If the system is unable to find a specified configuration file this is a non-continuable error. Record the details of the error including the file and path along with corrective action needed. Return a critical error to the caller.

Error Message:

“The %s configuration file could not be found. Restore the configuration file or correct the name of the configuration file being requested.”

2.3.3 Unable to write file (file is read only)

When writing configuration settings back to the file, if the file is in a read-only state record this critical error. Return a critical error to the caller.

Error Message:

“Error writing to configuration file %s. Make sure the file is write accessible.”

2.3.4 Unable to write file (file is write locked by another process)

When writing configuration settings back to the file, if the file is in a read only state record this error and fail. Include the file and path along with corrective action needed. Return a critical error to the caller.

Error Message:

“The %s configuration file could not be accessed for writing. Process %s has locked the file. Release this lock to make the file available for writing.”

[image: image4]
3.0 Error Processing

The caller of the underlying configuration system is responsible for testing the return value of each call to check for success or failure. When a failure condition is detected the caller evaluates the “context” of the error and takes the appropriate action.

Upon the detection of an error condition, the caller can further interrogate the error details to determine if the error was non-critical or critical. In addition, a count and list of detailed error information is available.

For each detailed error the following information will be available to the caller:

· Error Description (as described above as the “error message”)

· Error Date

· Error Time

· Source

· Type

· Category

· Event

· User

· Computer

· Binary data (this is for future exploitation as NT Event Log supports Binary data)

In addition to the above fields (which map to the NT Event Log, the following information may be provided:

· Error Code (HResult)


· Interceptor type

· Config DLL

· Operation type

· Table

· File

· Row

· Column

·
4.0 Error output locations

If the caller is an application with UI, it may be sufficient to display an error dialog box informing the user of the error interactive application. For most server applications

All configuration log notifications are written to three locations: 1. NT Event Log; 2. Text based error log and 3. WMI.

4.1 NT Event Log

Justification for writing to the NT Event Log is to provide consistency for current IIS and Windows 2000 administrators and to support legacy management support tools that look in this location for system events.

Events are written to the NT Application Event Log. They include a type, date, time, source, Category, Event #, User and Computer, in addition to a description.

· Type: Information, Warning, Error

· Source: Configuration System

· Category: Parsing Error, Logical Error, File Error

· Event: unique event number for each event

· Description: as defined by “error message” of the event

4.2 Text base error log

Justification for writing to a text based error log is to facilitate “headless” administration of servers. Telnet and scripting clients will be able to much more easily manipulate a clear text based log.

To make the text based log easy to parse and process, text base log entries are based on XML IST formatted file. The format for the text based log mirrors the NT event. The location of the Text based error log is configurable. The size of the log is also configurable.

The file is Unicode. The error file location is configurable by the caller. It defaults to %WINNT% if not specified. The size defaults to unlimited.

 OMARKO: Stephen has proposed embedding some of these properties (FilePosition, LineNumber, etc…) into the Description tag . I’ve called them out as separate tags in this spec to get additional perspectives. There are interesting programmatic opportunities for the Caller of config to do things with info like Line# (such as open the file in error and position the cursor there).
Example XML file:

<ErrorLog>

<Error

Date="7/25/2000" Time="11:46:33 AM"

Source="Config" Catalogy="None" Event="4269" User="N/A" Computer="stephenr3"

Description="The XML File failed to parse because the element 'NormalTableWithFlag' is used but not declared in the DTD/Schema..”

Code=”0xc00ce00d”

FilePosition=”207”

LineNumber=”9”

LinePosition=”23”

File=”file:///C:/WINNT/XSPDT/stephen.xml”

Table=”table”

Interceptor=”xml”

OperationType=””

BinaryData=”

0000: 0c 00 e0 00 0e 00 00 00 ..à.....

0008: b0 12 15 c7 e0 d1 bf 01

0010: 7c 00 00 00 00 00 00 00 |.......

0018: 00 00 3c 00 04 00 8a 00

0020: 00 00 00 00 46 1f 00 80

0028: 00 00 00 00 d0 00 00 c0

0030: 84 00 00 00 00 00 00 00

0038: 00 00 00 00 00 00 00 00

0040: ff 53 4d 42 25 00 00 00 .SMB%...

0048: 00 00 00 00 00 00 00 00

0050: 00 00 00 00 00 00 00 00

0058: 00 00 00 00 00 00 00 00

0060: 10 00 00 21 00 00 00 00 ...!....

0068: 00 00 00 00 00 e8 03 00

0070: 00 00 00 00 00 00 00 21 !

0078: 00 56 00 03 4d 00 52 00 .V..M.R.

0080: 78 00 53 00 6d 00 62 00 x.S.m.b.

0088: 00 00 5c 00 44 00 65 00 ..\.D.e.

0090: 76 00 69 00 63 00 65 00 v.i.c.e.

0098: 5c 00 4c 00 61 00 6e 00 \.L.a.n.

00a0: 6d 00 61 00 6e 00 44 00 m.a.n.D.

00a8: 61 00 74 00 61 00 67 00 a.t.a.g.

00b0: 72 00 61 00 6d 00 52 00 r.a.m.R.

00b8: 65 00 63 00 65 00 69 00 e.c.e.i.

00c0: 76 00 65 00 72 00 00 00 v.e.r..."/>

</ErrorLog>
4.2.1 Errors writing text based log

Errors could occur when writing to the text based log. Reasons for this would include:

· Write lock on the file (someone is editing the file)

· File marked read-only (perhaps an inadvertent attribute update after a backup)

· Disk full

In each case we will attempt to record an error in the NT event log. Error Message:

“Unable to write to error log %s.” + reason for the error (Write lock, read-only, disk full).

4.3 WMI Events

In the current version of the config system, WMI instrumentation is not a requirement. However, succeeding versions will need to be instrumented to make the administration and monitoring of IIS and other systems exploiting the config system manageable by the next generation of tools that look to WMI events rather than the NT Event log for management information. To aid in the design of wrappers that may be writing to emit events, an excerpt from the WMI cookbook is included below with regard to Error Reporting:

Logging and error messages

Use unique and consistent identifiers

You need to ensure that the source and event identifier pairs used in your feature are unique across Microsoft products and that the IDs for specific issues do not change from version to version. Customers are often forced to update their monitoring processes and tools with every upgrade because the IDs they tracked changed.

Benefits

Of all the problems with events that customers complain about, the one that upsets them the most is clarity and consistency of events that are generated. A real-world example from one of our largest customers: a customer spent six months working with Microsoft PSS to tie event IDs to specific problems. The customer modified the processes and tools across the entire company to monitor for the specific event IDs. Then the customer installed an additional Microsoft product that generated duplicate IDs. And, when the customer upgraded the original feature, it had changed all the event IDs that the customer was monitoring. Situations like this decrease the overall manageability of Microsoft products as well as customer satisfaction.

How to implement

1. Read Types of Events at \\ntserver\areas\Distributed_Management\Cookbook\General\Types of events.doc.

2. Ensure that the event ID ranges you choose are unique before implementing them. The source and event ID pair must be unique across Microsoft products.

3. Complete one of the following:

a. Use the ReportEvent API to pass events to the Windows NT event log. See the Microsoft Platform SDK. Visit http://msdn.microsoft.com/isapi/msdnlib.idc?theURL=/library/psdk/winbase/eventlog_756c.htm.

b. Use the NT Event Log Event consumer to pass events generated by a WMI event provider to the Windows NT event log. For information on creating a WMI event provider, see Develop a WMI schema and create a WMI provider or providers. For details on how to use the NT Event Log Event consumer, see \\ntserver\areas\Distributed_Management\Cookbook\General\ntlog.chm.

4. Visit http://uitext. Click Guidelines>Messages and read through the section on event logs for more details.

Include a URL to PSS information in every event

In Whistler, you should append a URL to the current error messages in the message-dll. You should include the generic URL that points to the Online Support redirector page, but based on the parameters you pass to the event log, the URL will redirect to more specific information on the Web, such as KB articles.
Benefits

Customers regularly complain that Microsoft doesn’t document events well enough. They often find events cryptic and say they need a translator to understand them. Customers want to understand what is wrong with their systems, and the events rarely provide information on how to resolve their problems. By linking to PSS information on the Web, you give customers access to the latest troubleshooting information.

How to implement

For information on how to append a URL, see Linking Event Logged Messages to the Web at http://stweb/Initiatives/WebExtendedContent/EventLogURL.htm.

Meet error message guidelines available on http://uitext

In general, you should display error messages only if something has happened either that users need to act on or that has serious consequences to their work. Messages should be short, simple, clear, specific, and helpful. Often a single error message can be generated by more than one problem. Be certain that your error messages can be traced back to a specific issue. If the message can apply to several situations, you should replace the generic error message with additional, more specific messages.

Avoid including more than two to three lines of instructions in error messages because users cannot remember the instructions after the message closes. If you need to provide more detail, include a Help button instead. Contact the lashdir alias to have a Help topic written for your error message.

How to implement

Visit http://uitext. Click Guidelines>Messages and read through the following sections:

· Capitalization and Punctuation

· Presentation

· Terminology

· Event Logs

5.0 Error Handling
 OMARKO: I’m really out on a limb on this one – please let me know how we REALLY do this…

5.1 Mechanism

To provide rich error information to the caller, configuration will support returning multiple errors. This will be done via simple table. Each interceptor that supports this rich error information will implement the IConfigError interface.

[local] interface IConfigError

{

HRESULT GetErrorTable([out] LPVOID* o_ppvSimpleTable);

}

The table returned has the following meta:

<DatabaseMeta
InternalName="ERRORS">

<ServerWiring
Interceptor="Core_DetailedErrorInterceptor"/>

<Collection
InternalName="DETAILEDERRORS" PublicName="DetailedErrors"

MetaFlags="INTERNAL NOLISTENING">

<Property
InternalName="ErrorID"
Type="UI4"

MetaFlags="NOTPERSISTABLE PRIMARYKEY INSERTGENERATE"/>

<Property
InternalName="Description"
Type="WSTR"

MetaFlags="NOTNULLABLE"/>

<Property
InternalName="Date"
Type="WSTR"/>

<Property
InternalName="Time"
Type="WSTR" />

<Property
InternalName="Source"
Type="WSTR"

MetaFlags="NOTNULLABLE"
Default="COM+ Config"/>

<Property
InternalName="Type"
Type="UI4"

MetaFlags="NOTNULLABLE"
Default="ERROR">

<Enum
InternalName="SUCCESS"
Value="0"/>

<Enum
InternalName="ERROR"
Value="1"/>

<Enum
InternalName="WARNING"
Value="2"/>

<Enum
InternalName="INFORMATION"
Value="4"/>

<Enum
InternalName="AUDIT_SUCCESS"
Value="8"/>

<Enum
InternalName="AUDIT_FAILURE"
Value="16"/>

</Property>

<Property
InternalName="Category"
Type="UI4"/>

<Property
InternalName="User"
Type="WSTR"/>

<Property
InternalName="Computer"
Type="WSTR"/>

<Property
InternalName="Data"
Type="BYTES"/>

<Property
InternalName="Event"
Type="UI4"

MetaFlags="NOTNULLABLE"/>

<Property
InternalName="String1"
Type="WSTR"/>

<Property
InternalName="String2"
Type="WSTR"/>

<Property
InternalName="String3"
Type="WSTR"/>

<Property
InternalName="String4”
Type="WSTR"/>

<Property
InternalName="ErrorCode"
Type="UI4"/>

<Property
InternalName="Interceptor"
Type="UI4"/>

<Property
InternalName="InterceptorSource"
Type="WSTR"/>

<Property
InternalName="OperationType"
Type="UI4"

DefaultValue="Unspecified">

<Enum
InternalName="Unspecified"
Value="0"/>

<Enum
InternalName="Populate"
Value="1"/>

<Enum
InternalName="UpdateStore"
Value="2"/>

</Property>

<Property
InternalName="Table"
Type="WSTR"/>

<Property
InternalName="ConfigurationSource"
Type="WSTR"/>

<Property
InternalName="Row"
Type="UI4"/>

<Property
InternalName="Column"
Type="UI4"/>

</Collection>

</DatabaseMeta>

Since the upper layers know more about the context in which errors happen, it is the responsibility of the caller to persist these errors to the Event Log and/or an XML file. This is achieved by the caller getting the IST pointer to the DetailedErrors table and then calling UpdateStore.

This approach gives the caller an opportunity to modify the information in an error row by calling AddRowForUpdate. Also, the caller may choose to discard the DetailedErrors table in favor of creating their own DetailedErrors table combining context information and the lower layers DetailedErrors.

5.2 DetailedError Column Descriptions

ErrorID
Generated unique ID used as a PrimaryKey. This is required to identify a row within the table. This value is NOT persisted to disk..

Description
This is the combination of the string from the MC file (denoted by the Event column) with the row data contained in all columns after the Event column.

Date
The date the error row was added to the cache. When viewed from the NT Event Log, this is the date the entry was added to the Event Log.

Time
The time the error row was added to the cache. . When viewed from the NT Event Log, this is the time the entry was added to the Event Log.

Source
This is the Source as specified in the Registry at HKEY_LOCAL_MACHINE\System\CurrentControlSet\Services\Event
Log\Source
Type
One of the enum values listed above.

Category
Any user specified numeric value.

User
The NT user account that caused the error. This is often ‘N/A’.

Computer
The computer name where the error occurred.

Data
Any binary data the might be useful in identifying the source of the error. This is accessible from the Event Viewer.

Event
The Event corresponds to the MC file’s MessageID. This is what maps the formatting string that gets reported in the Description field.

String1
User defined string which gets mapped to ‘%1’ format specifier in the format string from the MC entry.

String2
User defined string which gets mapped to ‘%2’ format specifier in the format string from the MC entry.

String3
User defined string which gets mapped to ‘%3’ format specifier in the format string from the MC entry.

String4
User defined string which gets mapped to ‘%4’ format specifier in the format string from the MC entry.

ErrorCode
An optional HRESULT.

Interceptor
Numeric Interceptor ID.

InterceptorSource
DLL file from which the error originated.

OperationType
OperationType enum (usually Populate or UpdateStore).

Table
Table name that caused the error.

ConfigurationSource
Usually the filename from which the configuration data is stored. Can also be a string description of the store (example “Fixed Table Heap”).

Row
This can either refer to the Row within the cache (in the case of the error occurring on UpdateStore) or the Row within the store (as in Line number or equivilent).

Column
This can either refer to the Column within the cache (in the case of the error occurring on UpdateStore) or the Column within the store (as in Line position or equivilent).

Each DetailedError row corresponds to an entry (Event) in the Source’s MC file. The entry in the MC file must contain format specifiers for exactly five strings. The first four are filled with the columns: String1, String2, String3, String4. The fifth string is a concatenation of each of the column public names (for columns following String4) followed by a colon, the column value, and a newline character.

Example MC file entry:

MessageId=0x10FF

Severity=Error

Facility=Runtime

SymbolicName=IDS_COMCAT_XML_LOGIC_FAILURE

Language=English

The XML File contains a logical error. Enum value ‘%1’ is not found in the TagMeta for Table ‘%2’ / Column ‘%3’. Element is as follows:%4 %5%0

Example DetailedError Row:

ErrorID
3

Description
L”The XML File contains a logical error. Enum value ‘Foo’ is not found in the TagMeta for Table ‘MyTable’ / Column ‘MyEnumColumn’. Element is as follows: <MyRow MyEnumColumn=’Foo’ Attr1=’7’/>
ErrorCode: 0x8004523
Interceptor: 4
InterceptorSource: C:\winnt\xspdt\Catalog.dll
OperationType: Populate
Table: MyTable
ConfigurationStore: C:\testfile.xml
Row: 4
Column: 17

Date
9/1/0000

Time
12:35:06 PM

Source
COM+ Config

Type
ERROR (1)

Category
0

User
stephenr

Computer
STEPHENR2K

Data
(NULL)

Event
0x10FF

String1
L”Foo”

String2
L”MyTable”

String3
L”MyEnumColumn”

String4
L”<MyRow MyEnumColumn=’Foo’ Attr1=’7’/>”

ErrorCode
0x8004523

Interceptor
4 (Core_XMLInterceptor)

InterceptorSource
L”C:\winnt\xspdt\Catalog.dll”

OperationType
Populate (1)

Table
L”MyTable”

ConfigurationSource
L”C:\testfile.xml”

Row
4

Column
17

Those columns in the DetailedErrors table that correspond directly to the NT Event Log will be reported to the event log as the are indicated above. Date and Time may not match exactly since the Date and Time in the IST is generated at the time the row is added to the DetailedErrors table; but the Date and Time in the NT Event Log get generated when the event is added to the Event Log.

All columns in the DetailedErrors table (except the ErrorID, I’m not sure about it yet) get persisted to the Config Event Log XML file.


5.2 Persistence

Because configuration system will be called by a background service, in order for the administrative UI to be able to report errors to the user it will need access to error information. It’s not appropriate to parse the eventlog for this purpose, so we will have to persist the errors in as a collection in a persisted cache.

6.0 Application specific issues
 OMARKO: Because most of the error conditions are already covered in the previous configuration section, IIS specific configuration boils down to these top-level issues. What am I missing?

6.1 IIS Configuration

6.1.1 Location and size of Text based error log

The text based error log will be stored in the %INETSRV% directory and the file name is metabase.log. The size of the file defaults to 1 MB max.

6.1.2 Critical read errors

When a critical error is received while reading configuration data, the IIS configuration system will attempt to recover by reading the most current backup metabase.xml file. IIS configuration will write an error to the event log indicating backup was used.

Error Message:

“IIS can not read metabase.xml, defaulting to latest backed-up version. The current metabase.xml file will be copied to the Errors directory and will be replaced with the backup.”

6.1.3 Critical write errors

When a critical error is received while saving configuration data, the IIS configuration system will attempt to save to the backup directory. IIS configuration will write an error to the event log indicating backup was used. This will be typically due to a write locked or read only attribute on the file.

Error Message:

“IIS can not save the current config to the metabase.xml file. A backup of this file (%s) was saved to the backup directory. Release write lock or read-only attribute on the metabase.xml file to permit update.”

6.1.4 Critical write errors (can’t write backup)

In the case the backup file cannot be written, this event must be logged. This could happen if there is insufficient space on the hard drive or the backup directory has incorrect access permissions.

Error Message:

“IIS can not write the backup configuration file to the backup directory (%s). Verify space exists on this drive and that access permissions exist on the directory.”

[image: image5]
Change History

	Date
	Changes
	By

	7/12/00
	Created
	Omar Kouatly

	7/28/00
	Updated after review with StephenR
	Omar Kouatly

	9/06/00
	Improved error msg, added Stephen’s reporting mech
	Omar Kouatly

	
	
	

	
	
	

	
	
	

