[image: image1.jpg]Microsoft

-~
COMTeam
|

Project 42 Configuration API

Research Document

(Note until the App Server or Project 42 logo is available, the COM logo is being used as a place holder)

June 28, 1999, Draft Rev 1.1

Emily B. Kruglick

21.
Purpose of Document

2.
Summary of general review
2
3.
WMI Review
3
3.1
WMI Benefits:
3
3.1.1
Standard Configuration Administration API
3
3.1.2
Extending AS configuration objects
3
3.1.3
AS configuration objects extending other objects
3
3.1.4
Heterogeneous querying of different objects.
3
3.1.5
Common data model between Events/Monitoring and Configuration
3
3.2
WMI Technical issues to be addressed:
3
3.2.1
Managed Code
3
3.2.2
Client side caching
4
3.2.3
Batch updating
4
3.2.4
WMI Infrastructure verse Catalog Server Infrastructure
4
3.2.5
Client side logic
4
3.3
WMI Concerns to be addressed:
4
3.3.1
Usability / Magic Strings
4
3.4
Concerns still under investigation
4
3.4.1
VC versus VBA Coding
4
3.4.2
Predefined Set of Queries
5
3.4.3
Security
5
3.4.4
Schema upgrades causing existing code to break.
5
3.4.5
No isolation between providers.
5
3.4.6
WMI platform versions are incompatible with each other.
5
3.4.7
Performance
5
4.
Revision History
5

Purpose of Document

This document contains the information found during the research of different API choices available to expose Application Server’s configuration functionality. It is an effort to provide clear reasons why we have arrived at specific choices for the primary configuration API of Application Server. The following APIs were researched or considered:

· Active Directory Services Interface (ADSI)

· OLEDB and ADO

· COM+ Runtime 2.0 Interface (Reflection)

· COM+ Services 1.0 Interface (COMAdmin)

· SQL Server 7.0 Interface (SQL-DMO)

· Windows Management Interface (WMI)

· New API based on the COMAdmin API

In order to understand this document and the customers that this interface is going to serve, a reader should first be familiar with the “Project 42 Configuration API Requirements” Document (AppServerConfigRequirements.doc found in \\comvss\cosss source safe at $\Catalog42\Info.

It is also important to realize that the catalog infrastructure all ready in place will be used to support this and that the API should be only a thin layer on top of it.

This discussion is also relevant to both the Application Server 1.0 release (based on the current code base of COM+ and IIS) and Application Server 2.0 release (based on the new URT code base).

1. Summary of general review

ADSI is the administration interface for directory services but not all windows management. The ADSI team points to WMI as the owner of configuration of objects on windows systems. Therefore ADSI was not chosen as the interface for administering the Application Server.

OLEDB and ADO were also briefly considered for the configuration API. However, they were not chosen due to the complexity of building an OLE DB provider and because the configuration API is doing special case data management and extended functionality (for instance, InstallComponent functional calls).

The COM+ Runtime 2.0 Interface – Reflection was also reviewed. However it’s target audience is more of the lower level developers. Our audience is more administrators and script programmers. This difference drives the two requirements in different directions, and so the configuration API will not be modeled after Reflection.

The COM+ Services 1.0 Interface – COMAdmin has proven to have several issues and areas of improvement where changes would simplify the customers lives. Therefore, sticking directly with this interface would not meet the requirements for the configuration API. This does not mean that some of the structure of the COMAdmin Interface should not carry forward. It simply means that the COMAdmin interface can be valuable as a guiding piece for a new interface, but will not be the interface itself.

The SQL Server 7.0 Interface (SQL-DMO) was discussed briefly. The SQL Server team has a rough plan to expose it’s configuration through WMI in version 8.0 (two releases away). It is a rough plan since they have had no time to research what it really means. Based on this feedback, further research on the SQL Server API was deemed not necessary.

This leaves WMI or a New API based on the COMAdmin API to be discussed. There are several technical reasons why the current shipping WMI will not meet the needs of the configuration API. Those are addressed below. There are also some concerns about the WMI interface, also listed below. It is the current plan to begin development of the new managed code API (currently being called ASCI for Application Server Configuration Interface). At the same time we will continue to work with the WMI team to bring their model and our model into common ground. This means eventually we can either provide a WMI provider along side our configuration API or we can target the WMI as the main configuration interface for Application Server.

WMI should explore addressing some of the functional issues noted below. This would be of value to all WMI customers and makes eventual convergence more possible. WMI should also explore the URT programming model and look at managed code classes as the basis for future interfaces.

2. WMI Review

2.1 WMI Benefits:

2.1.1 Standard Configuration Administration API

Users who know how to administer for instance, printers using WMI can use the same knowledge and code to administer the Application Server.

2.1.2 Extending AS configuration objects

Allows the Application Server configuration objects to become extensible by other WMI providers. Thus a provider could add on properties or associate with for instance, the Application Server’s URL objects.

2.1.3 AS configuration objects extending other objects

Allows the Application Server configuration objects to extend or associate with other provider objects. For instance, the Application Server configuration machine object could tie to the generic machine object. Thus providing a grouping of settings that can be performed on a machine.

2.1.4 Heterogeneous querying of different objects.

Allows WMI users to query over Application Server configuration data in conjunction with other objects configuration data.

2.1.5 Common data model between Events/Monitoring and Configuration

If we exposed the Application Server configuration objects through WMI it would provide a common data model between the configuration data and the eventing and monitoring model. It should be noted that even if the configuration data was not exposed through WMI, Application Server could still plug into WMI for unification of monitoring systems with other MS products.

2.2 WMI Technical issues to be addressed:

2.2.1 Managed Code

WMI does not currently have plans to expose itself through Managed Code. While there is a possibility of having the WMI team provide a Managed Code wrapper above the current WMI interfaces, this may not be the optimal solution for Managed Code clients. Since some of the WMI clients are lower level operating system components converting the WMI layer to managed code may not be the correct path for it.

Application Server 2.0 UI configuration tools plan to target managed code which means that providing the administration interfaces which the UI tools use are written in managed code it will be all that easier for the UI tools. Also providing the administration interfaces in managed code is a show of support to the URT programming model that we will be asking the world to accept and use.

2.2.2 Client side caching

Currently WMI client code brings across objects as the client asks for them. VB clients can only enumerate through one object at a time. This means that each object is a network round trip. This is not acceptable for the Application Server configuration. The application server configuration requires that a full collection of objects be able to be marshaled to the client at once.

2.2.3 Batch updating

Currently in WMI all updates are handled object by object. The Application Server configuration requires that you be able to send back a batch (actually the whole collection) of updates at one time.

2.2.4 WMI Infrastructure verse Catalog Server Infrastructure

Currently WMI has a piece of client code that calls out to a WMI Process that either calls out to a WMI provider or loads the WMI provider in process with it. The Catalog Server infrastructure has the configuration API running in process with the client and has the Catalog Server running in it’s own process. If these two models are used together, it will take two process jumps for every server request.

2.2.5 Client side logic

The current Catalog Server infrastructure allows for both basic and complex property edit rules to be handled on the client side before returning that data to the server. It also allows for edit rules to be handled on the server side. Some form of edit rule expression must be present in WMI. The degree to which this is done is still under investigation.

2.3 WMI Concerns to be addressed:

2.3.1 Usability / Magic Strings

All generic object interfaces tend to have a number of “Magic Strings” used to request objects take on specific types. For instance in COM+ the COMAdminCatalogCollection object can represent different Collections (two examples being, Components and Applications). To insure usability WMI needs to provide a means for user programming to the interface to quickly identify the objects and key words or strings they will need for those objects. WMI does have some UI tools that should full-fill this, but I have yet to see them work correctly to be able to guarantee that it makes understanding the strings the user needs to supply in code to get at data, user-friendly.

2.3.1.1 VB Statement completion.

The application server configuration should take advantage of statement completion whenever possible. Current COMAdmin code can not do this because our objects are generic and just represent the specific objects instead of being different objects. There has been some talk of building type-libraries or specific objects over the generic objects to enable this. How WMI will handle this issue needs to be understood.

2.4 Concerns still under investigation

2.4.1 VC versus VBA Coding

How much more complex is the VC code when users code indirectly through the WMI interface? How much more overhead is added on making method calls that may not be there if the user was coding directly to an interface created for those method calls? Right now because of COMAdmin’s use of returning IDispatch objects, COMAdmin makes the VC life harder than it should. Application Server should not increase this issue.

(This will be settled by the sample WMI code that matches the sample ASCI code we have)

2.4.2 Predefined Set of Queries

WMI exposes views that should allow the AS configuration users to choose a specific query from a set queries and provide the keys for the query without allowing users to pass random queries. It needs to be researched how these queries or views (most likely views) will appear to the users and how they will be implemented. It also needs to be researched how views are discoverable to the users for usability issues.

2.4.3 Security

How the identity of the user gets to the Catalog Server, using WMI will need to be understood in order to make sure the Catalog Server security would be in tack. There will also be other changes coming to the security model that will need to be understood and how those changes work with WMI. Application Server will use the URT security model based on roles and capabilities. This will provide code-access security and different security config for different instances within the data model. IE: Application Server will want to be able to set up declarative security on a per application basis

2.4.4 Schema upgrades causing existing code to break.

Apparently it is very difficult to update the standard schema. For instance, when SMS 2.0 was shipped, they replace the WMI on all SMS machines and replace the schema with a new version. Therefore, if a customer had a working WMI application, it would need to be reinstalled. It would be like when MS upgrades an O/S if they replaced the registry with a new one and all the previous registry data was lost. We really need to understand this more. It should not affect our data since out data will be in RegDB, but it may affect us in other ways (eventing, monitoring, registration of objects). This needs to be drill down on with WMI.

2.4.5 No isolation between providers.

Providers can run “in-process” with WMI, so if one badly behaving provider crashes it can take down all of WMI. This should be researched to discover how likely this behavior will be and if the system does go down, what problems for our configuration data will be seen.

2.4.6 WMI platform versions are incompatible with each other.

Providers may need to be different between Win95, Win98, NT 4, etc. The AS team needs to understand this more. It could be an issue if the AS team is going to have to do different versions for different platforms.

2.4.7 Performance

WMI performance for reading and writing data will need to be benchmarked.

3. Revision History

Date
Change By
Description

6/28/99
EmilyK
Updated with comments from BillDev

6/23/99
EmilyK
1st preparation of document for release.

