

Hierarchy & Merge Interceptors
November 2, 1999, Draft Rev 0.5

Markus Horstmann
This document describes how hierarchical configuration for the different URT host environments is handled in the configuration system.

TOC \o "1-3"
1.
Hierarchy Interceptors
1
1.1
Web Server Hierarchy
1
1.1.1
Web Server Hierarchy Interceptor
2
1.1.2
Implementation notes
4
1.2
Shell Hierarchy
4
1.3
Browser Hierarchy
4
2.
Merge Interceptors
4
2.1
Generic Merge Interceptors
5
2.1.1
Property Override Merge Interceptor
6
2.1.2
List Append Merge Interceptor
6
2.1.3
List Prepend Merge Interceptor
6
2.1.4
List Merge Interceptor
6
3.
Merge Coordinator Interceptor
7
4.
Migration of XSP Config Factories
8
5.
Open Issues
9
6.
Revision History
9

Note: This document is an early release of the final specification. It is meant to specify and accompany software that is still in devel​opment. Some of the information in this documentation may be inaccurate or may not be an accurate representation of the func​tionality of the final specification or software. Microsoft assumes no responsibility for any damages that might occur either directly or indirectly from these inaccuracies. Microsoft may have trademarks, copyrights, patents or pending patent applications, or other intellectual property rights covering subject matter in this document. The furnishing of this document does not give you a license to these trademarks, copyrights, patents, or other intellectual property rights.

1. Hierarchy Interceptors

Hierarchy interceptors encapsulate the knowledge about the hierarchy of configuration files for a specific host environment. They compute the physical location of configuration files and enable reuse of merge interceptors for different host environments.

Hierarchy interceptors take a ConfigType and Selector as input, and transform it into a new, compound Selector. This new selector is a list of selectors whose elements represent individual configuration collections along the hierarchy, which contribute to a single configuration collection. Typically the configuration manager interprets this list selector and incrementally invokes a merge interceptor on pairs of configuration collections (see Section 3 below for details).

The configuration manager assumes that the elements of the list are UrlUncSelectors:

class System.Config.UrlUncSelector : System.Config.Selector

{

public
UrlUncSelector(String); // syntax: urlunc:[<urlselector>;<uncselector>]

public
UrlUncSelector(Selector UrlInit, Selector UncInit);

public
Selector Url {get, set};

public
Selector Unc {get, set};

}

The Selector.Url member indicates the logical name for a node in the hierarchy (i.e. the name by which the merged configuration information for the name can be queried).

The Selector.Unc member indicates the physical location from which the source configuration information for the node can be retrieved.

1.1 Web Server Hierarchy

The web server hierarchy starts with a single root node, the machine configuration. The machine configuration (currently \complus\config\machine.cfg) defines a set of sites (among other machine wide configuration information), and their bindings into the URL namespace. Each site definition establishes a root directory for the site, in which further configuration information resides.

The site root directory contains a configuration file (currently “config.cfg”). The configuration information in this configuration file is typically considered to be associated with the URL(s) of the site. Child directories of the site root directory are typically mapped into the URL namespace by appending the relative path of the child directory to its parent’s URL. The configuration file can contain configuration that map an immediate child URL to a different directory in the file system; these instructions are called virtual directories (or VDIRs).

Any child directory under the site root directory can contain additional configuration files (“config.cfg”), which typically establish configuration associated with the URL corresponding to the child directory.

Machine (via Site root dir) => App/Dir (via subdir/VDIR=> App/Dir (via subdir/VDIR) => App/Dir => …

Example:

SiteDef 1:
http://ms.com, root dir: c:\inetpub\wwwroot\ms

Root app URL:
http://ms.com

Child app 1:
http://ms.com/foo

Child app 2:
http://ms.com/foo/bar

Child app 3:
http://ms.com/zee, mapped to VDIR d:\zee

SiteDef 2:
http://hotmail.com, root dir: c:\inetpub\wwwroot\hotmail

Root app URL:
http://hotmail.com

Child app 4:
http://hotmail.com/foo

 How do we handle config info for a child node declared in a parent config file?

1.1.1 Web Server Hierarchy Interceptor

The Web Server Hierarchy Interceptor (WSH) takes a ConfigType and a URLSelector (with “http:” or “https:” protocol prefix) and turns it into a selector (list selector) consisting of

· a parent UrlSelector, for which the configuration is already known (cached),

· a list of child UrlUncSelectors, indicating the URL of each node and the file system path of each configuration file along the URL hierarchy.

If the incoming URL corresponds to the root of a site (i.e. is of the form “http://<servername>”), the WSH generates a list selector indicating the site definition and the site root configuration file:

Examples:

ConfigType = “Applications”, Selector=”http://ms.com”

list:urlunc:[http://ms.com;file://c:\complus\config\machine.cfg];

 urlunc:[http://ms.com;file://c:\inetpub\wwwroot\ms\config.cfg]

ConfigType = “Applications”, Selector=”http://hotmail.com”

list:urlunc:[http://hotmail.com;file://c:\complus\config\machine.cfg];

 urlunc:[http://hotmail.com;file://c:\inetpub\wwwroot\hotmail]

If the incoming URL is a child URL of a site (i.e. is of the form “http://<servername>/<child>”), the WSH generates a list selector indicating the first URL for which config information is already cached (or the sitedef as above if no info has been cached yet), and the locations of the child configuration files.

Examples:

ConfigType = “Applications”, Selector=”http://ms.com/foo”

If config for site root URL has been cached:

list:urlunc:[http://ms.com;file:\\inetpub\wwwroot\ms\config.cfg];

 urlunc:[http://ms.com/foo;file://c:\inetpub\wwwroot\ms\foo]

If this is the first request:

list:urlunc:[http://ms.com;file:\\c:\complus\config\machine.cfg];

 urlunc:[http://ms.com;file://c:\inetpub\wwwroot\ms];

 urlunc:[http://ms.com/foo;file://c:\inetpub\wwwroot\ms\foo]

Assuming parent config has been cached for each of the subsequent requests:

ConfigType = “Applications”, Selector=”http://ms.com/foo/bar”

list:urlunc:[http://ms.com/foo;file://c:\inetpub\wwwroot\ms\foo];

 urlunc:[http://ms.com/foo/bar;file://c:\inetpub\wwwroot\ms\foo\bar]

ConfigType = “Applications”, Selector=”http://ms.com/zee”

list:urlunc:[http://ms.com;file://c:\inetpub\wwwroot\ms\zee];

 urlunc:[http://ms.com/zee;file://d:\zee]

ConfigType = “Applications”, Selector=”http://hotmail.com/foo”

list:urlunc:[http://hotmail.com;file://c:\inetpub\wwwroot\hotmail];

 urlunc:[http://hotmail.com/foo;file://c:\inetpub\wwwroot\hotmail\foo]

The WSH computes these selectors by splitting the incoming URL into parent URL and relative child URL (finding the last occurrence of the “/” character). If the URL can not be split, the WSH reads the site definition for the URL and obtains the site root directory:

// RequestURL = “http://ms.com”

SiteDef=ConfigManager.Get(“SiteDefs”, RequestURL)

ListSelector sel = new ListSelector(

 UrlUncSelector(RequestURL, ”file:”+ConfigManager.GetMachineConfigDirectory(),

 UrlUncSelector(RequestURL, “file://”+SiteDef.Path));

// “list:urlunc:[http://ms.com;file://c:\complus\config\machine.cfg];

// urlunc:[http://ms.com;file://c:\inetpub\wwwroot\ms]”

If the URL can be split into parent URL and relative child URL, the WSH determines if the configuration cache contains the config information for the parent URL:

// RequestURL = “http://ms.com/zee”, ParentURL=”http://ms.com”, ChildURL=”zee”

// RequestURL = “http://ms.com/foo”, ParentURL=”http://ms.com”, ChildURL=”foo”

ConfigManager.IsObjectCached(ConfigType, ParentURL); // “http://ms.com”

If no info is available, the WSH continues to split the ParentURL until either finding cached info for a URL, or hitting the site root.

The WSH then determines the location of the next child node by attempting to read the VDIR definition from the parent URL. If this read fails (no VDIR info defined), it obtains the parent’s file system path and appends the relative child URL. It adds the resulting path to the child config file to the list of child paths computed so far:

VDir=ConfigManager.Get(“VDIRs”, “query:URL=”+ParentURL+”;Child=”+ChildURL);

// “query:URL=http://ms.com;Child=zee”

// “query:URL=http://ms.com;Child=foo”

if (VDir) {

ChildPaths.Add(UrlUncSelector(ChildUrl,“file://”+VDir.Path+”\config.cfg”));

// “urlunc:[http://ms.com/zee;file://d:\zee\config.cfg]”

}

else {

Application=ConfigManager.Get(“Applications”, ParentURL);

// Application.Path=c:\inetpub\wwwroot\ms

ChildPaths.Add(UrlUncSelector(ChildUrl,

Application.Path+”\”+ChildURL+”\config.cfg”);

// “urlunc:[http://ms.com.zee;file://c:\inetpub\wwwroot\ms\foo\config.cfg]”

}

It then iterates until the entire RequestURL is processed. It creates a list selector containing the the list of child paths:

list:urlunc:[http://ms.com;file://c:\complus\config\machine.cfg];

 urlunc:[http://ms.com;file://c:\inetpub\wwwroot\ms]

list:urlunc:[http://ms.com;file://c:\inetpub\wwwroot\ms];

 urlunc:[http://ms.com/zee;file://d:\zee\config.cfg]

Assuming ms.com config has not been cached for http://ms.com/zee request:

list:urlunc:[http://ms.com;file://c:\complus\config\machine.cfg];

 urlunc:[http://ms.com;file://c:\inetpub\wwwroot\ms];

 urlunc:[http://ms.com/zee;file://c:\inetpub\wwwroot\ms\zee\config.cfg]

The WSH returns the list selector to the config manager.

1.1.2 Implementation notes

This design avoids the need for recursion on the parent’s URL at the cost of making the hierarchy interceptor aware of caching semantics in the config manager (IsObjectCached).

The initial creation of config information for a site is triggered by the absence of cached config information for the root URL of the site (the merge coordinater passes in a NULL parent collection).

1.2 Shell Hierarchy

Machine -> User -> Application

1.3 Browser Hierarchy

Machine -> User -> Site/Docbase?

2. Merge Interceptors

Merge interceptors encapsulate the knowledge of computing a compound configuration collection based on two underlying configuration collections. They are typically used in conjunction with hierarchical configuration files to implement inheritance semantics from parent to child configuration files.

Merge interceptors take two config collections and a selector as input and return a configuration collection.

Merge interceptors can be generic, or they can be optimized for a specific ConfigType.

interface System.Config.IConfigMergeInterceptor {

 Object Merge(Object parent,

Object Source,

String ConfigType,

Selector TargetSel,
// Selector of the config object that is to be

// computed and returned from this method

Selector SourceSel,
// Selector used to retrieve the source config object

// not typically used by the interceptor.

LevelOfService LoS);

}

The resulting (“merged”) collection often contains additional properties as compared to the “source” collection retrieved from the config file. A typical property is a URL column that carries the URL of the node to which the config item applies. Another typical property is a URL column indicating the node in which the item was actually defined (= inherited from) (“URLSource” property). Other properties may be obtained by special rules (i.e. Ducttape AppPoolId from AppPoolOverride collection in machine.cfg).

Generic merge interceptors (like the ones described below) do not need to compute these properties, but must be prepared to handle different ConfigTypes for parent and child. They assume that parent and returned config objects have the same ConfigType and that their ConfigType is the same type as the ConfigType parameter passed into the Merge method. They also assume that the “merged” config type contains all properties of the “source” config, in the same order (with the exception of well-known properties like the “Directive” property, which is assumed to be at property index 0). They further assume that any additional properties in the “merged” config type precede the properties from the “source” config type.


Example: Ducttape “APPS” and “APPS_cfg” config types

 This example uses native catalog schema syntax (table=collection, column=property).

<TableMeta InternalName="APPS">

 <ColumnMeta
InternalName="SrcCFGFile"
Type="WSTR" />

 <ColumnMeta
InternalName="AppURL"

Type="WSTR" MetaFlags="PRIMARYKEY" />

 <ColumnMeta
InternalName="SiteID"

Type="UI4" MetaFlags="PRIMARYKEY" />

 <ColumnMeta
InternalName="AppPoolID"
Type="WSTR" />

 <ColumnMeta InternalName="AppEnabled"
Type="UI4" />

</TableMeta>

<TableMeta InternalName=" APPS_CFG">

 <ColumnMeta InternalName="AppEnabled"
Type="UI4" />

</TableMeta>

Additional properties can be computed by a specialized merge interceptor, but more typically another interceptor is run later in the “Validate” stage and modifies the collection returned by a generic merge interceptor.

Specifically, there may be generic “Validate” interceptors that set the URL property of the node.

 Do we need those for in-memory cached collections or just for persisted caches?

 How do we make file “coordinates” (XML line number/position) available to merge interceptors and validating interceptors?
 How do we provide merged vs. unmerged vs. source views of the data? LoS? What about the potentially different schema? Should this be a “native” concept to the config manager?
2.1 Generic Merge Interceptors

The following generic merge interceptors are available for use with newly defined collections. The definer of a new collection simply chooses an appropriate interceptor chain (or chains) that contains a merge interceptor that implements the desired merge semantics for the new collection.

2.1.1 Property Override Merge Interceptor

class System.Config.Merge.PropertyOverrideMerge : IConfigMergeInterceptor {}

The Property Override Merge Interceptor (POM) implements “last writer wins” inheritance semantics (similar to the IIS5 meta-base inheritance semantics). A non-null property in a child config collection simply replaces a property in the parent collection.

 We may want to add an optional “Final” semantics later…

Any non-null properties in items in a child collection replace the corresponding property (same name) in the parentcollection. Items in the parent collection are matched by primary key of the child collection.

2.1.2 List Append Merge Interceptor

class System.Config.Merge.ListAppendMerge : IConfigMergeInterceptor {}

The List Append Interceptor (LAM) simply clones the parent config collection and appends the items in the child collection to the end of the first collection.

2.1.3 List Prepend Merge Interceptor

class System.Config.Merge.ListPrependMerge : IConfigMergeInterceptor {}

The List Prepend Interceptor (LPM) is a variation of the List Append Interceptor in that it inserts the items from the child collection before the items in the parent collection.

2.1.4 List Merge Interceptor

class System.Config.Merge.ListMerge : IConfigMergeInterceptor {}

The List Merge Interceptor (ListM) can be used to compute a list of items via additions and removals across the node hierarchy.

It allows items to be permanently added and removed (i.e. no subsequent configuration collection can add the item back in or remove it). This functionality is referred to as “AddFinal” and “RemoveFinal”.

A configuration collection can also declare the entire collection as “final”, disallowing any additions and removals in subsequent collections.

A configuration collection can also clear all previous items in the collection.

A good example of a collection that uses ListM is the WIT/XSP ScriptMap collection: the collection is a list of tuples of file extensions and handler module names, i.e. [*.ASP, ASP.DLL],[*.XSP, XSP.DLL]. Any config file across the hierarchy of a node can add a tuple to the list inherited from the parent, remove a tuple from the list, clear the entire list or make an addition/removal from the list final.

The ListM relies on the following naming conventions for properties in the collections:

2.1.4.1 Source Collection

If removal of items (or any form of final) is required, the collection that contributes the source configuration information must contain a directive property as listed below. Of no such property is defined (currently: if the property at index 0 is not of type int or the value is not in the range indicated by the enumeration below), the items in the source collection are treated as if an “Add” directive had been specified.

The collection must define a unique primary key; the list merge interceptor uses the primary key to replace entries that might have been defined in a parentconfiguration collection when an item is added/removed by the child collection.

2.1.4.1.1 “Directive” property

The Directive property must at property index 0 and must be an enumeration type with the following values:

enum ListMergeDirective {

Add

= 0;

Remove

= 1;

AddFinal
= 2;

RemoveFinal
= 3; // not yet supported

Clear

= 4; // any other properties in this item are ignored

Final

= 5; // any other properties in this item are ignored

}

 Later, we need to drive this off of wiring/schema information instead of assuming column 0.

If no Directive property is defined (= the type of property 0 is not int) or the value is not in the proper range, the ListM will assume “Add” semantics.

2.1.4.2 Merged Collection

If any form of final semantics (AddFinal, RemoveFinal or Final) is required, the resulting merged collection must be able to carry the corresponding information, so that during merge of child nodes the final information is available to the ListM interceptor. For this purpose, the following property must be defined in the merged collection:

 How do we prevent “RemoveFinal” items to show up in the collection returned to the caller? It would be ugly if the runtimes had to filter this. For now we simply don’t support “RemoveFinal”…

2.1.4.2.1 “Directive” property

The Directive property must be at property index 0. It must be an enumeration type with the ListMergeDirective values defined above. The ListMerge will only write Add, RemoveFinal, AddFinal and Final into the merged collection, to avoid that consumers need to filter out any “Clear” or “RemoveFinal” values A “Clear” directive in the source collection will be processed by removing the item(s) from the merged collection. A “Remove” directive in the source collection will be implemented by removing or simply not adding the item to the merged collection.

If the directive property is not of the proper type, the ListM will not allow any Final, AddFinal or RemoveFinal directives.

 Does the ListM need to read the schema to figure out if the “Directive” property is defined? No, for now it just looks at the type of column 0… Need to fix this later.

3. Configuration Manager Implementation Notes

The configuration manager invokes a Merge Coordinator Interceptor (MCI) as one of the interceptors in the “Read” stage. This interceptor is special in that

a) the configuration manager transparently invokes it whenever it finds a merge interceptor in the wiring info

b) it used a different Read method that allows it to add intermediate results to the configuration manager’s cache.

 There is currently no requirement to make the merge coordination itself pluggable. However keeping most of the special logic out of the core config manager enables us to be more flexible in the future.

The MCI uses the list selector that it receives – typically as the output of a hierarchy interceptor - to invoke a merge interceptor.

The MCI knows (from the wiring information, which it retrieves from the RequestContext) which merge interceptor to invoke for a given ConfigType. It assumes that the selector being processed is a list interceptor, which contains UrlUncSelectors of a cached parent config node and UrlUncSelectors indicating the child config infos to be merged into the cached config node.

The MCI implements the following variation of the IConfigReadInterceptor interface:

interface System.Config.IConfigReadInterceptorWithIntermediateResults {

 Object
Read(

String ConfigType,

Selector Selector,

LevelOfService LoS,

Object PreviousConfig,
// for chained interceptors: config read by previous

// interceptor. NULL for store interceptors

RequestContext rq
// see below.

);

}

class System.Config.Interceptors.RequestContext {

void ReturnIntermediateResult(String ConfigType, Selector sel);

// Used by merge interceptors that process merges of multiple nodes in a single

// Read calls: the result for the nodes are treated as if they had been returned

// from the Read methods, i.e. the ConfigManager calls Validate interceptors, adds

// them to the cache etc.

// This is not a public method on the config manager to prevent arbitrary code

// from adding invalid/malicious config into the cache.

// The config manager also maintains private state for the request in this class

// to avoid rereading of this state (Example: Wiring info for the config type).

}

The MCI obtains the cached parent config collection from the cache, using the URL part of the first UrlUncSelector in the list selector. In addition to the parent config collection, the cache entry contains a list of files that have contributed to the config collection.

 Should the MCI really know about the cache entry? Should the file list be handled inside the RegisterIntermediateResult method in the config manager? Do we need to pass in a file list or do we use a UrlUncSelector?

If no cache entry is found for the parent URL, the MCI attempts to Get a config collection for the UNC part of the first UrlUncSelector, first for the merged collection (= requested collection), and if this request fails for the “source” collection. If both read attempts fail, the MCI fails the read method.

The MCI then iterates over the subsequent child UrlUncSelectors, requesting the source configuration information. The ConfigType to be used for the child config requests selectors in the list selector is different from the requested config type: in many scenarios, that “source” configuration at a given node has a different schema from the “merged” configuration, i.e. it may not contain the location information in the hierarchy (URL property) or other computed or derived properties. The config manager determines the second “source” ConfigType by a naming convention: it appends “_cfg” to the requested ConfigType. The Ducttape “APPS” collection for example is generated by reading the source data from the “APPS_cfg” collection.

 This should be part of the wiring info.

For each child config node, the config manager reads the source child config collection using the UNC part of the UrlUncSelector, invokes the merge interceptor’s Merge method, passing in

· the current parent config collection,

· the source child config collection,

· the URL part of the UrlUncSelector as the TargetSel parameter and

· the UNC part of the UrlUncSelector as the ChildSel.

The merge interceptor returns a new, merged config collection from the merge interceptor (usually by cloning the (read-only) parent config collection and adding to it).

It then adds the merged config collection and the child node’s config file path to the config cache, indicating the cache entry corresponding to the parent’s node.

The config manager continues iterating over the child nodes by using the obtained child config collection as the new parent config collection.

4. Migration of XSP Config Factories

XSP Config Factories typically have the following structure:

ConfigurationOutput Create(Object parent, ConfigurationInput input[], String path) {

Result=parent.Clone();

// Read config through input (XML cursor)

// Merge child config into Result

return Result;

}

Migrating a Config Factory to the Config System requires the following steps:

1) Define a schema for the source config collection (input) and – if different - merged config collection (output).

2) If the standard config collection/item implementations are not sufficient (i.e. custom data structures are required etc.): implement IConfigCollection and/or IConfigItem.

3) Change the method signature from “Create” to “Merge (…)”

4) Change the Merge method as follows:

Object
Merge(
Object parent, Object child,

String ConfigType, Selector TargetSel, Selector ChildSel

LevelOfService LoS) {

Result=parent.Clone();

// Read config through input (config collection)

// Merge child config into Result

return Result;

}

 What about the ConfigOutput.Default vs. Local properties? Do we need to support this? For now: either use Final semantics in parent or custom merge interceptor.

5. Open Issues

In addition to the issues outlined throughout the document, the following items require further attention:

6. Revision History

October 19, 1999
Rev 0.1 (MarkusH): Created.

October 20, 1999
Rev 0.2 (MarkusH): Fleshed out implementation details: Moved some of the merge functionality into the config manager to avoid recursion. Simplified merge interceptors to take two config collections (read by the config manager) as input.

October 22, 1999
Rev 0.3 (MarkusH): Changed hierarchy manager to return list of UrlUncSelectors, with node URL and node config file UNC. No RequestURL is added at the beginning of the list selector. Added IConfigMergeInterceptor interface. Clarified merge interceptor section, added class skeletons. Updated XSP migration section. Changed config manager implementation section to Merge Coordinator Interceptor. Added UrlUncSelector class.

October 25, 1999
Rev 0.4 (MarkusH): Change MCI section back to config manager implementation section. Moved UrlUncSelector class to Hierarchy Interceptor section. Clarified cache file list management.

November 2, 1999
Rev 0.5 (MarkusH): Incorporated initial feedback/issues: “file coordinates” in cooked collection; source vs. unmerged vs. merged terminology; clarify parent vs. source vs. child terminology; config for child specified in parent node;

Page 10 of 10

