IIS XML Metabase - Edit while running
Application Center 2000
Microsoft Confidential

	Author
	Omar Kouatly

	Area
	Config

	Feature
	Edit while running

	Program Management Contact
	Omarko

	Development Contact
	VarshaJ

	Test Contact
	JanainaG

	Docs Contact
	

	Priority
	

	Current Status
	In progress

	Last updated
	10/28/2000

21
Overview

22
Scenarios

22.1
Open XML file “in the morning”, save after API changes

22.2
Change a value in XML after delete through API

23
Implementation Approach

23.1
Edit while running components

33.2
Enabling / Disabling Edit While Running

33.3
File Updates

43.4
Interaction of File updates AND API updates

43.5
Writing the metabase.xml file

53.6
Shutdown/Startup

53.7
Behavior when Edit While Running is DISABLED

53.8
IIS Backup / Restore

54
Revision History

65
Rejected Topics

Overview

This document describes the implementation of support for updates to the metabase XML file, while the server is running. Thanks to Windows 2000 file change notification, this optional feature in IIS6 will allow users to make configuration changes via the text file while IIS is running and have them immediately applied.

1 Scenarios

1.1 Open metabase.xml file “in the morning”, save after API changes

This is the driving scenario for the implementation approach: the MB contains values that reflect the running state of the server. Also, programmatic changes can occur frequently at runtime (WebDAV etc.).

Users typically keep files open for extended periods of time; when saving the old snapshot of the file, they would unintentionally overwrite any MB changes that occurred during this time.

The implementation approach addresses this by always comparing the user’s file changes against the snapshot that the user started out with, using a version/change # in the XML file to identify the proper snapshot.

1.2 Change a value in XML after delete through API

Administrators may make changes via direct text entry at the same time applications are making changes via metabase APIs. This scenario may occur when near simultaneous changes are made to the metabase that effect the same key or metabase hive. Edit while running needs to gracefully handle this situation. Described in section 3.4 below.

1.3 Multiple people editing metabase.xml file

It is possible for multiple people to edit the metabase.xml file. However, this is a scenario we do NOT support. The problem is that if two or more people open the SAME metabase.xml file (which implies the same major version number) edit while running has no way to determine which user’s edits should be diffed. The result would be the user that saves the file LAST will have their changes committed and will cause the first users changes to be removed.

2 Implementation Approach

The high level implementation of Edit while running is as follows:

· Edit while running works by using Windows 2000 file change notification to received alerts when the metabase file has been edited.

· Once the system detects the metabase has been edited IIS will compare this file to its corresponding “History” file of the same version that is stored in the History directory

· IIS will diff the two files to pick up ONLY what was changed in the most recent edit

· IIS will then formulate the appropriate API commands to apply these changes to the in-memory metabase.

· The file the user just edited copied to the History directory and it’s minor version is incremented to permit succeeding edits to the same version of the file to work correctly (i.e. diff only new changes).

· Whenever IIS saves it’s in-memory metabase values (via SaveAllData described later) it creates a new historical file.

2.1 Edit while running components

The following files, directories, and metabase parameters are the components of Edit while running:

· There is a “metabase.xml” file that is freely editable by users. The metabase can be configured to keep the metabase.xml file locked (just like today), to address security concerns of some customers.

· Default location is %windir%\system32\inetsrv. File is called metabase.xml.

· Each metabase.xml file contains a top-level metabase key “VersionNumber” that is a 32bit value designating the Major version number of the file.

· Historical copies of the metabase.xml file are stored in the %windir%\system32\inetsrv\history directory.

· History files are named “metabase.xml.<major version>.<minor version>

· The metabase contains the following keys (defined later)

· EnableEditWhileRunning

· MaxHistoryFiles

2.2 Enabling / Disabling Edit While Running

· Edit while running is enabled by setting the metabase property: EnableEditWhileRunning to TRUE (1). If this property is set via editing the metabase.xml file, since Edit while running is NOT on the web service will have to be stopped to facilitate picking up this change. Alternatively, it may be activated via the UI or via the XXXXXXXXXX (Varsha?) API call.

· Disable Edit while running by setting EnableEditWhileRunning to FALSE (0).

· The default setting is FALSE (0).

· Control the number of History files to retain with the MaxHistoryFiles property. This defaults to 10. Disable history by setting this to zero (0). This also will disable Edit While Running since there will be no history files to create differences with.
· Note: the EnableBackup metabase key should be eliminated – MaxHistoryFiles = 0 has the same effect. When MaxHistoryFiles = 0, this also implies EnableEditWhileRunning= FALSE

2.3 File Updates

· When a change notification on the metabase.xml file is received, the config system:

· Finds the saved, historical XML file that corresponds to the major version# in the metabase.xml. If the corresponding version is not found (or is invalid), the changes made in the metabase.xml will not picked up (eventlog entries will written warning the user of this).

· Computes the differences between the latest minor version of the same major version and the current XML file. As an optimization, if the file change timestamps are identical, the config system will assume there were no updates in the file. This computation obtains a list of updates, insertions and deletions.

 What are the triggers for File Change notification?

· We apply the changes (as determined above) to the in-memory metabase image through MB APIs. When the value being changed already exists, the change will be made via an Update. If the change is to add a key/value that does not already exist, an Insert will be used. When the difference is the absence of a key/value, a Delete is generated.

· Because Edit while running functions by applying DIFFERENCES only, if a user intends to completely replace the entire metabase with a new metabase.xml file, they must stop the IISAdmin service, replace the metabase.xml, and then restart IISAdmin.

· Similarly, if a user intends to restore an old version of the metabase, this is accomplished in the same manner as replacing the entire metabase.

· If a new file contains any errors (not well-formed xml or invalid metabase schema), the entire file is copied to the History directory and append _error to the file name. If a file of the same name already exists in the subdirectory, the new file is renamed by appending the string “_error” and an incrementing integer number to the root name of the new file (i.e. metabase_error1.xml). An error is writing to the event log and metabase.xml is restored by calling SaveAllData. (Varsha are we going to do this?)
· If the same version of metabase.xml is modified multiple times, each SaveAllData will create a new, incremented minor version of the history file. This allows continuous edits of the same file to be done and provide the user a history of their edits to the same “major” version. For example:

· Version 1 (Metabase.xml

· History of version 1 (Metabase.xml.00000000000000001.00000000

· Edit Metabase.xml and save (but don’t close file)

· New history file (Metabase.xml.00000000000000001.00000001

· Edit Metabase.xml and save (but don’t close file)

· New history file (Metabase.xml.00000000000000001.00000002

· Close file, force a SaveAllData

· New history file (Metabase.xml.00000000000000002.00000000
· If the metabase.xml is write locked (i.e. open for write fails), write the history file and log an error to the event log. Varsha: Do we retry, if so, how many times?
· Major and minor History version numbers are generated by looking in the history directory for the largest existing major and/or minor number. This prevents history files from being overwritten if a user restores an old history file.

· In the case where a user and IIS may be saving the metabase.xml file simultaneously, it would be possible for the user’s changes would be overwritten. To avoid problem, when SaveAllData is about to rename metabase.xml, write lock metabase.xml, diff it with the latest history version. If there are any diffs it means that the file has changed, do not rename it. When this happens, we should send ourselves a file change notification, just incase the NT file change notification fails.
2.4 Interaction of File updates AND API updates

· If user changes a value, but a containing hive (site) has been deleted, the update must be ignored to avoid MB corruption. An error to this effect is reported to the error log.

· If a user attempts to write a script that changes to the metabase.xml file AND applies API changes a race condition between API changes and file changes exists. This is because if a single script does both API and text changes, due to file change notification semantics the text changes are picked up after the API changes, and not in the order they were performed. We will document that a single script should not mix updated of text and API.

2.5 Writing the metabase.xml file

· Many changes can be made via the metabase APIs without triggering a flush of the metabase. However, once IIS decides to write the metabase to disk, the following actions are taken via SaveAllData:

· Locks the in-memory metabase (just like today).

· Writes a new metabase.xml file with an incremented version# to the History directory.

· Unlocks the metabase. Note that this minimizes the impact on the running server and preserves current (IIS5) metabase flush semantics.

· Verifies that metabase.xml

a) is not write locked.

b) Does not contain any pending changes.

· If either a) or b) fail: done – assuming that a file change notification has been or will be sent; do not update metabase.xml at this time!

· If the file is write locked, there are cases where a change notification might not be sent (if for example the user doesn’t modify the file after all). In this case, metabase.xml may remain out-of-date for an extended period of time. The config system logs an error to the event log indicating this condition. Also, on shutdown, the configuration system will verify that metabase.xml is up-to-date and attempt an another update if it is out-of-date.

· If metabase.xml is not write-locked and does not contain pending changes: copy the saved version of the XML file over metabase.xml.

· If a pending file change notification is received during a SaveAllData operation, do not overwrite (rename) metabase.xml. To minimize the time window the check for file change notification should be done just prior to overwriting metabase.xml. See file update spec in 3.3 regarding closing this window.

· SaveAllData is triggered either programmatically or automatically. Automatic trigger is based on, if via APIs 50 changes are made or 5 minutes elapses once an API change has been made.

2.6 Shutdown/Startup

· On shutdown:

· No special code: “SaveAllData” flushes any pending changes as above.

· If no MB in-memory changes are pending: Verify that metabase.xml is up-to-date; if not, attempt to copy latest (“latest” based on latest time-stamp) private metabase file to metabase.xml. This addresses the case were the public file was write-locked during a previous metabase cache write (SaveAllData), but the file was not changed.
· When Edit while running is enabled, metabase.xml is marked with a Read-Only file attribute to prevent users from inadvertently updating the file. The read-only attributes remains until IIS is restarted or the user manually overrides the attribute.

· On startup:

· The config system read the metabase.xml on startup. No diffing with history files is done. If edit while running is enabled we will remove the read-only file attribute from metabase.xml.

· If metabase.xml is unable to be parsed and read successfully, log an error, copy the file to the error directory, and do NOT start IISAdmin.

 WAM application synchronization needs to be done (and Front Page change notification) – need to call Restore API to notify WAM apps.

· The number of history files to be kept is configurable via the MaxHistoryFiles metabase key. When the number of history files exceeds the configured number, old (“old” based on time stamps) history files are cleaned up lazily.

2.7 Behavior when Edit While Running is DISABLED

· On Startup

· Read metabase.xml.

· If the metabase.xml file is unable to be parsed and read successfully, log an error, copy the file to the error directory, and do NOT start IISAdmin.

· Take a Write Lock on metabase.xml file, fail startup if write lock can not be obtained
· On Shutdown

· No special code: “SaveAllData” flushes any pending changes as above.

· Remove Write Lock on metabase.xml file
· On file change notification

· Should not be able to happen due to write lock
2.8 IIS Backup / Restore

· Edit while running is compatible with the IIS Backup / Restore APIs and UI.

3 Revision History

April 20, 2000
Rev 0.1 (MarkusH).

April 24, 2000
Rev 0.2: Incorporated spec review feedback: change log at beginning of file, error directory, detailes on handling of locked files.

June 19, 2000
Rev 0.3: Addressed feedback from prior meeting based on input from VarshaJ (OmarKo).

July 10, 2000
Rev 0.4: Incorporated corner case review feedback

July 21, 2000
Rev 0.5: Updated “On Startup” logic

August 7, 2000
Rev 0.6: Corner case review feedback

September 20, 2000
Rev 0.7: feedback from Janaina and Rajesh

October 28, 2000
Rev 0.8: reformatted to be more “spec like” and incorporated feedback from Janaina

November 24, 2000
Rev 0.9: fix up versioning descriptions to include reference to SaveAllData

4 Rejected Topics
This section of the specification lists topics that were considered but the team has rejected. This provides a historical record that will aid in bringing new team members up-to-date and help defend/support the teams current thinking in the spec.

	Date
	Topic
	Reason rejected

	10/28/2000
	Changes are logged to the event log and to a separate text log file. These change logs allows users to verify that their changes have been accepted using only text-based tools such as telnet and event based tools like Application Center

	. (Varsha – are we doing this for all changes, or just errors?)

	
	 This needs to be added as a separate feature – which spec does it belong in?

· Optionally, customers have requested that even if no changes are made to the metabase.xml file or via the API that history files be generated on a scheduled basis.

· Schedule options should include:

· Daily at hh:mm

· Weekly on ddd hh:mm

· Scheduled history files allows admins to say “I know the site was working last Thursday” and regardless if any changes in the metabase were made, a history file would exist.

· If a scheduled history can not be made, log an error to the event log.

	

	
	SaveAllData was originally speced to be triggered each time the system processed EWR change notification. It will no longer do this automatically.
	We are making SaveAll Data more configurable.

	
	
	

	
	
	

	
	
	

Page 4 of 7

