IIS XML Metabase - Update while running
April 24, 2000, Draft Rev 0.2, Markus Horstmann
This document describes the implementation of support for updates to the metabase XML file, while the server is running.

11.
Scenarios

11.1
Open XML file “in the morning”, save after API changes

11.2
Change a value in XML after delete through API

12.
Implementation Approach

12.1
File Updates

22.2
MB API updates

32.3
Shutdown/Startup

33.
Revision History

1. Scenarios

 Need to flesh these out/add customer scenarios! FTP, script etc.

1.1 Open XML file “in the morning”, save after API changes

This is the driving scenario for the implementation approach: the MB contains values that reflect the running state of the server. Also, programmatic changes can occur frequently at runtime (WebDAV etc.).

Users typically keep files open for extended periods of time; when saving the old snapshot of the file, they would unintentionally overwrite any MB changes that occurred during this time.

The implementation approach addresses this by always comparing the user’s file changes against the snapshot that the user started out with, using a version/change # in the XML file to identify the proper snapshot.

1.2 Change a value in XML after delete through API

See below.

2. Implementation Approach

· The metabase XML file contains a version number that is incremented every time the MB is saved (likely the existing MB version number).

 Probably can’t use the existing MB change number (DWORD, rollover!).

· There is a “public metabase file” that is freely editable by users. The metabase can be configured to keep the public metabase file locked (just like today), to address security concerns of some customers.

 Should the location still be %windir%\system32\inetsrv?

 Should the file be called metabase.xml?

 Should the location be configurable?

· The config system keeps copies of previous metabase XML files around (“private metabase files”). These private backups will not be documented (as “last-known good” configurations or similar), because a) they get created at arbitrary (for the user) times and b) the system needs to modify them as users perform updates (see below). “Last-known good” is a separate feature that needs to be covered in the overall IIS configuration specification.

2.1 File Updates

· When a change notification on the public XML file is received, the config system:

· Finds the saved, private XML file that corresponds to the version# in the public XML file. If the version is not found, the new file is not picked up (eventlog entries written etc.).

· Computes the differences between the main XML file and the previously saved XML file. As an optimization, if the file change timestamps are identical, the config system will assume there were no updates in the file.
 This computation obtains a list of updates, insertions and deletions.

 MichTh: if a user changes a value, but a containing hive (site!) has been deleted, the update must be ignored to avoid MB corruption.

 (MichTh) What is the cost of diffing for larger files? Not a blocking issue, but need to tell customers up to what MB size text editing is reasonable (or split the file)!

 (MichTh) There is a race condition between API changes and file changes: if a single script does both API and text changes, the text changes are picked up after the API changes, and not in the order they were performed. We can try to reduce this window by checking node change timestamps, or customers have to force a flush of the metabase and wait to the update of the public MB file? This may not be too big of an issue if we document this prominently (don’t mix updated of text and API)?

· A user can indicate in the file that he/she intends to replace the entire metabase (by explicitly removing the version # from the file). In this case the MB is locked, flushed and the diff is computed against the latest, private version.

· Applies the changes to the in-memory metabase image (through MB APIs). For updates, the value must already exist. For inserts, the key/value cannot already exist.
A metabase flush is triggered after all changes have been applied and before the backup file is modified. This reduces the time until the user can obtain an up-to-date public metabase file that includes any other potentially pending MB API changes. It also ensures that no user changes get lost in case of a crash during this process.

· Log the changes at the beginning of the public metabase file: both successful updates (only time, not individual data!) and any errors are captured. This change log allows users to verify that their changes have been accepted using only text-based tools.
The maximum size of the log can be configured through a metabase value.

 What is the name/location of this global metabase value?In the W3SVC or LM hive?

 Should we keep this log in a separate file? Preference seemed to be to include it in the file itself to avoid file system clutter.

· If a new file contains any errors, the entire file is copied to an “Errors” subdirectory under the directory containing the public metabase file. If a file of the same name already exists in the subdirectory, the new file is renamed by appending the string “_conflict” and an incrementing integer number to the root name of the new file (i.e. metabase_conflict1.xml).

· Applies the changes to the corresponding back up file. This allows continuous edits done by the same user. It does cause problems when multiple users open (and save) the same initial file version, but multi-user scenarios are not the driving factor behind this feature: other “workflow” procedures must exist, just like for any other content file.
An alternative implementation would have been to actually write a new private file for the same version number and use file change timestamps to attempt to match user edits to the proper version; however the marginal improvement in some multi-user scenarios does not justify the additional complexity/disk space usage.

· If the public metabase file is locked (i.e. open for read fails), the change notification listener needs to wait for the file to be unlocked.

 How long do we wait? This is different from the case when the file is write-locked during SaveAllData…

2.2 MB API updates

· When a change to the in-memory metabase image occurs (“SaveAllData”), the config system

· Locks the metabase (just like today).

· Writes a new XML file with an incrementing version# to a “private” location.

· Unlocks the metabase. Note that this minimizes the impact on the running server and preserves current (IIS5) metabase flush semantics.

· Verifies that the public metabase file

a) is not write locked.

b) Does not contain any pending changes.

· If either a) or b) fail: done – assuming that a file change notification has been or will be sent; do not update the public metabase file at this time!

· If the file is write locked, there are cases where a change notification might not be sent (if for example the user doesn’t modify the file after all). In this case, the public metabase file may remain out-of-date for an extended period of time. The config system raises an event indicating this condition. Also, on shutdown, the configuration system will verify that the public metabase file is up-to-date and attempt an update.

· If the public metabase file is not write-locked and does not contain pending changes: copy the saved version of the XML file over the public metabase file.

2.3 Shutdown/Startup

· On shutdown:

· No special code: “SaveAllData” flushes any pending changes as above.

· If no MB in-memory changes are pending: Verify that the public metabase file is up-to-date; if not, attempt to copy latest private metabase file to the public metabase file. This addresses the case were the public file was write-locked during a previous metabase cache write (SaveAllData), but the file was not changed.

· On startup:

· The config system uses the latest “private” version as the master copy on startup.

· Before the web server (WAS) can start, any changes in the public metabase file must be applied.
To optimize startup time, the config system will look at the file change timestamp and only test to pending updates if the timestamp is different from the previous timestamp.

· Old snapshots of XML files are cleaned up lazily. The number of XML to be kept around is configurable.

3. Revision History

April 20, 2000
Rev 0.1 (MarkusH).

April 24, 2000
Rev 0.2: Incorporated spec review feedback: change log at beginning of file, error directory, detailes on handling of locked files.

Page 1 of 3

