

Management APIs for .Net Frameworks Configuration
January 11, 2001, 2000, Draft Rev 0.8

Markus Horstmann
This document describes the Management APIs for .Net Frameworks configuration, including the .Net Frameworks Configuration WMI provider and the System.Management APIs as applied to configuration information.

TOC \o "1-3"
1.
Introduction
2
1.1
Goals
2
1.2
Non Goals
3
2.
WMI provider for .Net Framework Configuration
3
2.1
MSINTERNAL: Schema definition format
3
2.2
Class Mapping for configuration information
3
2.2.1
Data type mapping
4
2.2.2
Class naming
5
2.2.3
Relations and Associations
5
2.2.4
Qualifiers
5
2.3
Singletons [MSINTERNAL]
6
2.4
Collections without Primary Key
6
2.5
Configuration without schema
6
2.6
Enumeration & Query
6
2.7
Batch update
6
2.8
Selectors
7
2.8.1
Web Application Selector (IIS://)
7
2.8.2
Shell Application Selector (shell://)
8
2.8.3
Configuration File Selector
8
2.8.4
Well-known configuration files
8
2.9
Location element
9
2.10
Merging and Merge Hierarchies
9
2.11
Application Enumeration
9
2.11.1
Base classes
9
2.11.2
Web Applications
11
2.11.3
Web Directories
13
2.11.4
WebApplicationToIISDirectory/VirtualDir/ServerAssociator
15
2.11.5
WebApplicationToAssemblyAssociator
15
2.11.6
Shell Applications
15
2.11.7
Assembly enumeration (cut)
16
2.11.8
Custom Hosts
17
2.12
Miscellaneous
17
2.13
General Provider requirements
17
2.14
Platform Support
17
2.15
Setup Requirements
17
2.16
Globalization
17
2.17
Performance
17
2.18
Testing
18
2.19
Globalization/Localization
18
3.
Specific schema
18
4.
Samples
18
4.1
System.Management
18
4.2
Scripting
18
5.
Postponed Features
18
6.
Open Issues
18
6.1
Implementation issues
19
6.2
Murat’s analysis:
Error! Bookmark not defined.
7.
Revision History
19

Note: This document is an early release of the final specification. It is meant to specify and accompany software that is still in devel​opment. Some of the information in this documentation may be inaccurate or may not be an accurate representation of the func​tionality of the final specification or software. Microsoft assumes no responsibility for any damages that might occur either directly or indirectly from these inaccuracies. Microsoft may have trademarks, copyrights, patents or pending patent applications, or other intellectual property rights covering subject matter in this document. The furnishing of this document does not give you a license to these trademarks, copyrights, patents, or other intellectual property rights.

1. Introduction

The .Net Framework consists of several, tightly integrated and interdependent technologies:

· Common Language Runtime (CLR)

· Class Libraries

· ASP+

· Web Services

· Net Classes

All these technology areas have configurable properties, which are specified in XML configuration files.

The different areas use different mechanisms to read their configuration information at system runtime, but a single management APIs allows uniform, programmatic access to all .Net Framework configuration information.

The Application Center Configuratiom Management team owns this management API. It and consists of the following building blocks:

· A native code WMI provider: this provider is schema driven and maps the XML configuration information and the configuration file hierarchy to WMI classes and instances. The provider is developed by the Application Center Configuration Management team, and is described in detail in this specification.

· A managed code API to access all WMI information (System.Management): this API was designed as a collaborative effort between the WMI team, the Frameworks team and the Application Center team. It is developed by the WMI team and is described in detail in the System.Management specification. This specification contains sample code describing the use of System.Management for managing configuration information.

1.1 Goals

· Provide a management API for all .NET Frameworks configuration information.

· Enable Management Application for configuration information to be written in both native code and managed code.

· Enable management of configuration information through command line scripts.

· Allow discovery of applications and configuration files through the management API.

· Allow reading and writing of configuration information.

· Provide basic consistency validation of configuration information during read and write.

· Provide a management API for user defined application settings (as offered by the <appsettings> mechanism in the Framework configuration system, and potentially for a set of well-known section handlers).

 MarkusH: Beyond the dictionary section handler there need to be other reusable section handlers (singleton and collection of singleton). We can make this a sample, but ideally this should be part of the Framework configuration system offering.

1.2 Non Goals

· Provide a high-performance API for accessing configuration information at system runtime. This requirement is partially covered by the Framework configuration system (read-only in V1).

· Provide a general-purpose mechanism for application settings. This requirement is partially covered by the section handler mechanism of the Framework configuration system. The management API should allow management of a well-defined subset of application settings.

2. WMI provider for .Net Framework Configuration

The WMI provider for .Net Framework Configuration exposes configuration information and configuration file hierarchy to WMI classes and instances.

[MSINTERNAL]

The class mapping is almost entirely schema driven, but the schema is not publicly extensible: only MS internal groups can define schema and all schema is compiled into the WMI provider binaries. This approach makes it easy to add new configuration entries and modify existing configuration definitions without having to change any code.

The schema is defined in a special purpose XML format, that is easier to manually author and maintain than XML schema (XDR and even XSD).

[end MSINTERNAL]

2.1 MSINTERNAL: Schema definition format

tbw: The configuration management team owns the schema definition for the .Net config (urtmeta.xml).

The schema is defined in XML files, which get compiled into the provider binaries (urtcfg.dll) as part of the configuration system build process. A (ms-internal) utility (catutil.exe) exists to modify the binary schema without recompiling the configuration system binaries.

2.2 Class Mapping for configuration information

The .Net Frameworks Config WMI provider defines all schema in the WMI repository.

The configuration system build process generates a MOF file from the configuration schema (and an internal-only MOF template file), which .Net Frameworks setup installs via the MOF compiler utility.

All .Net Frameworks classes reside in the “NETFRAMEWORKSv1” namespace. The namespace is defined in the MOF template file. All non-internal (Metaflag “INTERNAL” on CollectionMeta) configuration tables are exposed into the same WMI namespace, regardless of the database they belong to.

The .Net provider does not support side-by-side installation for incremental builds. For major releases we will version the namespace name by changing the MOF template file. The ProductID used to locate the correct config binary version will also be changed and will typically be the same as the namespace name.

 P2: Currently we read the ProductID as a qualifier from the class definition in the WMI repository. Do we really need to expose this?

This avoids the need for script authors to change their scripts from build to build or minor release to minor release. It is consistent with the general versioning approach in the WMI world.

 MarkusH: We are basing this on the assumption that ASP+ is not s-b-s installable. Need to run this by the .Net people.

 P1: MarkusH: Do we need to support scoping of table names by WMI namespace (or database)? In Beta 1, <Assemblies> and <assemblies> conflicted. Assumption is that there will not be conflicting table names.

2.2.1 Configuration base class

class NetConfigurationClass {

[key] String Selector;

}

 Need the exact schema.

2.2.2 Data type mapping

Schema and data types in the Config system will be mapped to WMI schema and data types as follows:

	Config System Type
	WMI Type

	Collection
	Class

	Item in collection
	Instance

	Property
	Property

	UI4
	Uint32

	String
	String

	Multistring
	Array of strings

	Binary
	Array of uint8’s

	Boolean
	Boolean

	ExpandSZ (environment variable)
	String, becomes a boolean qualifier on the property

	Timestamp
	Datetime

	Primary key
	Key

	Foreign key
	Mapped as a qualifier on the property in the class definition. Property will be mapped to an appropriate property in the WMI class.

	Enumerated types
	Mapped to appropriate data type and VALUE/VALUEMAP pairs

	Relations w/ UseContainment
	Embedded object in the instance

	Relations w/o UseContainment
	Association class

Enumerated types in the config system have a data type, a set of appropriate values and enumerated values that correspond 1:1 with each value. These are to be mapped to the appropriate data type, VALUEMAP and VALUE qualifiers in WMI. For example:

In the config system:

<Property InternalName="Zone" Type="UI4" MetaFlags="">

<Enum InternalName="MyComputer" Value="0" />

<Enum InternalName="Intranet" Value="1" />

<Enum InternalName="Trusted" Value="2" />

<Enum InternalName="Internet" Value="3" />

<Enum InternalName="Untrusted" Value="4" />

</Property>

In WMI:

uint32 Zone;

[VALUEMAP { “0”, “1”, “2”, “3”, “4”}, VALUES {“MyComputer”, “Intranet”, “Trusted”, “Internet”, “Untrusted”}]

 MarkusH: Is there a better way to expose enums in WMI? What support does System.Management have for the VALUEMAP qualifiers (if any)?

 MarkusH: Do the Frameworks config APIs define enumeration values for some of these entries?

2.2.3 Class naming

WMI class names are generated from the public name of the collections. WMI class names should be case-preserving from the original config system collection name.

 Should we change the capitalization etc. to comply with WMI conventions? It seems that config files will use camelCasing. Could we could just make the first character UPPERCASE or do we need more complex mappings (name prefix?)?

The config system adopts WMI naming restrictions and case-insensitivity so the provider does not perform any significant translations of schema names between config system and WMI. The following naming restrictions are be enforced in the schema compilation utility:

· A WMI name must start with a letter

· Cannot have leading or trailing underscores

· Only contains letters, digits and underscores as part of the name

· WMI names are case-insensitive

· Primary keys can not be Arrays, Real and floating-point numbers, Embedded objects or characters lower than ASCII 32 (that is, white space characters).

 P2: StephenR: Does this need to be implemented in catutil?

2.2.4 Relations and Associations

Relations without a “UseContainment” statement are equivalent to an unnamed association definition. The name of the association that is created will be built from the names of the two collections that the Relations definition specifies.

1:N relations in the configuration system are supported by supplying a partial primary key as the foreign key. These need to be mapped appropriately to 1:N associations in WMI.

 P1: MarcelV: Are we doing the right thing here?

2.2.5 Qualifiers

2.2.5.1 Description qualifier

The configuration schema allows a “Description” to be defined for tables (“TableMeta.Description”) and columns (“ColumnMeta.Description”). The MOF generator generates a MFL files (MOF files for localization) that contains description qualifiers for the EN locale. The main MOF file does not contain description qualifiers. Localization teams can then pick up the EN MFL and localize it to other languages. This is the standard WMI localization process.

2.2.5.2 DisplayName qualifier

 Would be nice to support, but is a lower priority.

2.2.5.3 Units qualifier

 Nice to have, low priority.

2.2.5.4 Password qualifier

 Should we tag passwords? Mark them as write only?

2.2.5.5 Read/Write qualifiers

Read and write qualifiers will be placed by default on all classes. There is no way to detect which classes are read-only vs. read/write from the config system. For .Net all classes are read/write, so this is not a requirement for the .Net provider.

2.3 Singletons [MSINTERNAL]

The provider and MOF generator introduce a “Selector” property to all defined configuration classes. The provider maps the Selector property to the special “File” query cell where appropriate.

 Ideally, singleton collections should be handled inside the config system by introducing a “Selector” property on all .Net config classes, so that the provider does not have to do any special work. Due to schedule constraints we leave the current implementation, with the hope of doing code cleanup later, or at least for V2.

2.4 Collections without Primary Key

Multi-instance collections without keys are not required for .Net Framework configuration.

2.5 Configuration without schema

 P3 (cut): Need to provide access to raw XML if no schema is available for a configuration node (browsercaps, custom section handlers and potentially custom permissions).

2.6 Enumeration & Query

The provider does not support class enumeration for any configuration class, as this would require enumeration of all configuration files on the machine, which is not useful/practical.

The provider supports retrieving instances by key on any class supplied by the provider.

The provider supports simple WQL queries but leaves more complex queries to CIMOM to post-filter.

 MarcelV: WMI only supports returning a super-set of the requested result set (which it them filters). This means that we have to at a minimum parse out the Selector property for every supported query. Can we do this?

The provider supports writing of instances. There are no read-only classes.

The provider supports creating of instances.

The provider supports deleting of instances.

2.7 Batch update

There will be a special class with a method for batching updates. Signature of the method is as follows:

Class BatchEntry

{

[values{"create", "modify", "delete", "retrieve"}, Description("Batch operation to perform: when create-provide an instance, modify-provide an instance, delete-fill in an object path, retrieve-fill in an object path")]

uint32 Op;

[Description("Instance to be modified or created")]

object Inst;

[Description("Object (path) to be deleted or retrieved. For create operations, BatchOperation::ProcessBatch method returns the path for the instance")]

string Path;

[Description("returns HRESULT of the operation")]

uint32 Status;

};

--

[abstract, description("Expectation that this will be processed in the order in which the method list is specified. Derive from this class and implement the method (per provider)")]

class BatchOperation {

[static]

uint32 ProcessBatch([in, out]BatchEntry BatchList[], [in]uint32 flags);

uint32 BatchCreate[in]object ObjectList[], [in]uint32 flags, [out]uint32 status[], [out]string Path[]);

uint32 BatchUpdate([in]object ObjectList[], [in]uint32 flags, [out]uint32 status[], [out]string Path[]);

uint32 BatchDelete([in]string Path[], [in]uint32 flags, [out]uint32 status[], [out]object results[]);

uint32 BatchRetrieve([in]string Path[], [in]uint32 flags, [out]uint32 status[], [out]object results[]);

};

 P2: MarkusH: We should run this by the WMI team, so that they can update their documentation, and tell people that the batch update is the preferred method of updating data.

 P2: MarkusH: System.Management should also have special support for this, so that we guide people in the right direction for doing multi-updates.

The configuration WMI provider supports multi-updates only of instances of the same class that are written into the same file. Other cases will result in an error.

 P2: Multi-update of different classes for the same file.

 P3: Multi-update of different classes into different files.

2.8 Selectors

Selector modeling all happens in the config system: we add a “Selector” property to every config type. The selector property acts as a symbolic name for a physical file (or multiple files). A set of qualifiers is added to the class that indicates which selectors are supported for this class.

The following selectors are supported:

2.8.1 Web Application Selector (IIS://)

Syntax: IIS://localhost/<metabase path>

The syntax for the Selector is identical to the moniker supported by the IIS ADSI provider, except that

· All Selectors must use “localhost” as the machine name.

· All Selectors must refer to a node at or below the root node of an IIS site (w3svc/<siteid>/root). It is not possible to use the path to the site node (w3svc/<siteid>) as a selector, nor is it possible to use to any metabase path outside of the w3svc node.

Example:

IIS://localhost/w3svc/1/root

Note: This URL is slightly different from the IIS WMI provider approach, which uses only relative paths and models the machine name as a WMI system property (__server), but it is preferable to require the “localhost” string than to define an entirely new URL scheme.

2.8.2 Shell Application Selector (shell://)

Syntax: shell://<UNC path to module>

Example:

shell://c:\program files\my company\myapp.exe

2.8.3 Configuration File Selector

Syntax: file://<filepath>[#<location>]

This filepath portion of this URL represents a configuration file in the file system.

The (optional) location portion represents the Path of a <location> element within a ASP+ configuration file (see <Location> section in the ASP+ configuration specification for details). If no location is specified, the selector only references configuration outside of any <location> element in the file.

The URL is normalized according to RFC1738 rules (using URLMon’s URL manipulation APIs). Specifically:

· Forward slashes (“/”) are supported and converted to backward slashes (“\”) before being passed to Win32 file system APIs.

· File paths containing reserved characters (like “#”) must be encoded using standard URL encoding rules (i.e. “#” must be “%25”).

2.8.4 Well-known configuration files

2.8.4.1 Machine configuration

Syntax: config://localhost

Represents the machine configuration file (%CLR Install Dir%\machine.config).

 MarkusH: What is the registry key/API we can use to determine this location?

 MarkusH: Is there any configuration that can not be specified in machine.config, but can appear in an app/dir/shell app?

2.8.4.2 Machine security policy

Syntax: config://localhost/security

Represents the machine security policy file (%CLR Install Dir %\config\security.config).

 MarkusH: What about enterprise policy (enterprise.config per runtime security admin spec)?

2.8.4.3 User security policy

Syntax: config://localhost/security/user

Represents the user security policy file ((%userprofile%\ application data\Microsoft\CLR security config\vxx.xx\security.config) for the current calling user identity.

Syntax: config://localhost/security/user/<username>

Represents the user security policy file (%userprofile%\ application data\Microsoft\CLR security config\vxx.xx\security.config) for the specified user.

 How do we determine the user profile location on Win9x?

Note: Like in IIS’s ADSI provider, “http:” URL are not supported as there is no reliable/efficient mechanism to resolve them to the proper IIS vdir. Using “http” URLs is also not desirable for management tools/scripts, as the URL mapping can change at any time.

Note: The previously supported “appdomain://” selector is not supported, as there is no mechanism to detect the application domain of the caller (if any) from within the WMI provider.

2.9 Location element

class Location {

[key] String Selector;

[key] String Path;

Boolean AllowOverride;

}

The Location class represents Location sections that can be used in ASP+ configuration files to specify configuration for a child node in the configuration file of a parent node, as well as lock down the configuration of a child node against accidental or malicious changes. Refer to the ASP+ configuration spec for details.

The Location Path property is a relative path indicating the child node to which the section is to be applied. The Path segments must be separated using forward slash (“/”).

Location elements can only be retrieved or written using a file selector. New location sections can be inserted by creating and saving a new instance of the Location class. An entire location section can be deleted by deleting a Location class instance.

Location sections cannot be renamed: the section needs to be deleted and recreated.

Configuration entries can be retrieved or written using the #<location> syntax of the file selector, or by using the association from Location class to configuration classes:

[Association: DisableOverride ToInstance ToSubClass]

class LocationConfiguration: NodeToConfigurationClass {};

2.10 Merging and Merge Hierarchies

tbw

2.11 Application Enumeration

In addition to manipulating configuration files, the .Net Config WMI provider also supports discovery of .Net applications.

The .Net Framework provides three host environments for applications:

· Web Applications: ASP+

· Shell Applications: command line “EXEs”

· Browser hosted “controls”

The .Net Config WMI provider fully supports discovery of Web Applications, and to a lesser extent of Shell Applications.

2.11.1 Base classes

 Need to turn these definitions into valid MOF syntax

2.11.1.1 Applications and Nodes

class ConfigurationNode {

[key] String Selector; // must begin with a URL protocol prefix

}

class Application : ConfigurationNode { // "abstract"

// Selector: must refer to an application node

}

2.11.1.2 Configuration information for a node

 P2: MarkusH: How do we determine which class can be specified at which level (machine vs. app vs. dir vs. file)? Can we use the IIS KeyType? For now assume we don’t enforce these restrictions.

[Association: DisableOverride ToInstance ToSubClass]

class NodeToConfigurationClass {

[key, read: ToSubClass] ConfigurationNode ref Node;

[key, read: ToSubClass] NetConfigurationClass ref ConfigClass;

 What is the real name of the base class of the config classes?

}

[Association: DisableOverride ToInstance ToSubClass]

class NodeToConfigurationClassUnmerged : NodeToConfigurationClass {

}

[Association: DisableOverride ToInstance ToSubClass]

class ApplicationConfiguration : NodeToConfigurationClass {}

class ApplicationConfigurationUnmerged : NodeToConfigurationClassUnmerged {};

2.11.1.3 Configuration Files and Hierarchy

class ConfigurationFile : ConfigurationNode {

// Selector

String Path; // path to the configuration file for this node. UNC path without “file:” prefix.

}

[Association: DisableOverride ToInstance ToSubClass] // “abstract”

class ConfigurationHierarchy {

[key, read: ToSubClass] ConfigurationNode ref ConfigNode;

[key, read: ToSubClass] ConfigurationFile ref ContributingConfigFiles;

 How does one distinguish associations that return collections vs. singletons?

}

[Association: DisableOverride ToInstance ToSubClass] // “abstract”

class ConfigurationFileLocation {

[key, read: ToSubClass] ConfigurationNode ref ConfigNode;

[key, read: ToSubClass] ConfigurationFile ref MainConfigFile;

 How does one distinguish associations that return collections vs. singletons?

}

[Association: DisableOverride ToInstance ToSubClass]

class ConfigurationNodeChildren {

[key, read: ToSubClass] ConfigurationNode ref Node;

[key, read: ToSubClass] ConfigurationNode ref ChildNodes;

}

[Association: DisableOverride ToInstance ToSubClass]

class ConfigurationNodeParent {

[key, read: ToSubClass] ConfigurationNode ref Node;

[key, read: ToSubClass] ConfigurationNode ref Parent;

}

2.11.2 Web Applications

class WebApplication : Application {

// Selector: of the form iis://localhost/w3svc/<siteid>/root/<metabasepath>

String Path; // VDir for the MB path (based on metabase information)

}

The Selector for a WebApplication must have an “iis:” protocol prefix.

The WebApplication class supports instance enumeration, although it is somewhat inefficient: the provider has to enumerate all Sites/Directories in the IIS metabase that have an “approot” property. Note that this enumeration returns both ASP and ASP+ applications, as there is no robust/efficient mechanism to distinguish between ASP and ASP+ applications.

WebApplication instances are read-only, except for creation/deletion of instances:

Creating (and saving) a new instance of WebApplication adds an "Approot" property to the IIS metabase. If necessary it creates a new node in the metabase. If the metabase node is already an “approot”, only the Vdir is changed to WebApplication.Path. The ConfigurationFilePath property is ignored on write.

 MarkusH: Which additional MB entries do we need to create? Do we need to call the WAM APIs? Does ASP+ have any specific requirements as to inproc/oop/pooled?

Deleting an instance of WebApplication removes the node and all its child nodes from the metabase.

Note: The .Net Provider does not provide control over app properties, like inproc/pooled/out-of-proc, app identify. Use the IIS6 WMI provider (or ADSI on W2k) to manipulate these.

2.11.2.1 WebApplication<config class>, WebApplication<config class>Unmerged

Given a WebApplication instance it is common to

a) Retrieve a specific configuration class/section for the application.

b) Determine the set of configuration classes/sections applicable to this type of application

To make these operations easier, the .Net Config provider associates all configuration classes with WebApplication instances via the Selector property (Selector is a key property on all config classes).

The provider offers two associations for each configuration class:

· WebApplication<config class>: returns the merged configuration for this application, including configuration information inherited from parent nodes or the machine configuration file.

· WebApplication<config class>Unmerged: returns only the configuration that is specified in the configuration file for this application.

[MSONLY] The applicable configuration classes for a web application are defined in the configuration schema and are used by the MOF generation utility to generate the class definitions for the associations. The provider is also data/schema driven and additional classes and their associations can be added without recompiling the provider or the configuration binaries.

 MarcelV: Should the provider obtain the association information from the WMI repository (common base class!) or do we want to keep this in binary schema for efficiency reasons? Can we use RelationMeta for this?

[end MSONLY]

To enable efficient enumeration of all applicable configuration classes, all config class associators derive from common base classes:

[Association: DisableOverride ToInstance ToSubClass]

class WebApplicationConfiguration : ApplicationConfiguration {

[key, read: ToSubClass] WebApplication ref Node;

 Can a derived association specialize the type of an inherited reference?

[key, read: ToSubClass] NetConfigurationClass ref ConfigClass;

}

class WebApplicationConfigurationUnmerged : ApplicationConfigurationUnmerged {

[key, read: ToSubClass] WebApplication ref Node;

 Can a derived association specialize the type of an inherited reference?

[key, read: ToSubClass] NetConfigurationClass ref ConfigClass;

};

Examples:

a) Retrieve information for an application

b) Determine all applicable configuration for an application

 TODO: provide examples using System.Management and native VBS.

2.11.2.2 Configuration File & Hierarchy

[Association: DisableOverride ToInstance ToSubClass] // “abstract”

class WebApplicationHierarchy : ConfigurationHierarchy {};

This associator enables enumeration of all configuration files that contribute to a web application instance.

The associator returns a set of ConfigurationNode instances, which represent the files along the metabase hierarchy, including the machine configuration file. For details on the merge hierarchy, refer to the ASP+ configuration specification.

 Do we need to express the order of the hierarchy? Sorting the instances by selector should give us the order.

[Association: DisableOverride ToInstance ToSubClass] // “abstract”

class WebApplicationConfigurationFile : ConfigurationFileLocation {

[key, read: ToSubClass] WebApplication ref ConfigNode;

[key, read: ToSubClass] ConfigurationFile ref MainConfigFile;

}

This association enables retrieval of only the main configuration file for a web application.

 [Association: DisableOverride ToInstance ToSubClass]

class WebApplicationChildren : ConfigurationNodeChildren {

[key, read: ToSubClass] WebApplication ref Node;

[key, read: ToSubClass] ConfigurationNode ref ChildNodes;

}

This association enumerates all children (web applications or web directories) under this metabase node, not including any children of an immediate child.

[Association: DisableOverride ToInstance ToSubClass]

class WebApplicationChildApplications : ConfigurationNodeChildren {

[key, read: ToSubClass] WebApplication ref Node;

[key, read: ToSubClass] WebApplication ref ChildNodes;

}

This association enumerates only web applications under this metabase node, not including any children of an immediate child.

[Association: DisableOverride ToInstance ToSubClass]

class WebApplicationChildDirectories : ConfigurationNodeChildren {

[key, read: ToSubClass] WebApplication ref Node;

[key, read: ToSubClass] WebDirectory ref ChildNodes;

}

This association enumerates all child web directories under this metabase node, not including any children of an immediate child.

[Association: DisableOverride ToInstance ToSubClass]

class WebApplicationParentApplication : ConfigurationNodeParent {

[key, read: ToSubClass] WebApplication ref Node;

[key, read: ToSubClass] WebApplication ref Parent;

}

Associates to immediate parent WebApplication, if any.

[Association: DisableOverride ToInstance ToSubClass]

class WebApplicationParent : ConfigurationNodeParent {

[key, read: ToSubClass] WebApplication ref Node;

[key, read: ToSubClass] ConfigurationNode ref Parent;

}

Associates to immediate parent WebApplication or WebDirectory, if any.

2.11.3 Web Directories

class WebDirectory : ConfigurationNode {

// Selector: of the form iis://localhost/w3svc/<siteid>/root/<metabasepath>

String Path; // VDir for the MB path (based on metabase information)

}

The Selector for a WebDirectory must have an “iis:” protocol prefix.

The WebDirectory class supports instance enumeration, although it is somewhat inefficient: the provider has to enumerate all Sites/Directories in the IIS metabase that do NOT have an “approot” property. Note that this enumeration returns both directories in ASP and ASP+ applications, as there is no robust/efficient mechanism to distinguish between ASP and ASP+ applications.

WebDirectory instances are read-only, except for creation/deletion of instances:

Creating (and saving) a new instance of WebDirectory creates a new node in the IIS metabase and sets the Vdir to WebDirectory.Path. If the metabase node is already an “approot”, the approot property is removed. If the node is a site, the save fails. The ConfigurationFilePath property is ignored on write and must be NULL.

Deleting an instance of WebDirectory removes the node and all it’s child nodes from the metabase (fails if the node is not a web directory).

Note: The .Net Provider does not provide control over app properties, like inproc/pooled/out-of-proc, app identify. Use the IIS6 WMI provider (or ADSI on W2k) to manipulate these.

2.11.3.1 WebDirectory<config class>, WebDirectory<config class>Unmerged

Given a WebDirectory instance it is common to

c) Retrieve a specific configuration class/section for the application.

d) Determine the set of configuration classes/sections applicable to this type of application

To make these operations easier, the .Net Config provider associates all configuration classes with WebDirectory instances via the Selector property (Selector is a key property on all config classes).

The provider offers two associations for each configuration class:

· WebDirectory<config class>: returns the merged configuration for this application, including configuration information inherited from parent nodes or the machine configuration file.

· WebDirectory<config class>Unmerged: returns only the configuration that is specified in the configuration file for this application.

[MSONLY] The applicable configuration classes for a web directory are defined in the configuration schema and are used by the MOF generation utility to generate the class definitions for the associations. The provider is also data/schema driven and additional classes and their associations can be added without recompiling the provider or the configuration binaries.

 MarcelV: Should the provider obtain the association information from the WMI repository (common base class!) or do we want to keep this in binary schema for efficiency reasons? Can we use RelationMeta for this?

[end MSONLY]

To enable efficient enumeration of all applicable configuration classes, all config class associators derive from common base classes:

[Association: DisableOverride ToInstance ToSubClass]

class WebDirectoryConfiguration : NodeToConfigurationClass {

[key, read: ToSubClass] WebDirectory ref Node;

 Can a derived association specialize the type of an inherited reference?

[key, read: ToSubClass] NetConfigurationClass ref ConfigClass;

}

class WebDirectoryConfigurationUnmerged : NodeToConfigurationClassUnmerged {

[key, read: ToSubClass] WebDirectory ref Node;

 Can a derived association specialize the type of an inherited reference?

[key, read: ToSubClass] NetConfigurationClass ref ConfigClass;

};

Examples:

c) Retrieve information for a directory.

d) Determine all applicable configuration for a directory.

 MarkusH: TODO: provide examples using System.Management and native VBS.

 MarkusH => ScottGu: Is it an error if a config that only applied to an app is specified in a dir or does ASP+ just silently ignore the config? What should the provider do?

2.11.3.2 Configuration File & Hierarchy

[Association: DisableOverride ToInstance ToSubClass] // “abstract”

class WebDirectoryHierarchy : ConfigurationHierarchy {};

This associator enables enumeration of all configuration files that contribute to a web directory instance.

The associator returns a set of ConfigurationNode instances, which represent the files along the metabase hierarchy, including the machine configuration file. For details on the merge hierarchy, refer to the ASP+ configuration specification.

 Do we need to express the order of the hierarchy? Sorting the instances by selector should give us the order.

[Association: DisableOverride ToInstance ToSubClass] // “abstract”

class WebDirectoryConfigurationFile : ConfigurationFileLocation {

[key, read: ToSubClass] WebDirectory ref ConfigNode;

[key, read: ToSubClass] ConfigurationFile ref MainConfigFile;

}

This associator enables retrieval of only the main configuration file for a web application.

 [Association: DisableOverride ToInstance ToSubClass]

class WebDirectoryChildren : ConfigurationNodeChildren {

[key, read: ToSubClass] WebDirectory ref Node;

[key, read: ToSubClass] ConfigurationNode ref ChildNodes;

}

This association enumerates all children (web applications or web directories) under this metabase node, not including any children of an immediate child.

 [Association: DisableOverride ToInstance ToSubClass]

class WebDirectoryParentApplication : ConfigurationNodeParent {

[key, read: ToSubClass] WebDirectory ref Node;

[key, read: ToSubClass] WebApplication ref ChildNodes;

}

Associates to parent WebApplication.

2.11.4 WebApplicationToIISDirectory/VirtualDir/ServerAssociator

· P3 (cut): Associated to/from IISVDir, IISDirectory, IISServer (iff approot metabase property is set). Requires IIS6 provider to be available on the machine

2.11.5 WebApplicationToAssemblyAssociator

· P3 (cut): Associated to Assembly (based on <compiler/assemblies> list in web.config files)

2.11.6 Shell Applications

class ShellApplication : Application {

// Selector: of the form iis://localhost/w3svc/<siteid>/root/<metabasepath>

String Path; // Path of the module (EXE) of this application

}

The Selector for a ShellApplication must have an “shell:” protocol prefix.

The ShellApplication class does not support instance enumeration, as this would require enumeration of all files in the file system.

 MarkusH => StevenPr: How can we provide a list of all the application installed on a machine: use the MSI WMI classes, do a disk scan for executables?

ShellApplication instances are read-only.

2.11.6.1 ShellApplication<config class>, ShellApplication<config class>Unmerged

Given a ShellApplication instance it is common to

e) Retrieve a specific configuration class/section for the application.

f) Determine the set of configuration classes/sections applicable to this type of application

To make these operations easier, the .Net Config provider associates all configuration classes with ShellApplication instances via the Selector property (Selector is a key property on all config classes).

The provider offers two associations for each configuration class:

· ShellApplication<config class>: returns the merged configuration for this application, including configuration information inherited from the machine configuration file.

· ShellApplication<config class>Unmerged: returns only the configuration that is specified in the configuration file for this application.

[MSONLY] The applicable configuration classes for a shell application are defined in the configuration schema and are used by the MOF generation utility to generate the class definitions for the associations. The provider is also data/schema driven and additional classes and their associations can be added without recompiling the provider or the configuration binaries.

 [end MSONLY]

To enable efficient enumeration of all applicable configuration classes, all config class associators derive from common base classes:

[Association: DisableOverride ToInstance ToSubClass]

class ShellApplicationConfiguration : ApplicationConfiguration {

[key, read: ToSubClass] ShellApplication ref Node;

 Can a derived association specialize the type of an inherited reference?

[key, read: ToSubClass] NetConfigurationClass ref ConfigClass;

}

class ShellApplicationConfigurationUnmerged : ApplicationConfigurationUnmerged {

[key, read: ToSubClass] ShellApplication ref Node;

 Can a derived association specialize the type of an inherited reference?

[key, read: ToSubClass] NetConfigurationClass ref ConfigClass;

};

Examples:

e) Retrieve information for an application

f) Determine all applicable configuration for an application

 TODO: provide examples using System.Management and native VBS.

2.11.6.2 Configuration File & Hierarchy

[Association: DisableOverride ToInstance ToSubClass] // “abstract”

class ShellApplicationHierarchy : ConfigurationHierarchy {};

This associator enables enumeration of the configuration files (machine configuration file and application configuration file) that contribute to a shell application instance.

The associator returns two ConfigurationNode instances, which represent the machine configuration file and the application configuration file. For details on the merge hierarchy, refer to the CLR configuration specification.

 MarkusH => StevenPr: What merge rules (if any) can we implement in the provider? Fusion policy can’t be merged, nor can security policy…

 [Association: DisableOverride ToInstance ToSubClass] // “abstract”

class ShellApplicationConfigurationFile : ConfigurationFileLocation {

[key, read: ToSubClass] ShellApplication ref ConfigNode;

[key, read: ToSubClass] ConfigurationFile ref MainConfigFile;

}

This association enables retrieval of only the main configuration file for a web application.

· P3 (cut): Associated to Win32_File class (for EXE binary)

· P3 (cut): Associated to PrivateAssembly (for root assembly)

· P3 (cut): Associated to "MSI Component" (?)

2.11.7 Assembly enumeration (cut)

Assembly

· P3 (cut): Associated to Assembly (assembly refs in this assembly)

PrivateAssembly

· P3 (cut): Associated to Win32_File (for binary locations)

SharedAssembly : Assembly

· P3 (cut): Enumerated from Global Assembly Cache

2.11.8 Custom Hosts

The .Net Framework supports hosting of managed applications in arbitrary host environments. The .Net WMI provider is not extensible to accommodate custom hosts.

However, custom host writers can (and should) make their applications discoverable by:

· Implementing their own WMI provider

· Deriving their own classes from the appropriate base classes defined by the .Net Configuration provider.

· Associate their class with configuration classes and relevant other classes in a manner similar to the WebApplication and ShellApplication classes implemented by the .Net Config provider.

2.12 Miscellaneous

No methods beyond the batch methods are implemented, as there are no management methods exposed in the .Net Framework. For web server management the IIS WMI provider (in Whistler) does provide methods like start/stop/pause etc.

Support per-user security for each request. Like any WMI provider the provider impersonates the calling user before attempting any file access.

All classes derive from CIM_LogicalElement.

2.13 General Provider requirements

· No hard-coded strings that would require localization in the provider.

· When a method on IWbemServices returns an error, the provider should return an extended status object with any additional information that is available whenever possible.

· The provider should use the detailed errors mechanism in the config system to provide verbose error information to the user.

2.14 Platform Support

This provider must be supported on all server platforms that the URT supports. This includes Windows NT 4.0, Windows 2000, Whistler and Whistler IA64.

2.15 Setup Requirements

The provider is set up with the rest of the URT components. The provider DLL is regsvr32’ed and the MOF file compiled into the WMI repository. Setup work in .Net setup has already been done.

2.16 Globalization

The provider should be designed, coded and tested to assure globalization compliance.

2.17 Performance

 MarkusH: Need to determine performance requirements: working set, requests per second, updates per second, concurrent updates.

2.18 Testing

 MarkusH: need to cover stress, End-to-end testing with ASP+/Runtime etc.!

2.19 Globalization/Localization

 MarkusH: Beside the Description, are there other localization issues, given that we don’t localize config files?

[Murate] Details on localizing mof files are in this mail:

[image: image1.wmf]RE: Type-B DCR

Approved: IIS W...

 Who will do the localization?

3. Specific schema

 XSP’s passport.redirecturl: is this a URL or a fixed set of values?

 Security schema: are custom permissions still supported and do they use a single element name (pass through)?

4. Samples

4.1 System.Management

4.2 Scripting

5. Postponed Features

· Flag to indicate read-only vs. read-write in config schema: not required by .Net because all classes are read/write.

6. Open Issues

In addition to the issues outlined throughout the document, the following items require further attention:

Info needed from ScottGu:

 Merge semantics: in ASP+ config spec!

 Authorization merge semantics?

 Which ones are singletons?

 Which ones can be specified where? Machine, server, app, dir, file?

 Schema maintenance: notification!

 End to end testing: ASP+ scenarios

 EXEs

 Merge?

 Which sections apply?

 Selectors:

 Does http make sense?

6.1 Implementation issues

· P3 (cut): Nesting without additional PKs on contained tables (get rid of "key2,key3,key4,..." hacks)

· P3 (cut): Arbitrary containing XML element names (<System.Web>)

· P1: Need to support nested code groups for code access security!

7. Revision History

Rev 0.1 (MMaston): Initial specification.

Rev 0.2 (MarcelV/RaduP): Update with .Net Beta 2 requirements/issues.

October 16, 2000
Rev 0.3: Incorporate results of design meeting. New spec template. Assign owners to issues.

October 24, 2000
Rev 0.4: Added e-mail discussions.

October 30, 2000
Rev 0.6: Incorporated spec review decisions.

November 21, 2000
Rev 0.7: More feedback.

January 11, 2001
Rev 0.8: Clarified Associations, Location support, Selectors, Hierarchy, Application class definitions. Identified cut features (assembly enumeration, IIS6 provider integration, code cleanup).

� The provider could support schema definition in XSD to leverage XML authoring tools like VS7, but this feature has been cut due to schedule constraints and the limited benefit that it provides given that schema is not publicly extensible.

Page 8 of 19

_1033904507.unknown

