

.NET WMI Provider High Level Design

October 6, 2000, Draft Rev 0.4

Marcel van der Holst

This document describes the High Level Design of the .NET Framework WMI Provider.

TOC \o "1-3"
1.
Purpose
1
1.1
References
1
1.2
Audience
1
2.
Detailed Description
1
2.1
ISimpleTable abstraction layer
2
2.2
WMI Interface layer
2
2.3
Helper class Layer
2
3.
Configuration classes
3
4.
Associations
3
5.
Special Considerations
4
6.
Open Issues
5
7.
Revision History
5

Note: This document is an early release of the final specification. It is meant to specify and accompany software that is still in devel​opment. Some of the information in this documentation may be inaccurate or may not be an accurate representation of the func​tionality of the final specification or software. Microsoft assumes no responsibility for any damages that might occur either directly or indirectly from these inaccuracies. Microsoft may have trademarks, copyrights, patents or pending patent applications, or other intellectual property rights covering subject matter in this document. The furnishing of this document does not give you a license to these trademarks, copyrights, patents, or other intellectual property rights.

1. Purpose

This document describes the high level design of the .NET Framework WMI Provider.

1.1 References

· Technical Specification for Simple Tables v2 and The Project42 Catalog, 1999, version 2 draft 60, Robert Craig

· Hierarchy & Merge Interceptors, November 2, 1999, Draft Rev 0.5, Markus HorstMann

· WMI documentatation from the Platform SDK
1.2 Audience

It is assumed that the reader is familiar with the configuration system, WMI, and is familiar with writing a WMI Provider.

2. Detailed Description

The provider contains three different layers:
1. A layer that hides the ISimpleTable interface and converts catalog datatypes to variants

2. A layer that hides the WMI Interface and forwards all request to helper functions

3. A layer that talks to layer 1 and layer 2, and does all the hard work

2.1 ISimpleTable abstraction layer

The WMI Provider interface uses variants to set values of properties, methods and parameters. The catalog uses C++ types. To avoid conversion from C++ types in different places of the code, a separate class is needed that does conversion from variant to Config types and from Config types to variants.

Also, we want to hide the complex ISimpleTable interface from the WMI Provider

To provide the above functionality a number of classes was created:

· CConfigTableMeta

This class gets the table and column meta from the catalog for a particular table and stores it in an easy to use format. This class is always used in combination with CConfigRecord and CConfigQuery.
· CConfigRecord

This class converts variants to Config types and Config types to variants. It uses a CConfigTableMeta object to get the meta information, and does the conversion in a single place. The class contains two arrays:
· One to hold pointers to catalog information

· One to hold the variants

Only a specific points in time, the class will sync the variant and catalog arrays.

· CConfigQuery

This class abstracts the ISimpleTableRead and ISimpleTableWrite interfaces. From the WMI point of view, it only uses CConfigQueries and CConfigRecords, and never deals directly with the catalog. The reason for this is to make changes to catalog or query without having to make a lot of changes to the WMI code

2.2 WMI Interface layer

The WMI Interface layer contains the following classes:

· CWQLQueryParser
Parses a WQL query.

· CObjectPathParser

Parses an WMI Object Path.
2.3 Helper class Layer
This layer maps specific queries and request to specific helper classes. There are a number of different helper classes for the following types:

1. GetObjectAsync request for configuration class

The instancehelper class takes care of this (see next section for more details)

2. GetObjectAsync request for association class

The CAssocCatalog class takes care of this

3. GetObjectAsync request for non-configuration class

A special purpose function is written for these. Examples are webapplication and codegroup, which have special code that is not stored in the configuration schema.

4. ExecQueryAsync request for configuration class

5. ExecQueryAsync request for association class

6. ExecQueryAsync request for non-configuration class

For instance, all GetObjectAsync calls get mapped to the CInstanceHelper class, while all queries get mapped to the CQueryClass.
3. Configuration classes
Every class that is defined in a configuration schema is exposed via WMI. To ensure that a WMI class is properly related to a class in the catalog, two extra qualifiers are added to each class:

1. Database

This maps to the database name in the catalog

2. InternalName

This maps to the internal name in the catalog

When a ExecQuery or GetObjectAsync, the WMI Provider find out which class is involved. For this class, it gets the above qualifier, and uses the qualifiers to query the catalog (using the CConfigQuery class).

4. Associations

The WMI provider supports different association types. An association type is assigned to all associations for which the code to create the association is the same. For instance, to create an association between two configuration classes, we need to do a certain type of work, but for all configuration classes, this work is exactly the same. However, for an association between a webapplication and configuration class diff
The way the WMI provider between different association types is by using the AssocType qualifier, which is specified on each association.
The following associations are supported:

· catalog

Association between two classes defined in the catalog

· location

Association between a location element and a class in the catalog

· appunmerged

Association between a webapplication and a class in the catalog (unmerged view)

· appmerged

Association between a webapplication and a class in the catalog (merged view)

· filehierarchy

Association between webapplication and configuration files that are used during merging

· webappchild

Assocation between webapplication and child webapplications of this webapplication

· webappparent

Assocation between webapplication and parent webapplication of this webapplication

Each association type is implement in its own class CAssoc<type>, and all these classes inherit from the CAssocBase base class, which implements things that are common between all association classes.
5. Special Considerations

1. Exceptions/Variants

The code internally uses variant_t and bstr_t for variants and bstrs. These classes can throw exceptions in case of memory failure, and therefore, the main entry points in the provider have try .. catch .. blocks.

2. Smart Pointers

The code uses smart pointers for COM Interfaces (CComPtr) and dynamic memory allocation (TSmartPointer). The reason for this is to avoid reference counting problems and memory leaks.

3. Error Handling

The error handling scheme used is to return from a function as soon as something is wrong. This means that a function can have multiple exit points. This is not a problem, as long as smart pointers are used to avoid memory leaks.

Example:

HRESULT hr = DoSomething ();

If (FAILED (hr))

{

TRACE (L”DoSomething has failed”);

return hr;

}

hr = DoSomethingElse ();

If (FAILED (hr))

{

TRACE (L”DoSomethingElse has failed”);

return hr;

}

return hr;

4. Tracing

When something goes wrong in the provider, TRACE code is used to identify the where the error occurred. This TRACE code needs to be added to each place where something can go wrong. The benefit of doing this is that you get a full call trace from the place where something went wrong. This is very helpful during development and debugging.

6. Open Issues

None.
7. Revision History

April 13, 2001

Rev 0.1 (Marcelv): Created.

Microsoft Confidential
Page 5 of 16

