

Project 42 Administrative Framework
July 16, 1999 Draft Rev 0.7a

Markus Horstmann
This document describes the overall architecture for meta-data required by the different parts of URT 1.0. It also describes - at a high level - the actual meta-data attributes for each of the different URT attribute consumers.
31.
Introduction

2.
Guiding Principles
3
3.
Scenarios
3
3.1
Web Application (“Parcel Delivery” aka FedEx)
3
3.2
Standalone Client App (“EXE”)
4
3.3
Browser
4
3.4
Object Remoting/Messaging
4
3.4.1
Client to Server
4
3.4.2
Server to Server
4
3.4.3
Cross-Process (“OLE”, VB’s “ActiveX EXE”)
4
4.
Requirements
4
5.
URT 1.0 Administrative Framework
5
5.1
Attribute Containers
5
5.1.1
Machine Configuration
5
5.1.2
Site Definition
5
5.1.3
Site Configuration
5
5.1.4
Application Configuration
5
5.1.5
Application Definition
6
5.1.6
Directory
6
5.1.7
Assembly
6
5.1.8
Module
6
5.2
Attributed Entities
6
5.2.1
Machine
7
5.2.2
Virtual Site
7
5.2.3
Application Pool
7
5.2.4
Application
7
5.2.5
Assembly
7
5.2.6
Directory
7
5.2.7
Virtual Directory
7
5.2.8
Page / File
7
5.2.9
Module
7
5.2.10
Class
7
5.2.11
Interface
7
5.2.12
Method
8
5.3
Container Relationships
8
5.3.1
Containment
8
5.3.2
Inheritance and Override Rules
8
6.
Implementing the Framework: Catalog
9
6.1
Configuration APIs
9
6.2
Storage Abstraction: Simple Tables and Table Dispensers
9
6.2.1
Table Schema
9
6.2.2
Table Dispenser / Wiring Database
9
6.2.3
Data Tables
10
6.2.4
Logic Tables
10
6.3
Runtime APIs
10
7.
Attributes
11
7.1
DuctTape
11
7.1.1
M4 Implementation plans
11
7.1.2
Scenario 2: Application Config
12
7.2
XSP
16
7.2.1
Resource Constraints:
17
7.2.2
Location Settings:
17
7.2.3
Security Settings:
17
7.2.4
Application Runtime Settings:
17
7.2.5
Misc Configuration Settings:
17
7.2.6
ISV Licensing Restrictions
18
7.3
Runtime (Lightning)
18
7.3.1
Application Domain & Application Config
18
7.3.2
Assembly Cache (Fusion)
18
7.3.3
Context
18
7.3.4
Channels
18
7.3.5
Security
19
7.3.6
Component Categories?
21
7.3.7
COM Interop
21
7.3.8
Custom Registrar?
21
7.3.9
File Extensions/MIME Types?
21
7.4
WebObjects
21
7.4.1
Remoting
21
7.4.2
Naming Service (WONS)
22
7.4.3
Transactions
22
7.4.4
Object Persistence
23
7.4.5
Eventing
23
7.4.6
Example: COM+ 1.0 Attributes
23
7.5
Distributed Message Bus (Messaging)
26
7.5.1
Server side
26
7.5.2
Client side
27
7.5.3
Publish/Subscribe
27
7.6
IIS 5.0
27
7.6.1
Application Roots?
27
7.6.2
Virtual Directories?
27
7.7
Fusion Settings
27
7.8
WFC
28
7.8.1
Managed Properties
28
7.8.2
Others?
28
7.9
Others
28
7.9.1
XDO
28
7.9.2
XML Parser?
28
7.9.3
Net Classes?
28
7.9.4
DTC?
28
7.9.5
IMDB?
28
8.
Related Specs
28
9.
Open Issues
29
10.
Revision History
29


Note: This document is an early release of the final specification. It is meant to specify and accompany software that is still in devel​opment. Some of the information in this documentation may be inaccurate or may not be an accurate representation of the func​tionality of the final specification or software. Microsoft assumes no responsibility for any damages that might occur either directly or indirectly from these inaccuracies. Microsoft may have trademarks, copyrights, patents or pending patent applications, or other intellectual property rights covering subject matter in this document. The furnishing of this document does not give you a license to these trademarks, copyrights, patents, or other intellectual property rights.

1. Introduction

As all reasonably rich platforms, the Project 42/URT platform consists of a set of technologies that are designed and developed by independent teams, often on different schedules and usually with different backgrounds and scenarios in mind.

In order to avoid the fragmentation of the current Windows 2000/WinDNA platform, it is necessary to coordinate the different technologies in terms of the programming model(s), as well as the administrative model. This document is concerned about the latter.

2. Guiding Principles

· simplicity for the administrator, zero-administration for the end-user 

· zero registration, "XCOPY" deployment 

· text based configuration files, Notepad editable 

· uniform model across all URT features 

· uniform, simple (scriptable), remoteable configuration API (read/write) 

· application isolation: make applications discoverable and replicatable ("XCOPY *.* /s")

3. Scenarios

 Need to drive app model(s) to closure! -> MaryKir

3.1 Web Application (“Parcel Delivery” aka FedEx)

A web application has a single application configuration file that always resides in the root directory of the web application.

	URL Namespace
	File System

	http://updserver
	C:\wwwroot\updserver

	
	Updserver.cfg

	
/Tracking
	\Tracking

	

Tracking.XSP
	

Tracking.XSP

	
	

	
	



	
/Order
	\Order

	

Order.XSP
	Order.XSP

	
	Order_Template.HTML

	
	\BIN

	
	Order.DLL

	
	Tracking.DLL


3.2 Standalone Client App (“EXE”)

The assumption in this document is that a single application configuration file is deployed in the same directory as the EXE and the configuration file name can be derived from the EXE file name (i.e. “foo.exe.cfg”).

3.3 Browser

tbd

3.4 Object Remoting/Messaging

tbd

3.4.1 Client to Server

tbd

3.4.2 Server to Server

Tbd

3.4.3 Cross-Process (“OLE”, VB’s “ActiveX EXE”)

tbd

4. Requirements

· Support replication

 Can shared assemblies be exported/redistributed out of the assembly cache?

· Support “XCOPY” deployment (aka zero-registration)

· Support secure, application-local storage of sensitive information (passwords etc.).

· The meta-data interface must accommodate changes to the meta-data schema without requiring a recompile of catalog infrastructure, runtime interfaces, admin interfaces or consumers.

· The runtime interfaces must be easy/efficient to use for common usage scenarios, i.e. not requiring multiple requests and negotiations/discovery steps for activation.

· Extensibility for URT Context properties and their attributes 

· Third party extensibility (app specific settings)

· Third party extensibility for infrastructure (?)

 Is this a requirement for URT?

5. URT 1.0 Administrative Framework

The URT 1.0 Administrative Framework is built around three top-level concepts:

· Attribute: a named value, potentially arbitrarily complex.

· Entity: an entity to which one or more attributes can be applied.

· Container: a physical location at which attributes are stored.

5.1 Attribute Containers

Attribute containers represent the different physical locations in which attributes are actually stored. The URT 1.0 Administrative Framework distinguishes between different attribute containers.

 Are there other containers? Per-user? Policy per assembly cache?

5.1.1 Machine Configuration

Some attributes can be specified for all application on a machine. Some of these attributes provide default values in case an application does not specify a value. Other attributes configure entities that exist only once per machine.

Machine level attributes should be avoided whenever possible, because as soon as two application require different values for a machine level attribute, customers are forced to use two separate machines.

5.1.2 Site Definition

IIS / Ducttape have the concept of a site, that establishes a root URL to use for a set of file system directories and applications.

In a typical administrative scenario, a machine administrator (example: “ISP”/”ASP”) creates one or more sites for use by site/application administrators. The machine administrator often wants to specify certain attributes (ex. Bandwidth throttling) that the site/app administrator cannot modify.

 This needs more discussion with Ducttape / XSP.

5.1.3 Site Configuration

The Site Config file provides a clean way for the site/application administrator to specify site level attributes, without having access to the machine wide “site directory” and the site definition file.

5.1.4 Application Configuration

An application in the most general form is defined as the collection of code and it’s data running in a URT Application Domain. Hosting environments like XSP, Browsers and the Win32 EXE “Loader” establish application scope by creating an application domain. In many scenarios, a root assembly and all its dependencies do not fully define an application. In XSP/scripting scenarios for example, a script is dynamically compiled and executed without ever formally being authored as an assembly.

Every application domain has exactly one configuration file that carries all the configurable attributes for any assemblies that might get loaded into the application domain. The configuration file location is determined at application domain creation time as an explicit parameter to the application domain creation API.

 Need to get this into the appdomain API!

The configuration file is an XML file that can be freely edited using arbitrary tools (including text editors like NotePad).

 Is there really a one-to-one relationship to Application/Application Domain?

 Can we provide programmatic control over app configuration to the app domain creator? Through general purpose APIs? In certain dynamic hosting scenarios (Scripting etc.) assemblies are created in memory and on the fly. It wouldn’t make sense to force a temporary config file for these cases…

 Is this a separate file from the fusion settings file and the WFC Managed Properties files?

 How does the configuration file get created?

 How does the configuration file get updated when new assemblies are copied into the “Application”? In most scenarios updates to the config file should not be required unless the new assembly needs to be configured!

 How do we secure the configuration file? Signing? File system security? Most scenarios can not require signing of the config file…

5.1.5 Application Definition

 Do we need the concept of an application definition that captures the immutable aspects of an app?

 Is this just a regular assembly (manifest) that is marked (or even implicitly treated) as the root of an application (domain)?

 It must be possible to add assemblies to an app without explicitly adding them to neither app definition nor app config file!

 How does an application tie into the assembly cache dependency tracking/refcounting?

5.1.6 Directory

In web scenarios, certain attributes can be specified to apply to all files in a directory. The directory container holds these attributes.

 Do we need dedicated physical containers for directories or are directory attributes specified in the application container?

 Where do file attributes get specified? NTFS file streams have been proposed as one mechanism… 

 Are directories always scoped within an application? 

5.1.7 Assembly

Assemblies group one or more modules into a single logical unit. Every module must be in an assembly as the names of all entities in a module are scoped by the name of the assembly. Assemblies and assembly attributes are generated by development tools and cannot be configured. However, many assembly attributes are merged with and validated against configuration information of the hosting application domain.

In URT 1.0, assembly meta-data is stored in a Component Library (“Assembly Manifest”). The Component Library can be stored inside a Win32 PE image or left as a stand-alone file. More details on http://lightning/Specs/admin/Default.htm.

 It has been agreed that there are no assembly level configuration files. However, some documents still talk about these…

5.1.8 Module

Attributes can be stored within the module that carries the attributed entities. Modules and module attributes are generated by development tools.

Again, module attributes cannot be configured, but do get merged with and validated against configuration information.

In URT 1.0, module meta-data is stored in a Component Library inside a PE image. More details on http://lightning/Specs/Formats/default.htm.

5.2 Attributed Entities

Attributes apply to one or more entities, whose semantics they modify. This section lists the logical entities that can be attributed in Project 42.

 Are there more entities?

 Need to add detail for each entity.

Each logical entity corresponds to a logical tables (in some case more than one) in the catalog. The attributes associated with each entity correspond to the columns in this table.

The actual rows in the table are typically the result of a merge of the attributes as specified in one or more physical containers. Section 5.3 talks more about container relationships and merge semantics.

5.2.1 Machine

5.2.2 Virtual Site

5.2.3 Application Pool

5.2.4 Application

tbd

5.2.5 Assembly

5.2.6 Directory

5.2.7 Virtual Directory

5.2.8 Page / File

tbd

5.2.9 Module

Always scoped within an assembly.

5.2.10 Class

Always scoped within an assembly.

5.2.11 Interface

5.2.11.1 Interface Definition

Scoped within an assembly.

5.2.11.2 Interface Implementation

Scoped within a class.

5.2.12 Method

5.2.12.1 Method Definition

Scoped within an interface definition.

5.2.12.2 Method Implementation

Scoped within a class or an interface implementation.

5.3 Container Relationships

The merge follows specific semantics, which often depend on the attribute itself, the container that it is specified in or the way it is specified. The catalog provides a set of common merge semantics, which can be selected declaratively at different levels (global schema, in the configuration file itself, in a parent configuration file). The catalog infrastructure is also extensible using multiple mechanisms (custom virtual tables, table interceptors etc.). These mechanisms can be used to implement arbitrary merge semantics.

 Do we need to provide third-party extensibility for merge semantics in URT V1?

 Do we need to generalize containment relationships?

 Do we need to generalize inheritance between containers?

5.3.1 Containment

Machine Config contains 

· Site Config

Site Config contains

· Application Config

Application Config contains

· Application Definition (may be implicit)

Application Definition contains

· Assembly

Assembly contains 

· Module

5.3.2 Inheritance and Override Rules

Along the containment hierarchy of the different containers, some attributes can be inherited from parent to child while others can be inherited from child to parent.

Inheritable attributes can be marked as 

· Final: Containers that are lower in the inheritance graph cannot modify the attribute.

· Overridable: Containers that are lower in the inheritance graph can freely override the attribute; effectively the attribute represents a default value.

· Constrainable: Containers that are lower in the inheritance graph can only constrain the attribute. Example: Bandwidth throttling specified at the site level can only be reduced at the application level.

 Do we unify Fusion “inheritance” with IIS/Ducttape inheritance? Likely not, but how do we rationalize this for the dev/admin?

 XSP proposes an attribute merging mechanism similar to the Apache Module mechanism.

6. Implementing the Framework: Catalog

In order to ensure a common approach to configuration, all URT features will consume any configurable attributes through a common configuration infrastructure, the URT Catalog.

6.1 Configuration APIs

Configuration files can obviously be created through arbitrary means, as they are text files and their format is fully documented. In addition, the URT Catalog provides higher-level configuration APIs that allow read/write access to configuration files and other storage containers.

The Configuration APIs are designed for use by administrative tools. They will be broadly documented (“Platform SDK”). The AS 2.0 Administrative Tools are written exclusively to the configuration APIs.

All attributes will be exposed through a single set of APIs. The catalog team owns defining and implementing this API. 

The configuration APIs allow queries and enumeration over all configuration data. They also provide validated write access to configuration data. The configuration APIs also allow secure remote access to configuration data. The configuration API is exposed as a set of managed classes. Refer to http://appsrv/asconfig/specs/urt1/AppServerConfigRequirements.doc for more details.

The configuration API builds on the lower level configuration system, which is why all URT configuration must be exposed through the catalog infrastructure.

Binaries also carry fixed meta-data, which is provided by the developer (and the development tools). Development tools use low-level meta-data creation APIs when generating modules and assemblies. The meta-data creation APIs will be publicly documented, but probably in a limited fashion  (“tools developer SDK”). The runtime team owns the module and assembly meta-data creation APIs (IMetaDataEmit*, see http://lightning/Specs/Formats/default.htm for details).

6.2 Storage Abstraction: Simple Tables and Table Dispensers

The URT Catalog is built around a relational database abstraction. All configuration information is broken into a set of tables. 

For details refer to the implementation spec at http://appsrv/asconfig/specs/urt1/simpletablesV2.doc.

6.2.1 Table Schema

All tables are described with rich schema information. In addition to standard table/column/type information, the schema carries other information, including hints to the (generic) configuration APIs, such as allowable values for an attribute, enumerations, relations between tables etc. Every table has a unique name (a Table ID).

6.2.2 Table Dispenser / Wiring Database

The table dispenser maps queries to a specific COM component (hereafter called a table implementation) that will render the contents of the table as described in the schema, in whatever way it sees fit. The mapping mechanism is fully customizable using custom table dispensers, and can consider:

· The table ID being requested.

· The query being passed in.

· The level of service (read-only, read-write, remote etc.) being requested.

· Any arbitrary criteria the custom table dispenser sees fit.

For a given table, multiple implementations may exist; for example if a client requests read-only access, an in-process implementation may be chosen, while for write access a transactional implementation running in a protected system process may be chosen.

The standard table dispenser allows selection of table implementations based on table ID and level of service. It uses the wiring database to map TableID/Level of Service to specific table implementations.

6.2.3 Data Tables

Some table implementations are physical tables, i.e. they are immediately backed by some persistent store and perform only minimal - mainly syntactic - validation of the data. 

The catalog team provides a set of data table implementations, which include 

· XML data table

· CompLib data table

· RegDB data table

Data tables under consideration are:

· IIS meta base data table

· Registry data table

Internal URT teams can write their own data tables and plug them into the catalog framework using the catalog’s wiring database.

6.2.4 Logic Tables

Other table implementations do not serve data with a direct physical representation but are merely logical tables (also called virtual tables): they are created as the result of applying some form of custom logic to one or more physical tables. Like data tables, logic tables are also implemented as COM components.

Examples of such custom logic are: 

· Joins of hard-coded attributes (class meta-data) with configuration information into a single “Class” table. 

· Merges of configuration attributes along a containment hierarchy. 

· Calculation of internally required information based on a set of publicly exposed attributes.

· Validation of semantic consistency of attributes.

Internal URT teams can write their own logic tables and combine them with data tables or other logic tables in a generic way using the catalog’s wiring database, or in a completely customized way.

A key goal of the catalog architecture is to keep the configuration logic separate from the consuming (system runtime) code, in order to

a) Allow the config APIs and the UI to be driven of the same logic as the system,

b) Enable the system to adapt to changes in the configuration logic by changing a well-isolated body of code,

c) Enable the system to adapt to changes in the underlying store.

6.3 Runtime APIs

The system runtimes that consume configuration information will typically want to transform the relational data into specific, in-memory representations, that are optimized for a specific usage pattern. Often, consumers will want to cache this in-memory representation for the lifetime of a process.

Currently, it is up to each consumer to build their runtime API set on top of the catalog’s table abstraction and implement their own in-memory caching (if needed).

 Who writes the runtime interfaces for each of the consumers? Each consumer? The app server admin team?

 What pieces (caching, persistence of preprocessed attributes) are common across all runtime interfaces and should be provided by the catalog team?

In URT 1.0, the catalog - including all data and logic tables - is implemented in unmanaged code. However, the table dispenser and table access interfaces are exposed as a set of managed code interfaces. Logic table implementers can of course invoke managed code if required.

7. Attributes

In order to further facilitate synergy between the different users of catalog technology, this section tracks the high-level config and attributes requirements for each of the URT teams. This section focuses on configurable attributes, but includes development time attributes whenever those need to be merged with or validated against configurable attributes. 

7.1 DuctTape 

 Items with a “*”are to be supported in the initial M4 catalog drop (6/21) to DuctTape.

	Attribute
	Type
	Logical Entity
	Physical Container

	Name
	String
	Application Pool
	Machine

	*PeriodicRestartTime
	DWORD
	Application Pool
	Machine

	*PeriodicRestartRequestTimeOut
	DWORD
	Application Pool
	Machine

	*MaxProcessCount
	DWORD
	Application Pool
	Machine

	*PingingEnabled
	DWORD
	Application Pool
	Machine

	*IdleTimeout
	Tbd
	Application Pool
	Machine

	MaxSimultaneousRequests
	Tbd
	Application Pool
	Machine

	PingInterval
	Tbd
	Application Pool
	Machine

	CPUAffinity
	Tbd
	Application Pool
	Machine

	*ServerBindings
	MULTI_SZ

 Metabase: “ip-address:ip-port:host-name”

 UL: "[http|https]://[ip-address|host-name|*]:ip-port"
	Virtual Site
	Machine

	*SecureServerBindings
	MULTI_SZ
	Virtual Site
	Machine

	Path
	String
	Virtual Site
	Machine

	Bandwidth Throttling
	Tbd
	Virtual Site
	Machine

	Caching Policy?
	Tbd
	Page

Class?
	Application?

Config?

Assembly?

Module?

Page??

	SingleProcess?

 Indicates if more than one process can host this app…
	Tbd
	Application
	Application

	*ApplicationPath

 This attribute maps an application to a VirtualSite (common URL prefix)
	String
	Application
	Machine

	*ApplicationPool
	String
	Application
	Machine


7.1.1 M4 Implementation plans 

7.1.1.1 Scenario 1: Machine config

Preliminary implementation spec/plan (from RCraig):

The plan is to deliver the necessary code for scenario #1 by 6/21/99, immediately thereafter to convert the config manager code to use it, and demonstrate the scenario in a private build derived from a good ducttape M3 snapshot.

Scenario #1 is:

· Specify all site, app pool, and app information consumed by the config manager in XML.

· The config manager code is revised to fetch all information from simple tables, which always pulls from a persisted cache.

· Under the covers...

· The first time the server is started, the XML config is validated and cooked into a persisted cache (CLB1) which also retains a date/time stamp of the XML file.

· The second time the server is started, provided the XML is not changed (according to the date/time stamp), the config comes from the persisted cache.

· The third time it starts, assuming the XML has changed, the XML is cooked again into CLB2.  Assuming validation succeeds, CLB1 is removed.

· The fourth time, assume the XML config for a particular site is hosed.  During the validation process, appropriate logging occurs, and the cookdown process succeeds, producing CLB3, which is however missing the hosed site.  (Do we keep CLB2?)

· The fifth time, the XML config is totally hosed.  During the validation process, since cooking CLB4 fails, CLB4 goes away, and the config is served up from CLB3.

· [Seth Pollack]  should log an event in this case.
Schedule and dates to be established for scenario #2 and #3.  Scenario #2 will involve adding an app by copying its files into the directory tree.  Scenario #3 will involve change notification while the system is up and running on a per site and apppool basis.

[Seth Pollack]  or per app.

7.1.2 Scenario 2: Application Config

 Do we require that all UL configuration be read in at UL startup time? Are there mechanisms for on-demand reading? How do we do (incremental) updates to configuration? What are the performance/scalability implications (incremental runtime hits vs. cost of pre-calc)?

 What are the implications of allowing on-disk and in-use/cooked down configurations to be out of sync? Replication (does replication fail? Use the cooked down config? The potentially flaky on-disk config?), PSS (troubleshooting implications).

7.1.2.1 Ducttape/XSP configuration file structure

7.1.2.1.1 Global configuration

All machine-wide configuration information is stored in a single, well-known directory location (i.e. “c:\inetpub”). 

7.1.2.1.1.1 Global Policy

The global configuration file (“c:\inetpub\global.cfg”) defines the default policy for all sites and all applications, directories and files on a machine.

7.1.2.1.1.2 Site Definition

A set of site definition files (“c:\inetpub\*.sitedef”) define the virtual sites on a machine.  Each site definition file establishes one or more virtual sites (“server binding”, root directory), defines the name of the site configuration file if any, defines global policy for all apps, directories and files in the site.

The site definition file can limit the set of applications in the site by listing the locations in which application configuration files can be stored. The locations are specified in the form of a search path; each part of the search path can be 

· A relative path to a specific application configuration file.

· A relative path to a directory under which to search for application configuration files.

The site definition file can limit the set of virtual directory configuration files by listing the locations in which vdir configuration files can be stored. The locations are specified in the form of a search path, that follows the same rules as the application search path.

7.1.2.1.2 Site Configuration

A site can have a site configuration file (“c:\inetpub\wwwroot\mysite\mysite.sitecfg”), which allows the machine administrator to delegate some of the site configuration to a separate site administrator. There can be at most one site configuration file for a site; it must reside in the site’s root directory and the site configuration file name must be explicitly specified in the site definition file. 

The site configuration file configures a site within the limits of the global policy and the site definition. The site configuration file can specify and refine the policy for all apps/dirs/files in the site. The site configuration file can refine the application and vdir search paths specified in the site definition file.

7.1.2.1.3 Application Configuration

Each application has exactly one application configuration file (“c:\inetpub\wwwroot\mysite\myapp\myapp.appcfg”, or “c:\inetpub\wwwroot\mysite\mysite.appcfg”). A directory can have at most one application configuration file. Unless the site definition or site configuration file’s application search path indicates a path to a specific application configuration file, the application configuration file must have the same root name as the directory in which it resides and must carry the .appcfg file extension. This avoids problems introduced by maliciously or carelessly adding arbitrary files with a “.appcfg” file extension to a directory.

The application configuration file establishes the scope of an application within both the UNC and URL name spaces. The location of the application configuration file determines the root URL/UNC path for the application. URL/UNC paths that share a common prefix with the root URL/UNC path of the application, and do not share a longer common prefix with any other application’s URL/UNC path are said to be within the scope of the application.

The application configuration file provides configuration for an application within the policy defined by the global, site definition and site configuration files (if any). An application does NOT inherit any settings from any application configuration files that reside in a parent directory outside of the scope of the application. All items (DLLs, scripts etc.) that reside in a directory within the scope of an application do inherit the application configuration from the application configuration file in the root of the application.

The application configuration file specifies the location(s) in which the URT searches for privately installed assemblies. The location(s) for private assemblies are specified in the form of a search path; each part of the search path can be 

· A relative path to a directory under which to search for assemblies. The relative path must point to a directory within the scope of the application.

· An absolute path to a directory under which to search for assemblies.

To avoid fragility introduced by search path order, only the first directory in the search path may contain assemblies with simple names.

7.1.2.1.4 Virtual Directory Configuration

· *.vdircfg – establishes exactly one virtual directory. More than one per directory. By default, file name is used as the relative URL for the vdir, can be overridden in the .vdircfg file.

7.1.2.1.5 Directory and File Configuration

· .dircfg – configures a directory. One per directory. Can exclude sub-directories from URL namespace. Can exclude individual files from URL namespace. Can mention specific .dircfg files in sub-directories. Can specify file config for individual files or groups of files (wildcard).

· .filecfg – configures one file. For each file, <file>.<ext>.filecfg is used first

7.1.2.2 Processing the Configuration Files

 GaryBu proposes to do directive based processing rather than declarative/relational merging.

The information contained in the configuration files is parsed into a set of logical tables:

· Global

· Sites

· Applications

· Virtual Directories

· Directories

· Files

The Global table is a direct representation of the global configuration file.

The Sites table is computed as a merge of the following files:

· Global

· Site Definition

· Site Configuration

The Applications table is computed as a merge of the following files:

· Global

· Site Definition

· Site Configuration

· Application Configuration

The Virtual Directories table is computed as a merge of the following files:

· Global

· Site Definition

· Site Configuration

· Virtual Directory Configuration (recursion here)

The Directories table is computed as a merge of the following files:

· Global

· Site Definition

· Site Configuration

· Directory Configuration (recursion here)

The Files table is computed as a merge of the following files:

· Global

· Site Definition

· Site Configuration

· Directory Configuration (recursion here)

· File Configuration

Each configuration file indicates the context for each attribute (= into which of the logical tables the attribute should be merged). Using XML this could be expressed by defining an additional table (call them “config file tables”) corresponding to each of the logical tables, and scoping the attributes within these tables.

7.1.2.2.1 Controlling the merging process

 This part is currently under design/discussion, together with the directives based config proposal.

The merging process can be further controlled via additional tags on individual attributes. 

Each attribute can be tagged using one of the following options:

· “Final”: differing values in subsequent configuration files are ignored (warning logged). This is the default.

· “Specializable”: subsequent configuration files can only specify values that further specialize this value (Examples: MaxBandwidth at the site def level, can be reduced, but not expanded at the site config level).

· “Overrideable”: subsequent configuration files can completely replace this value.

· “Add”: this attribute should be added to a multi-value attribute.

· “Remove”: this attribute should be removed from a multi-value attribute.

· “Custom_Merge”: a URT class (or a catalog logic table) is invoked to perform the merge. The name of the class is specified in the tag. Aliases for commonly used classes can be declared in any configuration file. Input to the class is the set of logical tables as parsed so far and the configuration file to be merged into them. Output is a new set of logical tables.

In XML these tags could be expressed as additional, optional columns in the config file tables, using the attribute name as a root name and appending “_merge”, i.e. 

 We need a better way to express tags in XML.

<site

MaxBandWidth=1000

MaxBandWidth_merge=”final”

/>

or

<file 


ScriptMap=”.ASP”


ScriptMap_merge=”Remove”

/>

or

In SiteCfg:

<application


MyDSN=”server=\\mysql;uid=xyz;pwd=blah”


MyDSN_merge=”myassembly#DSNMerge” 

>

In AppCfg:

<application



MyDSN=”database=Customer”



MyDSN_merge=”myassembly#DSNMerge”

>

Result:

MyDSN=”server=\\mysql;database=Customer;database=Customer;uid=xyz;pwd=blah”

7.2 XSP

 Based on preliminary info from ScottGu. Physical container association (= dev vs. admin) by MarkusH.

 Do we want directive-based config?

 How do we configure pipeline modules?

 Do we need third-party extensibility for pipeline modules?

	Attribute
	Type
	Logical Entity
	Physical Container

	Cache Size
	Tbd (MB)
	Application
	App Config

App Def (minimum size)

	Session State Size
	Tbd (MB)
	Application
	App Config

App Def? (Minimum size) 

Assembly? (hint: required size per session)

	Session State Timeout
	Tbd (minutes)
	Application
	App Config

	MaxExecutionTimeout
	Tbd (seconds)
	Application
	App Config

App Def? (Minimum timeout)

	
	
	
	

	Session State Provider
	Tbd (Machine & Port)
	Application
	App Config

App Def? (functionality required?)

	Application Root Directory
	URL
	Application
	App Config (implicy in location!)

	Application Assembly Cache
	Tbd
	Application
	App Config?

App Def (relative path)

Site (Default? Valid locations to choose from?)

	
	
	
	

	App Sandboxing Settings

 How does this relate to trust grant in assembly cache?
	Tbd
	Application
	App Config

	User Roles
	Tbd
	Application?
	App Def

App Config? (Add more roles)

	Authorization Accounts
	Tbd
	Application
	App Config

	
	
	
	

	Application Class
	Tbd
	Application
	App Def

	Pipeline Modules
	Tbd
	Application
	?

	Debug vs. Retail
	?
	Application
	App Config?

	
	
	
	

	Automatic Application Restart
	?
	Application
	App Config?

	Automatic Failure Recovery
	?
	Application
	App Def?

	Extension/Verb Mapping to IHTTPHandlerFactories
	?
	Application
	App Def?

	
	
	
	

	Administrator Contact
	String
	Application
	App Config?

	Default Script Language
	?
	Application
	App Def?

	Custom Error Messages
	?
	Application
	App Def? Site?

	Debugging Settings (Security)
	?
	Application
	App Config?

	Output Buffering
	BOOL
	Application
	App Config?


7.2.1 Resource Constraints:

· Cache Size -- Total amount of cache space (in Mb) available to the app

· Session State Size -- Total amount of session state storage (in Mb.) to use with session state

· Session State Timeout -- Default timeout (in mins) for session state

· Max Execution Timeout -- Number of seconds request is allowed to run before COM+ automatically kills it (protects against infinite loops, runnaway requests, etc)

7.2.2 Location Settings:

· Session State Provider -- Machine and port of session state provider

· Application Root Directory -- Specifies the root filesystem directory of the application

· Application Assembly Cache -- Filesystem directory containing the application assembly cache

7.2.3 Security Settings:

· App Sandboxing Settings -- Security restrictions for app (file system + network access, etc)

· User Roles -- List of application roles that accounts will be mapped to

· Authorization Accounts -- Differents accounts (NTLM, SQL, Text File) to map to roles

7.2.4 Application Runtime Settings:

· Application Class -- Code that handles module events (onSessionStart, OnApplicationStart, etc).

· Pipeline Modules -- Modules (and their ordering) within the pipeline

· Debug vs. Retail -- Indicates whether debug or retail binaries + compilation should be used

· Automatic Application Restart -- Amount of time (or number of requests) that should elapse before application automatically cycles itself (ala Apache)

· Automatic Failure Recovery -- Number of times an application can fail within a 30 second window before server assumes a serious problem is happening and stops trying to restart 

· Extension/Verb Mapping to IHTTPHandlerFactories -- Allows multiple extension types to be handled (.soap, .page, etc)

7.2.5 Misc Configuration Settings:

· Administrator Details -- Contact information for administrator (email, pager, etc) for automatic notification of problems/issues

· Default Script Language -- Default language compiler for declarative file format

· Custom Error Messages -- What error messages should be displayed when specific errors occur

· Debugging Settings -- Restrictions/ACLs for debugging apps 

· Output Buffering -- Specifies whether buffering is on or off by default

7.2.6 ISV Licensing Restrictions

· (From ScottGu) Some other XSP Application settings that I've been thinking of include ISV Licensing restrictions -- restrictions on the maximum number of active sessions, web-farm support (how many machines allowed in a cluster), maximum number of individual users (restrict security database), etc.  Note that these would all be settings that would not be administerable by a customer -- only the origionating software vendor.

 These are likely candidates for an (immutable, signed) application definition file. We’d need some rudimentary mechanism to disallow usage of the assemblies (or XSP files?) in such an app without a proper app definition file. It probably doesn’t have to be bullet proof (see COM/ActiveX Control licensing mechanism: proof of intent is sufficient).

7.3 Runtime (Lightning)

Most runtime attributes - except for some context related attributes - are specified at development time and are created and consumed using the IMetaDataEmit and IMetaDataImport interfaces.

 What about the reg keys defined in http://comrtime/Specs/Miscellaneous/regkeys_used_in_com.htm?

7.3.1 Application Domain & Application Config

 Need to be able to attach configuration to an application domain! -> CraigSi/StevenPr

7.3.2 Assembly Cache (Fusion)

 Should the assembly cache be accessible via config APIs/catalog?

7.3.3 Context

 Waiting for context and activation specs from the VOS and app model teams. -> GopalK, ShawnWoo/SatishT

URT Context requirements:

· System Context policies (Tx, Sync etc.) must have developer friendly attribute syntax

· System Context policies must be replaceable by third parties

· Context policies and their parameters can be specified by the developer (= compiled into the module) or by an application integrator/administrator (= in the application configuration file)

· It must be possible to add arbitrary third party context policies and their parameters

 Do we special case the system context policies (to make them “friendly”) or do we provide a general mechanism to abstract policy internals from the attributes?

· It must be possible to override (some) developer specified attributes in the app config file.

 Which attributes must be overridable?

· It must be possible to enforce override rules between developer specified attributes and configured attributes.

· It must be possible to validate consistency between different context attributes (i.e. tx and sync etc.).

 What are these rules/validations? Who codes them?

7.3.4 Channels

· It must be possible to enumerate all the channels/endpoints on which to listen for a given machine

· It must be possible to select certain channels as part of the application configuration.

· It must be possible to specify endpoints for preinstalled channels as part of the application configuration (per app).

· It must be possible to configure channels/endpoints at the machine level (policy: turn of all HTTP channels).

· It must be possible to add new channels as part of an application or on a machine wide basis.

 A Component Category-style approach is being proposed, but this mechanism doesn’t allow specifying parameters (endpoints etc.).

 Can this be another “binding” in the .global or .site file?

 If we use the “cookdown” mechanism for channel/context config, what are the performance requirements? Do we need an additional layer of caching or can the “regdb cache” be used directly?

 What is the mechanism to bootstrap a listener for non-Ducttape protocols?

7.3.5 Security

 => LorenK

	Attribute
	Type
	Logical Entity
	Physical Container

	Permission
	Tbd
	Class

Interface

Method
	Module

Application?

	Permission Reference 

 (in code? declarative?)
	Tbd
	?
	Module

	Group Reference

 (in code? declarative?)
	Tbd
	?
	Module

	Group
	Tbd
	Machine

Application?
	Config

Machine?

Application?



	GroupMember
	Collection of User Identities and Groups
	Group
	

	PermissionGrant
	Collection of Permissions
	Group
	Application?

Config

Machine

	User Identity
	Tbd
	?
	?

	Assembly Trusted
	Bool?
	Assembly
	Machine?

	Certificate Trust
	Tbd
	Certificate
	Machine?


 How common will new permissions be? Do only infrastructure providers write new permissions or does each application define a set of permission, in replacement of – one aspect of – MTS/COM+ 1.0 security roles?

 How can permissions be versioned?

 Are permissions scoped in any way? It seems to be a requirement to have permissions that span applications.

 How are groups named/scoped?

 How are user identities stored/named/scoped?

 Do we need to capture dependencies between permissions, i.e. “cash withdrawal” requires “database access”?

 How do we provide MTS-style declarative security? Auto-gen a permission for each class/method? Would this require (administrative) structure/hierarchy on permissions?

 Do we need policy on permissions? (LorenK)

7.3.5.1 COM+ 1.0 Role-based Security

This section expresses the COM+ 1.0 role-based security attributes in the URT 1.0 administrative framework. It is merely meant to be an illustration of attribute usage for those familiar with COM+ 1.0 role-based security.

	Attribute
	Type
	Logical Entity
	Physical Container

	[Role Definition]
	[String, scoped by assembly]
	Application
	[implied: superset of all role references and role access attributes in the application]

	Role Reference
	String
	Class
	Module

	Role Access
	String
	Class

Interface

Method
	Module

	Role Membership
	Collection of User Identities/Groups
	Application
	Config

	Role Alias (?)
	String + Collection of Roles
	Application
	Assembly (?)

Config

	Security Enabled
	Bool
	Application

Class
	Config

	Role-base Security required
	Bool
	Assembly
	Assembly


7.3.5.1.1 Role Definition

Roles are a development time abstraction for security principals. At deployment time, roles are associated with real security principals, like Windows NT user accounts or user groups.

Roles are defined at development time. Their visibility is scoped by an application (domain). Roles are named by the developer using simple, unstructured strings. At deployment time and runtime, role names are disambiguated using the assembly identity that defined the role string.

Roles can only be defined through Role Access and Role Reference attributes in a module. Roles can only be associated with classes, interfaces or methods through Role Access attributes in a module.

 Do we need a mechanism to enable role definition/assignment at the assembly or configuration level?

7.3.5.1.2 Role Access

This attributes indicates that the system is to allow access to a class, interface or method to members of a specified role. Multiple roles can be granted access to a particular class, interface or method.

Role permissions are cumulative: 

· If a role is granted access to a class, members of this role can access all methods in this class. 

· If a role is granted access to an interface, members of this role can access all methods in this interface.

 Do we need to worry about fields and statics? Assumption: fields – yes, statics – no. Likely depends on remoteability of fields/statics.

Role Access attributes can only be specified at the module level (= module compilation time!).

7.3.5.1.3 Role Reference

This attribute indicates that the implementation of a class performs programmatic checks if the current caller is a member of one or more specific roles. The class will typically behave differently depending on the role membership of the caller.

Role References can only be applied to classes, not individual interfaces or methods. Expressing a role membership does not automatically grant access role members access to the class; this must be done through an additional Role Access attribute.

Role Reference attributes can only be specified at the module level (= module compilation time!).

7.3.5.1.4 Role Alias (?)

A Role Alias combines one or more developer-defined roles into a single role for administrative purposes. Role Aliases – just a like Role Definitions – are scoped by an application (domain).

A developer-defined role can be a member of at most one Role Alias. 

If a developer-defined role is a member of a role alias, no role membership can be defined for the developer-defined role; the system treats all members of the role alias as members of the developer-defined role.

 Do we really want/need this mechanism?

7.3.5.1.5 Role Membership

The Role Membership attribute maps one or more security principals (example: NT user accounts or groups) to a Role Definition or a Role Alias.

Role Membership attributes can only be specified in the Application Configuration (= Application Domain).

7.3.6 Component Categories?

 A mechanism to categorize assemblies/classes is being defined. Should this be available through config APIs/catalog?

7.3.7 COM Interop

All COM interop attributes are specified at development time and are captured in the COM Interop specification.

 Need to confirm with DennisAn.

 OLE clipboard formats? Short User Name? Icons? ProgID etc? COMCAT?

7.3.8 Custom Registrar?

7.3.9 File Extensions/MIME Types?

7.4 WebObjects

7.4.1 Remoting

 Waiting for Remoting spec from app model team. -> ShawnWoo/SatishT

 RemoteServerName, library vs. server app?

7.4.1.1 Activation

Key concepts: 

· Level objects

· Level object Properties (= interceptors)

· Activators

· Activation Messages

A hierarchy of level objects needs to be established.

For each level object, the set of properties must be determined: 

· the set of properties is established dynamically, based on specific activation requests. 

· It is interesting to specify a fixed set of properties. 

· Each property can have it’s own set of configurable parameter (Property bag? String?).

For each level object, the set of activators must be determined:

· The set of activators is established dynamically, based on specific activation requests.

· One of the activators is special and handles the “FindOrCreate” functionality for the level.

 How does the runtime determine if a class should be “activated” vs. just created (remoteable flag in assembly meta-data?)?

7.4.2 Naming Service (WONS)

The Web Object Naming Service provides a distributed location service.

 Where is the line between config and WONS?

 Does WONS go through catalog for it’s internal config needs?

 How do WONS APIs and config APIs relate/complement each other?

7.4.3 Transactions

 Waiting for Transaction spec from app model team. -> ShawnWoo/SatishT

 Assumption: The tx attributes will be identical for the COM+ 1.0 tx attributes.

This attribute indicates if – and if so in which way – the implementation of a class depends on automatic transactions for correctness.

	Attribute
	Type
	Logical Entity
	Physical Container

	Transaction
	Enum: Supported, Required, Requires New, Not supported, Not Specified
	Class
	Module

	Transaction Timeout
	DWORD
	Class

Will this be per class or per app?
	Config

	[Default Transaction Timeout]
	DWORD
	Class
	Module

[Assembly/App?]

	Default Transaction Timeout
	DWORD
	Machine
	Machine


If the value is “not specified” the registration system will assume that the component will ignore transactions in the context but will not interact with any transaction protected resource (value “Transaction Ignored”).

  “NoVote”/ “Must run in callers context”?

7.4.3.1 Synchronization?

 Is this provided by the runtime team (CBrumme)?

 Waiting for spec from App model team -> ShawnWoo.

	Attribute
	Type
	Logical Entity
	Physical Container

	Synchronization
	Enum: Supported, Required, Requires New, Not supported, Not Specified
	Class
	Module


7.4.4 Object Persistence

tbw

7.4.5 Eventing

tbw

7.4.6 Example: COM+ 1.0 Attributes

7.4.6.1 Process Attributes

	Attribute
	Type
	Logical Entity
	Physical Container

	Process-level Security Required?
	Bool
	Application
	Config

	Authentication Level?
	Enum
	Application
	Config

Do we need a dev time attribute?

	Impersonation Level?
	Enum
	Application
	Config

Do we need a dev time attribute?

	Identity?
	String
	Application
	Config

Would “Interactive User” be a dev time attribute?

	Identity Password?
	String
	Application
	Config (LSA!)

	Shutdown?
	DWORD
	Process
	Config

	Disable Changes?
	Bool
	Application
	Config

	Debugger path?
	String
	Process
	Config

	Enable CRM?
	Bool
	Process
	Module

This should become “Requires CRM”…

	Enabled 3GB support?
	Bool
	Process
	?


7.4.6.2 Just-In-Time Activation (JITA)

 Waiting for JITA spec from WebObjects team. -> ShawnWoo/SatishT . It looks like there will be no JITA in URT 1.0.

Just-in-Time Activation enables the system to do proactive state management for classes to which callers maintain long-lived references.

In order to support JITA, a class must call state management functions (SetComplete, SetAbort) or use the Auto Done attribute to inform the system when any internal state an instance of a class might carry can be safely discarded (“the instance has become stateless”).

	Attribute
	Type
	Logical Entity
	Physical Container

	JIT Activation
	Enum (Supported, Not Supported, Not Specified)
	Class
	Module

	Auto Done
	Bool
	Method
	Module


7.4.6.2.1 JIT Activation

 Does the concept of a class “not supporting” JITA make sense? If the class never calls the state management APIs, it will still behave correctly…

 Do we need a concept of “requiring JITA” (or better: requiring deletion) for cases where a class does not guarantee state cleanup if it is reused for the same or other callers? 

7.4.6.2.2 Auto Done

This method-level attribute indicates the system that upon return from a call to this method, the class instance can be considered stateless.

The Auto Done attribute can only be specified in a module (= at compilation time).

7.4.6.3 Object Pooling

 It looks like there will be no Object Pooling in URT 1.0.

Object Pooling allows class instances to be reused for different callers. It is often used in conjunction with JIT Activation.

A class that supports Object Pooling guarantees that any state that it maintains when being reused for a different caller is safe (i.e. does not leak confidential state like credit card numbers, does not violate the atomicity rule of transaction etc.).

	Attribute
	Type
	Logical Entity
	Physical Container

	Object Pooling
	Enum (Supported, Not Supported, Not Specified)
	Class
	Module

	Object Pooling Enabled
	Bool
	Class
	Config

	Object Pool Size Min/Max
	DWORD, DWORD
	Class
	Config

Do we need to support specifying default values in the module/assembly?

	Object Pool Creation Timeout
	DWORD
	Class
	Config

Do we need to support specifying a default value in the module/assembly?


7.4.6.4 Object Constructor String?

 Waiting for spec from App model team -> ShawnWoo

 Will this be subsumed by WFC’s Managed Properties?

	Attribute
	Type
	Logical Entity
	Physical Container

	Object Constructor
	Enum (Supported, Required, Not Supported, Not Specified)
	Class
	Module

	Object Construction Enabled
	Bool
	Class
	Config

	Object Constructor String
	String
	Class
	Config


7.4.6.5 Tracking?

 Waiting for spec from App model team -> ShawnWoo

	Attribute
	Type
	Logical Entity
	Physical Container

	Tracking Enabled
	Bool
	Class
	Config


7.4.6.6 Queuing?

 Waiting for spec from App model team -> ShawnWoo

	Attribute
	Type
	Logical Entity
	Physical Container

	Queuing
	Enum (Supported, Not supported, Not specified)
	Interface

Do we need this at method/class level?
	Module

	Queuing Enabled
	Bool
	Application

Interface
	Config

	Listener Enabled
	Bool
	Application
	Config

	Exception Class
	ClassRef
	Class
	Module


7.4.6.7 Load balancing (?)

 Will this be supported in URT 1.0?

This attributes indicates if a class can be used as part of a load-balancing cluster. In order to support load-balancing a class must not rely on any machine specific state between instance creations, and can not share any state with other classes in the same module, process or machine, which is not accessible to other instances of these classes. 

	Attribute
	Type
	Logical Entity
	Physical Container

	Load balancing
	Enum (Supported, Not supported, Not specified)
	Class
	Module

	Load balancing Enabled
	Bool
	Machine

Class
	Config


7.4.6.8 Context

	Attribute
	Type
	Logical Entity
	Physical Container

	Must be activated in caller’s context
	Bool
	Class
	Module


7.5 Distributed Messaging Bus

 Bricks vs. Activators…

 Path, PathManager?

 Durable Channels?

7.5.1 Server side

In URT 1.0, messaging will exclusively use the universal listener (Ducttape) on the server side. Very likely the proposed Ducttape file structure will meet messaging requirements. Messaging endpoints map to URLs in the Ducttape world.

 How do XSP and Messaging relate? Are they layered? How does Ducttape choose one or the other if not? How does an admin/dev specify which one they want?

Additional logical entities are:

· Endpoint (=URLs)

· Brick

· Path (of Bricks)

 How does the path relate to XSP pipeline and Remoting level objects? 

· Channel

An initial bootstrap scenario (FedEx messaging demo) for messaging/catalog integration drives the following attributes:

 Need to incorporate more requirements, like message types and inheritance.

	Attribute
	Type
	Logical Entity
	Physical Container

	Channel Name
	String?
	Channel
	URL?

	Durable
	BOOL
	Channel
	URL?

	InboundPath
	Foreign key -> Path
	Channel
	URL?

	OutboundPath
	Foreign key -> Path
	Channel
	URL?

	SendToURL
	String
	Channel
	URL?

	[SourceURL]
	String
	Channel
	Implicit

	Channel Timeout
	DWORD?
	Channel
	URL?

	Message Timeout
	DWORD?
	Channel
	URL?

	· Name

· PathID

· QoS (aggregated)


	
	
	

	PathID
	?
	Path
	URL? Machine? 

	PathName
	String?
	Path
	URL? Machine? 

	Quality of Service
	Flags? Strings?
	Path
	URL? Machine? 

	PathID
	?
	Configured Brick
	URL? Machine? 

	BrickName
	Assembly/classref?
	Configured Brick
	URL? Machine? 

	BrickParameters
	Name/Value pairs?
	Configured Brick
	URL? Machine?

	Order
	DWORD?
	Configured Brick
	URL? Machine? 


Quality of Service consists of multiple values that can be or’d together. For each endpoint (URL), multiple QoS can be specified.

Message Types: incoming and outgoing. In V1 likely just a collection of strings (URIs?).

Path of Server Bricks: internal to the server! QoS is related to Brick path, but one cannot necessarily just be derived from the other. Some validation can be performed (i.e. declared QoS is actually supported by the brick path). 

· For ease of administration inheritance can be interesting (a requirement for Pub/Sub, see below).

· Securing which classes are allowed to run as bricks is interesting, although likely a V2 feature (we didn't discuss this, but Lescek mentioned it at the URTSec meeting).

 What is the scalability/performance requirement for channels? How many channels per machine? How often do durable channels get updated? => Scot Boyd

 Are transient channels stored through catalog mechanisms? Depends on performance requirements for V1.

 What store will be used for durable channels? RCraig. Depends on perf requirements for V1.

7.5.2 Client side

For the initial scenario the same server attributes seem to be sufficient.

 How do we attach paths/channels/endpoint config to client apps? EXEs? WebApps? Browser?

· Need to be able to discover endpoints and their (public) attributes. Likely via naming service.

 Unclear if endpoints need to be externally configurable on the client side. This is definitely a remoting requirement, but not currently a messaging requirement. URTMsg (DCole?) to follow up with the remoting team.

7.5.3 Publish/Subscribe

· We briefly touched Pub/Sub, but didn't go into much detail. In V1, subscriptions will be stored on the server only (= broker always lives on the server). Subscription by URL prefix is a Pri 1 requirement (aka inherit subscriptions from parent URL nodes).

7.6 IIS 5.0

 Current plan for URT 1.0 seems to be that XSP must run on both IIS 5.0 and Ducttape/ universal listener. It may be necessary to map some of the ducttape/XSP config back into the metabase…

7.6.1 Application Roots?

7.6.2 Virtual Directories?

7.7 Fusion Settings

(= Application specific configuration information).

 => HariKris

 Are we going to have both Fusion settings and managed properties in URT 1.0? -> HariKris (Fusion), StefanPh (WFC)

 Is there a single settings file per application? How does the settings file get created?

7.8 WFC

7.8.1 Managed Properties

 Need to engage with Cdias/ StefanPh.

WFC Managed Properties (http://vs/documents/cdias/managedproperties.doc) are a mechanism to store arbitrary configuration state for COM+ Classes. 

Server WFC uses managed properties to store configuration for system elements like Queue Components.

 Should these be stored in the same XML file as the configuration file? Same as settings file?

 Do these participate in (persistent) caching of attributes?

 How do these related to Fusion settings?

 What is the admin UI for managed properties?

 Should the system configuration aspects of managed properties be changed to use the URT admin framework?

7.8.2 Others?

7.9 Others

7.9.1 XDO

 DataLink admin? -> LaraD/PatD

7.9.2 XML Parser?

7.9.3 Net Classes?

7.9.4 DTC?

 Can we assume that COM+ 1.0 Admin will be used?

7.9.5 IMDB?

 Can we assume that COM+ 1.0 Admin will be used?

8. Related Specs

· This document does not define the URT application model, although the scenarios, attributes and other concepts described in this document are closely related to the URT application model. Refer to ?

 -> MaryKir

· This document does not describe the Project42 configuration APIs. Refer to the Project 42 Configuration API Requirements spec for more details (location tbd).

· This document does not describe the Project42 catalog infrastructure. For details refer to the implementation specs on http://appsrv/asconfig, specifically http://appsrv/ASConfig/specs/urt1/simpletablesV2.doc. 

9. Open Issues

In addition to the issues outlined throughout the document, the following items require further attention:

10. Revision History

May 17, 1999
Rev 0.1 (MarkusH): Created.

May 19, 1999
Rev 0.2 (MarkusH): Added Attribute vs. Container vs. Entity matrix. Added more potential consumers. Added more details to container/entity/attribute terminology.

May 24, 1999
Rev 0.3 (MarkusH): Added preliminary info about URT Security.

May 27, 1999
Rev 0.4 (MarkusH): Added preliminary Ducttape attributes, including initial attribute set for M4 drop. Added Ducttape entities (app pool, virtual site, page). Added M4 scenario for Ducttape. Clarified COM+ 1.0 attributes used as examples.

June 3, 1999
Rev 0.5 (MarkusH): Added preliminary XSP attributes. Added Site Config container.

June 8, 1999
Rev 0.6 (MarkusH): Added preliminary notes on Ducttape/XSP site configuration. Incorporated feedback from XSP: clarified that HTML templates are optional; clarified that config manifest does not have to be signed; clarified that an assembly does not need to be “registered” in app config/definition in order to work; added ISV Licensing attributes. 

July 13, 1999
Rev 0.7 (MarkusH): Added issue around in-use and actual config getting out of sync. Added info on context and channel config. Added info on messaging config. Updated XSP/Ducttape scenarios/issues. Fleshed out the introduction/framework/catalog sections. Added section about naming service.

July 16, 1999
Rev 0.7a (MarkusH): Clarified that messaging is a top-level feature, not thought of as part of WebObjects.

Page 26 of 29

