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History

(a.k.a. Why Simple Tables, Why The Catalog?)

Many development teams depend on configuration information.  Simple tables allow those teams to easily use configuration information without being tightly coupled to and impacted by how and where that information is stored, assembled, updated, verified, managed, and distributed.  Managing configuration for real-world scenarios, especially when those scenarios are inherently distributed or require multiple composable services, is a very complex problem space.  Simple tables do not inhibit the development team tasked with such management from making good choices.  Simple tables help such a team turn those good choices into a shipping solution.

Simple tables are architected for the configuration space specifically.  The configuration space in general, and the distributed application management space specifically, has many characteristics which deeply influence design and implementation decisions.  Two distinct and overlapping times exist in this space, runtime and configuration-time, with competing requirements.  Reads occur repeatedly during runtime and from many processes, meaning they must be as fast as possible with minimal working set.  Reads at runtime must never be blocked by writers in (overlapped) configuration time.  Reads at runtime are orders of magnitude more common than writes at configuration time.  While concurrent reader/writers do occur in configuration time, they are rare, and few: nonetheless, they must be supported.  At runtime, performance is king.  At configuration time, rich validation, transactional updates, proper isolation, and security are critical.  Performance and scaling concerns at configuration time revolve around huge units of change and remote administration, making composable transactions and efficient marshaling strategies critical as well.

The architecture behind configuration in the COM+ 1.0 Services release, shipping in Windows 2000, is called simple tables v1.  With simple tables, we were able to support a rich configuration schema, utilize (and even change among) multiple data stores under the covers, embed rich configuration logic, merge algorithms, and validation rules without disrupting calling code, and build a configuration architecture which supported efficient remote administration, high performance runtime access, composable configuration transactions, role-based security, and differing levels of isolation at configuration time and runtime.  

Collectively, this configuration architecture is referred to as the COM+ 1.0 Catalog.  The end result is that all COM+ services compose and work with each other, deploy together in application units, and are entirely managed via one administration api (with an MMC snap-in built atop that api).  The customer benefit is a dramatically minimized surface area for composition, deployment, and administration of a rich set of composable application services.

As a result of simple tables and the catalog, we were able to serve up all necessary configuration at COM activation time / runtime via the catalog.  We were able to deliver attribute-based programming and configuration via a single application-based administration api which encompassed all COM+ services (including activation, syncronization, security, pooling, queuing, events, transactions, load balancing, and IMDB).  Further, we built our administration UI (an MMC snap-in) atop our administration api.

COM+ 1.0 Services arose from the dual objectives of uniting COM with MTS (Microsoft Transaction Server) and at the side time expanding and improving upon the set of shipping services from those shipped in MTS.  Earlier versions of the catalog shipped in MTS v1 and v2, where the issues of unified administration, runtime vs. configuration-time, service composition, and application deployment were first tackled or at least realized.  Simple tables were invented to address the lessons learned and problems encountered from that experience.  In MTS, we heavily relied upon the combination of logic and data to deliver our configuration and administration solution.  However, we also realized several problems for which simple tables were invented to solve:

· We needed a schema from which the administration api and many other pieces of the catalog could be driven.  Our “schema” was then hidden in the code itself as a mix of declarations and code.

· Changes to that “schema”, our registry storage structure, queries, or logic always required new code and usually required rebuilding the product.  Less brittleness and easier extensibility, especially considering the increased number of services (and therefore development teams), was needed.

· The logic code and the data storage code was blurred together, with the whole being tightly bound to the registry.  We had to de-couple the logic from data storage.  We knew we also had to move out of the registry, so encapsulating location and storage dependencies also became necessary.

· Converting tables into and out of their marshalling format a column at a time was very inefficient.

· Transactional updates were not supported and not really possible in the existing infrastructure.

Mission And Goals

(a.k.a. Why Bother Unifying Configuration And How?)

COM+ 1.0 Services, a merger and expansion upon COM and MTS, ships as part of Windows 2000.  The COM+ 1.0 catalog, based upon simple tables v1, unifies the configuration and administration of all its services.  This unification enables composition of those services by application developers, supports deployment of applications and their services, and provides a common administration api and schema over it all.  The end result is a set of application services which work together and a dramatically minimized surface area for the customer.

Based upon this success, the catalog team has been chartered with a similar mission in the broader context of the URT (Universal Runtime) and AS (Application Server) products of Project 42.  The danger for the URT product, given that its pieces are being delivered by numerous development teams, is that instead of appearing as a unified platform, it appears as a bunch of pieces which don’t work together.  The danger for the AS product, given its job of delivering “abilities” atop the URT platform, is that instead of URT applications just getting better, they appear to be hosted in an entirely different environment.  To avoid these dangers, these products must be unified along the lines of programming model, security, and configuration/administration.  The mission of the catalog team is to unify configuration and administration first within each product and then between those products.  The high-level goals of that mission include:

· Support a common administration api for reading and writing application and service configuration within a unified schema into which all dependent development teams contribute.

· Support construction of a common administration user interface built entirely atop the administration api, working tightly with the user interface team.

· Support application deployment in units encompassing all necessary pieces of the application.

· Support the composition of the various services provided.

· Encapsulate configuration logic and storage from development teams consuming pieces of configuration.

To fulfill this mission and its high-level goals, the following technical requirements carry forward from simple tables v1 and the COM+ 1.0 catalog:

· A lightweight, easy to use, easy to implement infrastructure with powerful results.  This means minimal interfaces and methods, with data cached at the point of use, and direct access to the cache whenever possible (no copies).  Implementing and extending must be easy as well, requiring clearly defined semantics.  The results must be powerful: queryable, marshallable, cache-oriented, with batch update semantics, etc. 

· Datastore independence and transparency, dynamically.  Datastores are a constantly shifting landscape and no datastore provides a one-size-fits-all solution for configuration.  As little code as possible should be tightly coupled to a particular datastore, coupling should be dynamic rather than permanent, and granular.

· Datastore location independence and transparency.  Configuration is distributed throughout file systems and among computers.  Manipulating configuration “remotely” must be as easy as doing so locally and must have reasonable performance.  Requests which are either location independent or indirected must be supported.

· Plug-and-play client and server side logic.  Domain specific logic on both the “client” and “server” side is necessary.  This logic must be transparently plug-able and storage format independent.

· A scalable and reliable infrastructure.  Scalability and reliability are critical and must be built in.  We dogfood our own product technologies (e.g. security and transactions) to help achieve this.

Simple Tables v2 and the Project42 catalog are an evolution, not revolution, of the v1 design and implementation.  The architecture, interfaces, and implementation predominantly derive from v1.  The changes are experience-driven.  The driving technical goals behind the v2 evolution are:

· A developer, versed in C and familiar with COM interface concepts, can read the first dozen pages of this spec and then start using simple tables productively.

· The lines of code and number of method calls necessary to do useful work is minimal.

· In developer drops, the schema (a.k.a. meta) can be extended without the source.

· All parts of the catalog, including the administration api, will dynamically adapt to evolving schema.

· The meta database is enriched to fully support the administrative api, deployment, and monitoring.

· Meta and wiring changes occur via one file; a build automatically updates dependent files.

· New datastores and logic can be plugged in dynamically, without catalog source, with minimum coding.

· The interfaces and semantics allow for maximum performance and minimum working set.

· The few cache implementations in the catalog are radically fast and leveraged by all data and logic tables.

· Performance targets (for minimal cycles, minimal working set, and solid scaling) are part of the specification and the bar is set high.  Icecap profiling occurs on an ongoing basis.

Technical Summary

(a.k.a. For People Who Don’t Want To Read A Technical Specification)

Configuration is modeled as a set of related tables.  Each uniquely configurable entity (such as sites, applications, components, computers, clusters, and so forth) is represented by a table with a discoverable schema.  Each row in the table represents a configuration instance (such as a particular site, application, etc).  The columns represent the configuration properties on the instance.  The relationships among configuration tables are also discoverable and properly maintained (e.g. when you delete a site all of the related configuration should be cleaned up too).  In object parlance, tables of rows with columns would be referred to as collections of objects with properties.

Part I: Using Simple Tables: All configuration tables are obtained via a table dispenser.  You obtain a table by specifying the table’s identity (e.g.: application configuration), a query for selecting which rows you want (e.g.: all the applications in some particular site), and a level-of-service expectation.  Given this information the table dispenser gives you a simple table object.  The table dispenser matches your request with an object which encapsulates all the implementations necessary for servicing your request.  This binding process is flexible to fault in implementations which know how to deal with how and where the configuration is stored, which know how to merge, validation, and act on the configuration, and which meet the service requirements of the caller.  The table dispenser encapsulates the magic of this binding process from the caller.  The binding process is dynamic and request driven.

Simple tables have a small and common set of methods, so one table looks like any other table.  What differentiates them is their schema and content.  Conceptually a simple table object encapsulates a read cache containing the results of your query, a write cache in which your pending changes accumulate, and the particular pieces of code which know how to store, retrieve, merge, validate, act on, and serve up the requested configuration.  Only executing a query or committing accumulated changes results in storage interaction (which may go out of process or off machine).  Simple table objects can be implemented extremely efficiently.

Part II: Schema Evolution: A configuration system has a lot of interesting meta information.  What are the tables, what is their schema, what are their relationships, supported queries, and so forth?  The meta database answers to these sorts of questions.  The meta database is accessible via simple tables and is dynamically extensible.  Therefore, meta information is discoverable.  Configuration schema evolves throughout a product life cycle.  Code which does not adapt to this schema evolution is brittle.  Discoverable meta information makes possible a configuration and runtime system which dynamically adapts to schema evolution throughout the product life cycle.  The catalog expresses meta in a human editable XML format.

Part III: Storage and Logic: The table dispenser binding process allows plugging in new storage and logic under-the-covers on a granular basis (per database, table, column, etc).  The table dispenser begins by asking a set of implementation dispensers which one of them knows how to store and retrieve the requested configuration.  This allows pieces of configuration to be distributed among differing stores and allows the same configuration to be stored in different formats (e.g. XML, INI files, or the metabase).  Once one of these dispensers has served up an implementation, the table dispenser then asks another set of implementation dispensers individually if they want to intercept calls on this request.  This process allows chaining together the right set of implementations for the specific request.  New storage and new logic can be plugged in by implementing an object with three methods.

Part IV: The Catalog: The catalog consists of the services and functionality built atop simple tables.  Examples: 

· The managed code configuration objects publicly exposed in the URT, atop which the Application Server user interface and other administration tools will be built.

· Qualifiable and transient change notification support for any and all configuration tables.

· Configuration cookdown strategies which optimize performance in key scenarios.

· Inheritance for defaults and policy with support for common directives.

· Role-based security and composable transaction support.

· Side-by-side support for multiple products, versions, and distributed administration scenarios.

· Etc…

These services and extra functionality are all dynamically driven from meta information, so that they automatically adapt to schema changes during the product life cycle.  Besides services and functionality provided by the catalog team, dependent development teams can easily evolve their own schema, plug-in their own stores and logic, and build specific services and functionality.

Roadmap

(a.k.a. How Many Pages of this Spec Do I Need to Read?)
This is a detailed technical specification of simple tables and the catalog.  If unfamiliar with basic database concepts, read "Appendix A: Basic Database Vocabulary" before proceeding.  If you are already a simple table guru and just want to find out what changed, read “Appendix C: Changes from Simple Tables v1”.  Note that all examples in this spec are done in C, most examples are complete, and error handling is omitted for brevity.

People do one or more of the following with simple tables (from most to least common): 

· Use simple tables to read and write configuration information (by far the most common!).

· Evolve the configuration schema (by adding new table schemas or extending existing ones).

· Plug in a new datastore or new table-specific logic (note that simple tables encapsulate data storage and table logic from callers, and also encapsulate data storage from logic).

· Understand how specific pieces of the catalog work (like transactions, security, notifications, etc).

This spec is organized according to these types of work.  Each type of work is detailed in its own portion of this document with sections which first introduce and present how to do the work followed by relevant detailed reference sections.  Reading the first couple sections of each part should give a solid and reasonably deep technical overview.

Learn how to use simple tables in Part I: Using Simple Tables.  “Obtaining Simple Tables” introduces how to retrieve tables of information without infecting your code with the details of where that information came from and how it was assembled.  “Reading From Simple Tables” and “Writing Via Simple Tables” introduce how to work with a table of information once you have obtained it.  Having introduced query for, reading from, and writing via simple tables, “Important Conclusions” wraps up with the main ideas.  Reading just these sections will give you a solid technical understanding of using simple tables.  You can start coding at this point.  Of course, to truly leverage simple tables, you will want some understanding of how meta, storage, and logic work (see Part II and Part III descriptions below).  Detailed reference information about using simple tables is covered in "Reference: Using The Table Dispenser", “Reference: Reading From Tables”, “Reference: Writing Via Tables”, and “Reference: Advanced Table Usage”.

Learn how to evolve the configuration schema and write code which dynamically adapts to schema evolution in Part II: Schema Evolution.  “Extending Schema” illustrates how to extend existing schema.  “Dynamic Schema Adaptation” demonstrates how to write code which adapts dynamically to schema evolution, since schema evolves throughout the development cycle.  The first reference section, “Reference: The Meta Database”, documents the meta database exposed via simple tables, and details the meta information available on databases, tables, relationships, columns, queries, etc.  Code which dynamically adapts to schema evolution does so by making use of the (fast!) meta database at runtime.  The second reference section, “Reference: The Meta Source”, documents the XML-based source file for specifying meta.  This section also covers the meta compiler which consumes and validates that source and produces the meta database as well as schemas for the core storage engines in the catalog.

Learn how to plug-in new datastores, add rich logic, and fault-in the right implementation for the job in Part III: Stores And Logic. Callers obtain tables from the table dispenser by specifying the table identity, a query, and a requested level of service.  “The Wiring Process” introduces how the right implementation, datastore, and logic are wired up to satisfy these requests.  “Easily Plugging In Stores” and “Easily Plugging In Logic” respectively introduces how you can easily plug new stores into the catalog and how you can plug new (store independent) validation and action logic into existing tables.  “Virtual Tables” introduces you to some of the more advanced possibilities with simple tables, including: query resolution, virtual views, arbitrary interception, and layered logic.  

The first reference section, “Plug-ins, Implementation Dispensers, and Table Implementations”, details the interfaces and semantics store and logic implementers must obey.  Note that plug-ins are sufficient for most implementers, implementation dispensers might be necessary for very advanced possibilities, and full table implementations are very rare.  “The Wiring Configuration, Cookdown, and Database” details the XML-based configuration file from which the cookdown utility generates the wiring database.  “Table Control Usage” details the powerful controller interface which assists store and logic implementers.

<todo>

The catalog core consists of the table dispenser, the meta and wiring databases, the meta and wiring configuration and cookdown utility, and a core of cache and storage implementations.  The rest of the catalog leverages this core to provide the infrastructure necessary to achieve the mission of unified configuration and administration.  Learn about the catalog as a whole in Part IV: The Catalog.

Managed code simple table wrappers

Configuration interfaces

Configuration cookdown

Notifications

The administration process, catalog server, and default client table

Side-by-side catalogs

Performance requirements

regdb: transactions, version snapshots

table integrity…

security

transactions

</todo>

Appendix B details important design decisions for posterity and the curious.  Only primary developers of the infrastructure need familiarize themselves with the whole spec.  See the “Testing” worksheet in the cat42work.xls workbook for test cases.

Part I: Using Simple Tables

Obtaining Simple Tables

(a.k.a. Who Cares from Whence the Data Comes?)
So far as the caller is concerned, all simple tables are obtained through a single table dispenser.  Under the covers though, 0 or more other pieces of code may participate in binding in the appropriate datastore, logic, and implementation.  In this manner, the caller’s datastore-independent request can be bound to one or more datastore implementations.  Rich and specific logic can be faulted in to produce the necessary view, validate changes, and enforce required update rules.  And an implementation appropriate to the job at hand can be chosen, like the smallest and fastest caching implementation available for reading configuration at runtime, or a sophisticated implementation serving up remote configuration for an administrative UI.  The table dispenser encapsulates this process of binding in datastores, logic, and implementations.

This encapsulation approach allows callers to understand and consume their configuration as one or more "virtual" databases.  Therefore, virtually all code in a product dealing with configuration is storage-agnostic.  Code executing as part of the system at runtime can focus on its job because the cooking, merging, converting, and validating of configuration occurs under-the-covers.  This allows us to migrate toward better datastores, choose different storage for different scenarios, project configuration assembled from different stores as a unified whole, integrate rich querying, viewing and update logic, and improve the implementations used in particular scenarios, all without disrupting existing calling code.  (While the dispenser's query support is certainly rich enough to specify exactly the store from which you expect your data, doing so defeats the purpose, and in most cases is inappropriate.)

The caller obtains the table dispenser via a top-level api call, GetSimpleTableDispenser.  Thereafter, all simple table work occurs via components and interfaces.  Once the caller has a table dispenser, they request tables via its ISimpleTableDispenser2::GetTable method.  To obtain a simple table using GetTable, they specify a “virtual” database and table identity, a query, and a level of service.  In other words, the caller says “I want this table” (the identity), “I want the rows in the table which match this criteria” (the query), and “I expect the following services and behaviors” (the level of service).  Callers work with all simple tables via a small and common set of interfaces.  In any given table instance, the columns are determined by the identity specified, the rows are determined by the query specified, and the underlying implementation is determined (in part) by the level of service. 

The table dispenser allows multiple query formats, not just strings, like SQL, but structures too, like ISAM keys, or OLEDB query cells, etc.  Pragmatically, choosing one query format for an entire project, simple enough to be supported atop all data stores, and rich enough to support the required queries, simplifies implementation a lot.  For COM+ 1.0, OLEDB query cells, a structural means of OR'ing within column and AND'ing across columns, was chosen.

A query passed to the dispenser has 3 parts: the query data, the query meta, and the query format indicator.  The query data and meta depend on the format.  For a SQL query string, the query format indicator would be eST_QUERYFORMAT_SQL, the query data would be the SQL string, and no query meta would be necessary.  For OLEDB query cells, the query format is eST_QUERYFORMAT_CELLS, the query data is an array of query cells, and the query meta points to the count of cells in the array.  Each cell specifies a column, operator, and data.  For example: to search the components table for all components owned by applications (as opposed to all components not in any application), the column of interest would be the owning application identity (eg: iCFGCOMP_APPLID), the operator would be inequality (ie: eST_OP_NOTEQUAL), and the data would be NULL (ie: no application specified).  This query cell can be combined with others to express more complicated queries.

The level of service is requested via a set of flags.  These flags (or lack thereof) indicate whether the caller expects to only read or read and write, what isolation level the caller expects, and so forth.  The flags allow the dispenser to choose the right implementation for the job.  Obviously the level of service affects the level of performance.  In general, the richer the service expectation, the lower the potential performance.  For example, an implementation which only reads information can be done more efficiently than one which reads and writes.  Specifying a higher level of service requires specifying a flag.  Therefore, specifying no flags (which is the most common scenario) provides the lowest level of service with the highest potential performance.  The dispenser transparently binds in the appropriate implementation based on the requested level of service.

The following code snippet (error handling omitted in samples), demonstrates a query for all server applications  within a particular cluster.  The caller is a configuration api which is consumed by a multi-window user interface: they expect a read-write implementation and plan to do configuration work:

CComPtr<ISimpleTableDispenser2>
pISTDisp;

CComPtr<ISimpleTableWrite2>
pISTWrite;

STQueryCell

aMyQuery [] = {
{L"MyCluster", eST_OP_EQUAL, iST_CELL_CLUSTER, DBTYPE_WSTR, 0} , 






{fAPPTYPE_SERVER, eST_OP_EQUAL, iAPP_TYPE, DBTYPE_UI4, 0} };

ULONG


cMyQueryCells = (sizeof (aMyQuery) / sizeof (STQueryCell));

HRESULT

hr;

hr = GetSimpleTableDispenser (ePRODUCT_APPSERVER, 0, &pISTDisp);

hr = pISTDisp->GetTable (
wszDATABASE_APPSERVER, wszTABLE_APPLICATIONS, 




(void*) aMyQuery, (void*) &cMyQueryCells, eST_QUERYFORMAT_CELLS, 




fST_LOS_READWRITE | fST_LOS_CONFIGWORK,




(void**) &pISTWrite
);

// Use the table here...

The caller builds an array of two query cells (aMyQuery).  The first cell specifies that the cluster of interest (i.e. iST_CELL_CLUSTER) is (i.e. eST_OP_EQUAL) “MyCluster”.  The second cell specifies that the caller is only interested in server applications (i.e. iAPP_TYPE is the application type, and fAPPTYPE_SERVER denotes server applications).

The caller obtains the table dispenser (pISTDisp) from GetSimpleTableDispenser by specifying their product ID (ePRODUCT_APPSERVER).  Each product team using the catalog receives a product ID.  Catalog drops operate side-by-side.  Suppose two independent teams are picking up differing drops on differing schedules, and suppose both their products are commonly installed on the same computer.  The side-by-side support means that neither team breaks the others product by picking up incompatible catalog drops.

The caller requests their simple table by calling GetTable on the dispenser.  They specify a virtual database and table (the applications table, wszTABLE_APPLICATIONS, from the application server configuration database, wszDATABASE_APPSERVER).  They specify their query.  And they request a read-write implementation appropriate for configuration work (fST_LOS_READWRITE | fST_LOS_CONFIGWORK).  They receive a simple table (pISTWrite) which contain the rows matching their query and supports their requested level-of-service.

Now consider a very similar sample.  This time, the caller is some activator code during runtime, residing on one of the servers in the cluster, and just wanting to read quickly obtain the configuration information for all applications on the computer:

CComPtr<ISimpleTableDispenser2>
pISTDisp;

CComPtr<ISimpleTableRead2>
pISTRead;

STQueryCell

aMyQuery [] = { {fACT_SERVER, eST_OP_EQUAL, iAPP_ACTIVATION, DBTYPE_UI4, 0} };

ULONG


cMyQueryCells = (sizeof (aMyQuery) / sizeof (STQueryCell));

HRESULT

hr;

hr = GetSimpleTableDispenser (ePRODUCT_APPSERVER, 0, &pISTDisp);

hr = pISTDisp->GetTable (
wszDATABASE_APPSERVER, wszTABLE_APPLICATIONS, 




(void*) aMyQuery, (void*) &cMyQueryCells, eST_QUERYFORMAT_CELLS, 




0,




(void**) &pISTRead
);

// Use the table here...

The means of obtaining the table is almost identical to the previous sample.  The caller does not specify a cluster in their query because they are not cluster aware.  They are simply a part of the system on one of the computers in the cluster.  The caller also does not make any level-of-service requests, since all they need is to execute the query and read the results, and they simply want the best possible performance doing so.  The caller obtains an ISimpleTableRead2 interface instead of ISimpleTableWrite2 (the latter inherits from the former).

While the two samples look very similar, the binding process under-the-covers is dramatically different.  

In the first sample, the caller is requesting configuration from the “single-system-image” of a cluster.  The single-system-image is stored using a clustered SQL Server to guarantee robustness, scalability, and availability of this valuable resource.  This database is on a remote computer.  Under the covers, an implementation which supports the rich service level requested is chosen.  The chosen code knows how to lookup the cluster name in a directory service, determine the computer on which the single-system-image database resides, connect to the administrative process running on a remote computer, and efficiently marshal query results and changes back and forth.  The administrative process on the target computer subsequently faults in the right implementation for interacting with SQL Server, and the right validation logic to verify changes made to application configuration.  The configuration information for hundreds of server applications is supplied as a result of the query.

In the second sample, the configuration comes from a very fast and compact persisted cache file which is memory mapped as a read-only shared file.  A minimal read-only implementation which sits directly atop this shared memory is chosen.  The persisted cache happens to have been built from a cluster image.  The configuration information for dozens of server applications is quickly supplied.

At this point, understanding the details of either binding process is not necessary.  Suffice it to say that potentially a lot or a little (in terms of number of cycles) went on under the covers to bind the appropriate implementation and extract the requested information from the appropriate datastore.  While the calling code of both scenarios is very similar, the under-the-covers binding process differs dramatically.

Reading From Simple Tables

(a.k.a. Let's Keep The Lower Layers Small and Fast)
Simple tables are always obtained via the table dispenser.  But what exactly is underneath the simple table interface, provided by the dispenser, in response to your query?  Underneath the interface is conceptually a cache, called the read cache, containing the table of rows resulting from the query.  The caller interacts with the read cache via the ISimpleTableRead2 interface.  The caller can also make changes.  These changes conceptually go into the write cache.  The caller makes changes via the ISimpleTableWrite2 interface.  ISimpleTableWrite2 inherits from the read interface, so the caller can read and make changes through one interface.  

Once the caller obtains a simple table, they work with the table in-process and in-memory, disconnected from the datastore.  Only two calls actually cause the simple table to temporarily re-bind to its datastore, which may involve going out of process or off machine.  ISimpleTableAdvanced::PopulateCache() re-executes the query specified when the simple table was obtained, flushing then reloading the read cache with the new results.  ISimpleTableWrite2::UpdateStore() flushes the changes accumulated so far in the write cache out to the datastore.  Populating and updating typically hits the disk, and depending on the query and level of service, may also go out-of-process or off machine.  This approach of bulk reads and writes has many advantages.  Most of the work a caller does with a simple table occurs in process, getting the disk and network performance bottlenecks out of the way.  This enables efficient interaction with remote stores by dramatically reducing the roundtrips involved, and facilitates the atomicity, consistency, and isolation requirements for transactional updates.

The read cache contains the resulting rows which matched your query.  Queries either ask for a specific individual entity or a set of them.  So if your query asked for a particular application, the read cache would contain one row for that one application (or none), whereas if your query asked for all applications within a particular site, the read cache would contain as many rows as there were applications in the site.  You can think of the read cache as an “array” of rows into which you can index.  The column values of a particular row can be read one at a time, all at a time, or a specific set at a time.  To read column values of a particular row, you specify the row index of interest.

When requesting a column value, rather than copying the value from the cache, the simple table actually gives you a pointer to the value in the cache.  So for example, when requesting a string value, you get a pointer to the string rather than a copy of it.  This approach eliminates unnecessary allocations and copies.  If you pass some data to a customer outside your product, you had better use the more common approach of copying that data, so that they own the data they use, and control its lifetime.  But as that data floats around inside your product, you should have the option to not allocate and copy each time it passes from layer to layer, since this can become very expensive in real products.  Consider how many allocations and copies this approach saves when doing a little simple remote administration.  Data moves from the datastore, to a layer which transforms it, to a layer which marshals it, to a layer on the client-side, to the administration layer, and finally to the customer.  The marshalling infrastructure itself obviously copies the data, and the administration api must copy the data before handing it out.  But by not otherwise copying it, we can typically save at least half a dozen allocations, copies, and de-allocations.

This approach of pointing you to values rather than giving you your own copies means you can use the values, but you don't own them, you must not overwrite them, and if you want to keep them after either re-populating or releasing your simple table, you first need to make your own copy.  Simple tables were designed to meet the configuration needs of commercial products, not for the masses of VB developers.  

Here is an example where the caller wants to print the description of an application given its URL:

CComPtr<ISimpleTableDispenser2>
pISTDisp;

CComPtr<ISimpleTableRead2>
pISTRead;

STQueryCell


aMyQuery [] = { {L”http://bar/foo”, eST_OP_EQUAL, iAPP_URL, DBTYPE_WSTR, 0} };

ULONG



cMyQueryCells = (sizeof (aMyQuery) / sizeof (STQueryCell));

HRESULT


hr;

static const ULONG

aiAppColumns [] = { iAPP_DESCRIPTION };

WCHAR*


wszAppDescription;

hr = GetSimpleTableDispenser (ePRODUCT_URT, 0, &pISTDisp);

hr = pISTDisp->GetTable (
wszDATABASE_URT, wszTABLE_APPLICATIONS, 




(void*) aMyQuery, (void*) &cMyQueryCells, eST_QUERYFORMAT_CELLS,  0,




(void**) &pISTRead
);

hr = pISTRead->GetColumnValues (0, 1, aiAppColumns, NULL, (void**) &wszAppDescription);

if (S_OK == hr)

{


wprintf (L”description: %s”, wszAppDescription);

}

You should already understand the GetSimpleTableDispenser and ISimpleTableDispenser2::GetTable calls from previous examples.  Note that GetTable asks for the application configuration at “/bar/foo”.  The new call is ISimpleTableRead2::GetColumnValues.  The first parameter specifies the row index of interest: 0.  Since the caller knows their query can only result in 0 or 1 rows, they specify row index 0, the first row in the resulting read cache.  GetColumnValues will return E_ST_NOMOREROWS if a row does not exist, meaning in this case that the application was not found.  The second parameter specifies how many column values the caller wants: 1.  Here is the caller is only interested in the description.  The third parameter specifies the array of column values of interest: in this case just the description.  The final parameter is the address of the string pointer which will be pointed to the application description.  The caller prints the resulting application description.

Here is a similar example where the caller wants to print a set of specific properties, instead of just one, of an application given its URL:

CComPtr<ISimpleTableDispenser2>
pISTDisp;

CComPtr<ISimpleTableRead2>
pISTRead;

STQueryCell


aMyQuery [] = { {L”/bar/foo”, eST_OP_EQUAL, iAPP_URL, DBTYPE_WSTR, 0} };

ULONG



cMyQueryCells = (sizeof (aMyQuery) / sizeof (STQueryCell));

HRESULT


hr;

static const ULONG

aiAppColumns [] = { 






iAPP_NAME, 






iAPP_DESCRIPTION, 






iAPP_SITEID
};

static const ULONG

cAppColumns = sizeof (aiAppColumns) / sizeof (ULONG);

static const ULONG

cmaxAppColumns = iAPP_SITEID + 1;

void*



apvAppValues [cmaxAppColumns];

hr = GetSimpleTableDispenser (ePRODUCT_URT, 0, &pISTDisp);

hr = pISTDisp->GetTable (
wszDATABASE_URT, wszTABLE_APPLICATIONS, 




(void*) aMyQuery, (void*) &cMyQueryCells, eST_QUERYFORMAT_CELLS,  0,




(void**) &pISTRead
);

hr = pISTRead->GetColumnValues (0, cAppColumns, aiAppColumns, NULL, apvAppValues);

if (S_OK == hr)

{


wprintf (L”name: %s, description: %s, site ID: %d”, 



(WCHAR*) apvAppValues[iAPP_NAME], 



(WCHAR*) apvAppValues[iAPP_DESCRIPTION],



(ULONG) *apvAppValues[iAPP_SITEID]);

}

What are the interesting changes in the GetColumnValues call from the previous example where the caller fetched one value?  Recall that the second parameter specifies the number of column values the caller wants and the third parameter specifies which columns as an array of column indexes.  So far this call looks the same as the previous example, except that more than one column value is being requested.  The real difference is the final parameter.  Here the caller passes an array of pointers.  This array must be big enough to receive all column values from column index 0 to the biggest column index of interest.  However only the pointers requested are supplied.  Very efficient and direct access to the individual values is the result, as the printf usage makes clear.

Here is a final and more generic example of fetching column values.  This example differs from the two above in some important ways.  First, the query no longer identifies one specific application.  The query requests all applications under the microsoft.com site.  Second, the caller wishes to obtain all the column values instead of just a few.  Third, rather than assuming how many column values exist, the caller asks the table:

CComPtr<ISimpleTableDispenser2>
pISTDisp;

CComPtr<ISimpleTableRead2>
pISTRead;

STQueryCell


aMyQuery [] = { {L”microsoft.com”, eST_OP_EQUAL, iAPP_SITE, DBTYPE_WSTR, 0} };

ULONG



cMyQueryCells = (sizeof (aMyQuery) / sizeof (STQueryCell));

HRESULT


hr;

ULONG



cColumns, iRow;

void**



apvAppValues;

hr = GetSimpleTableDispenser (ePRODUCT_URT, 0, &pISTDisp);

hr = pISTDisp->GetTable (
wszDATABASE_URT, wszTABLE_APPLICATIONS, 




(void*) aMyQuery, (void*) &cMyQueryCells, eST_QUERYFORMAT_CELLS,  0,




(void**) &pISTRead
);

hr = pISTRead->GetTableMeta (NULL, NULL, NULL, &cColumns);

apvAppValues = new (void*) [cColumns];

for (iRow = 0; ; iRow++)

{


hr = pISTRead->GetColumnValues (iRow, cColumns, NULL, NULL, apvAppValues);


if (E_ST_NOMOREROWS)


{



break;


}


// Do stuff with the values here…

}

delete [] apvAppValues;

Notice that the code above, while doing a lot more than the previous example, is of similar line count the previous example.  By now you should be pretty familiar and bored with the GetSimpleTableDispenser and GetTable calls.  Note the query requests all applications under the microsoft.com site.  Once the caller has the resulting table, they call GetTableMeta to obtain column count.  Then they allocate an array of pointers large enough for all the column values in a row.  Rather than just calling GetColumnValues on row 0, they call GetColumnValues in a loop on all rows beginning with index 0 and continuing until E_ST_NOMOREROWS is returned.  For the second parameter, the ask for all column values.  The third parameter, an array of column indexes of interest, is unnecessary and therefore NULL.  The caller just wants all column values from column index 0 to cColumns - 1.  Each call fills their pointer array with pointers to the column values of the requested row.  What exactly is done with the column values is left as an exercise to the reader.  Suffice for now to say that simple tables support rich enough meta such that a generic caller like the one above can properly work whatever values it receives.

The morbidly curious are by now no doubt wondering about the fourth parameter to GetColumnValues, which has been NULL in the examples above.  The caller can specify an optional array to obtain the size of each value.  

Most column types are fixed sized.  Even for types whose size can vary, like strings and bytes, the schema for such a column often specifies some fixed or maximum length size anyway.  Even when the size truly varies, you don't always need to know it (e.g.: you usually don't need to know the size of string to use the string).  

Writing Via Simple Tables

(a.k.a. Minimizing Round Trips and Disk Hits)
Having done a bit of reading with simple tables, now let’s do some writing.  The ISimpleTableRead2 interface pointer conceptually encapsulates a read cache.  The ISimpleTableWrite2 interface pointer conceptually encapsulates both a read and write cache.  But what does the write cache contain?  The read cache contains rows resulting from executing a query.  The write cache contains row changes made by the caller.  Each row in the write cache represents either a deletion of an existing row, an update to an existing row, or an insertion of a new row.  Changes accumulate in the write cache until ISimpleTableWrite2::UpdateStore is called, which applies the pending changes to the datastore.  

Suppose a computer has a protocol list and each protocol has configuration.  Now suppose I want to replace the protocols on one computer with the protocols from another.  I need to remove the existing protocols on the destination computer and copy the source computer’s protocols to the destination computer.  Assuming I am working on a third computer, the following code accomplishes this work in only three roundtrips:

CComPtr<ISimpleTableDispenser2>
pISTDisp = NULL;

CComPtr<ISimpleTableRead2>
pISTRead = NULL;

CComPtr<ISimpleTableWrite2>
pISTWrite = NULL;

STQueryCell


aMyQuery [] = { {NULL, eST_OP_EQUAL, iST_CELL_COMPUTER, DBTYPE_WSTR, 0} };

ULONG



cMyQueryCells = (sizeof (aMyQuery) / sizeof (STQueryCell));

ULONG



iReadRow, iWriteRow, cColumns, cVersion, cColumns2, cVersion2;

ULONG*



acbSizes;

void**



apvValues;




HRESULT


hr;

hr = GetSimpleTableDispenser (ePRODUCT_APPSERVER, 0, &pISTDisp);

// Roundtrip and disconnect to rcraig0 to retrieve all protocols:

aMyQuery[0].pvData = L"rcraig0";

hr = pISTDisp->GetTable (
wszDATABASE_APPSERVER, wszTABLE_PROTOCOLS, 




(void*) aMyQuery, (void*) &cMyQueryCells, eST_QUERYFORMAT_CELLS,




fST_LOS_CONFIGWORK,




(void**) &pISTRead
);

// Roundtrip and disconnect to rcraig1to retrieve all protocols:

aMyQuery[0].pvData = L"rcraig1";

hr = pISTDisp->GetTable (
wszDATABASE_APPSERVER, wszTABLE_PROTOCOLS, 




(void*) aMyQuery, (void*) &cMyQueryCells, eST_QUERYFORMAT_CELLS, 




fST_LOS_CONFIGWORK | fST_LOS_READWRITE,




(void**) &pISTWrite
);

// Determine column count dynamically and verify source and destination version compatibility:

hr = pISTRead->GetTableMeta (&cVersion, NULL, NULL, &cColumns);

hr = pISTWrite->GetTableMeta (&cVersion2, NULL, NULL, &cColumns2);

assert (cVersion == cVersion2 && cColumns == cColumns2);

acbSizes = new ULONG [cColumns];

apvValues = new (void*) [cColumns];

// Delete all the protocols on the destination (none of this work leaves the caller’s process):

for (iReadRow = 0;; iReadRow++)

{


hr = pISTWrite->AddRowForDelete (iReadRow);


if (E_ST_NOMOREROWS)


{



break;


}

}

// Copy all the protocols from the source to the destination (none of this work leaves the caller’s process):

for (iReadRow = 0;; iReadRow++)

{


hr = pISTRead->GetColumnValues (iReadRow, cColumns, NULL, acbSizes, apvValues);


if (E_ST_NOMOREROWS)


{



break;


}


hr = pISTWrite->AddRowForInsert (&iWriteRow);


hr = pISTWrite->SetColumnValues (iWriteRow, cColumns, NULL, acbSizes, apvValues);

}

// Roundtrip and disconnect to rcraig1 to apply the protocol changes:

hr = pISTWrite->UpdateStore ();

delete [] apvValues;

delete [] acbSizes;

In this example, two instances of the same table are obtained, each from a different computer.  The query indicates the computer.  The computer name is omitted from the query declaration and specified immediately prior to each GetTable call.  We are doing configuration work here and want to insure a proper level of service, so fST_LOS_CONFIGWORK is requested on both tables.  fST_LOS_READWRITE is requested on the destination since we will be writing to that instance.  Note that if we were not going to delete the existing protocols on the destination, we could also specify fST_LOS_UNPOPULATED to save query execution cost, since we would be simply writing rather than reading and writing to the destination table.  

The two GetTable calls result in a roundtrip to each remote computer.  These roundtrips are disconnected by design: no connection remains when GetTable returns.  The UpdateStore call at the very end results in  a final roundtrip and disconnect to the destination computer.  All the code in between remains in process with the caller.

Once the tables are obtained, the caller uses GetTableMeta to verify they are of common version and to dynamically determine their column counts.  The caller next removes all existing protocols from the destination using AddRowForDelete.  AddRowForDelete takes a row index into the read cache and adds that row to the write cache, marking it for deletion.  The caller iterates over all protocols from the destination, marking each one for deletion.

Now the caller needs to transfer all the protocols from the source to destination.  They iterate over all protocols from the source.  For each protocol, they use GetColumnValues to obtain the protocol properties from the source.  Then they use AddRowForInsert to add a blank protocol to the destination write cache.  AddRowForInsert returns the row index to the new row in the write cache.  The caller uses this row index to transfer all the properties from the current source protocol into the new destination protocol.  The caller continues until they run out of source protocols (i.e. the source table returns E_ST_NOMOREROWS).

Finally, UpdateStore is called on the destination table.  This pushes the contents of the write cache, all the deletions and insertions included, into the appropriate store on the destination computer.

In the sample above, each time we inserted a new protocol into the destination table we set all its properties (which we got from the source table).  In general though, many columns have default values, so specifying everything when inserting a new row is typically unnecessary.  The underlying table implementation can automatically apply defaults from simple table meta.  The meta (a.k.a. schema) for simple tables is also rich enough to automatically handle a majority of validations (e.g. type validation, verifying a specified set of flags falls within the expected mask, insuring a specified enumeration is one of the expected enumerations, and so forth).  The underlying implementation might also be written to apply defaults via inheritance, policy specified elsewhere, and so on.  The magic of the table dispenser is that the right implementation(s) for the job at hand will be bound underneath.

More sophisticated validations can also occur when UpdateStore is called.  These validations may include cross-column and even cross-row checks performed before the roundtrip is even taken.  They may also include further security and storage related validations at the “other end” of the roundtrip, and can even kick off actions.  When errors do occur, simple tables support a straightforward detailed error mechanism supporting row and even column granularity, so callers can determine exactly what went wrong.  Again, the right implementations, potentially at both “ends”, is bound in via the magic of the table dispenser.

By now you probably realize the write cache is almost exactly like the read cache.  Instead of containing rows which resulted from executing a query, it contains pending row changes.  The write cache, unlike the read cache, marks each row with a pending action.  The actions include insert, delete, and update (and ignore, which we won’t discuss here).  AddRowForInsert adds to the write cache a new default row marked for insertion.  AddRowForDelete copies the specified row from the read cache to the write cache marked for deletion.  AddRowForUpdate, not called in the example above, copies a specified row from the read cache to the write cache, marked for update.  Other more advanced means exist for manipulating the write cache not covered here.

You may have noticed that deleting a set of rows occurs by executing a query to retrieve that set of rows and then marking the resulting rows for deletion.  This approach can be more expensive than a deletion query, which can be done in one instead of two roundtrips.  However, simple tables encapsulate arbitrarily rich logic (potentially embedded underneath any method).  Simple tables also support detailed error information.  Deletion query support, while certainly possible, is more complicated in this environment.  Thus two roundtrips occur instead of one, but only one query execution typically results.

Important Conclusions

(a.k.a. Some Final Food For Thought)
Before wrapping up, a brief mention regarding concurrency is appropriate.  Simple tables have well-defined concurrency semantics.  These semantics by design and necessity put some locking burden on sophisticated concurrent callers.  However the same semantics allow that in the significantly more common scenarios where locking is either not necessary or already occurs at a higher level, further unnecessary locking is avoided.  Details on concurrency semantics are covered in the reference section on advanced table usage.

By now you probably realize that simple table semantics are heavily influenced by competing themes: keep the interfaces simple, make the interfaces powerful, and keep the lower layers fast.  Because values are referenced rather than copied and callers requiring complex concurrency must participate in locking, simple table programming is not for the masses.  When customers interact with configuration, copies must be made and locks must be taken: simple tables allow this to be done at just the highest layer instead of being repeated all the way down through the internal layers of a commercial product.

Simple tables allow for an efficient infrastructure which the internal code of commercial products can rely on for their configuration requirements.  The lack of un-necessary copying and locking, coupled with the disconnected cache-based approach (which minimizes roundtrips out of process, off machine, and to datastores) all eliminate significant overhead from important scenarios like serving up configuration at runtime, support for efficient interaction with remote or out-of-process configuration, and rich validation at configuration time.  The common model for requesting tables, specifying queries, and making changes, regardless of underlying storage, merging, and validation allows development teams dependent on configuration to focus on their scenario rather than managing storage and validation issues.  The fact that under the covers, simple tables provide a rich architecture for faulting in the right implementations, using and even changing among different stores, and plugging in rich merge and validation logic as well as sophisticated actions, allows configuration and administration teams to meet both the performance driven requirements of runtime and the rich requirements of configuration time without disrupting dependent teams.

Hopefully these initial examples have given you a deeper understanding of how to use simple tables, and a good introduction to what you can do with simple tables.  You should now be able to easily begin coding with simple tables.  The reference sections below are quite detailed, and can answer questions you have along the way.  Hopefully the samples have convinced you that simple tables are both easy to use and powerful.  The real power of course happens under the covers, with the dynamic binding process which selects the right implementation for the job at hand, binds to the right datastore, and faults in the right logic.  Continue into the other parts of this specification if you are interested in understanding how it all works under the covers.

Reference: Using the Table Dispenser

(a.k.a. Everything You Need to Know to Use the Table Dispenser)
To obtain tables, your first get a table dispenser via GetSimpleTableDispenser.  Using the table dispenser, you can then request tables, qualified by a query and level of service, via ISimpleTableDispenser2::GetTable.  Before reading this reference, be sure to read the “Obtaining Simple Tables” introductory section. 

// ==================================================================

HRESULT
GetSimpleTableDispenser
(
DWORD i_eProduct,







DWORD i_fReserved,







ISimpleTableDispenser2** o_ppISTDisp
);

Gets the simple table dispenser given a product identifier.  Note that the table dispenser is guaranteed to be thread safe.

i_eProduct:

The product identifier specifies the product in which the dispenser will be used.  Each team which receives an independent drop of simple tables receives its own product identifier.  The product identifier enables co-existence of side-by-side drops of simple tables on the same computer, for use by independent teams.

i_fReserved: Reserved.  This parameter must be 0.

o_ppISTDisp: The caller specified address of their simple table dispenser pointer (must be NULL).

HRESULT errors:

The caller’s table dispenser pointer is guaranteed not to be changed if any error occurs.

· E_INVALIDARG: Unrecognized product ID, non-NULL interface pointer, or NULL pointer address.

· E_OUTOFMEMORY: Insufficient memory to obtain the table dispenser.  Pack up and go home.

// ==================================================================

ISimpleTableDispenser2::


GetTable


GetProductID

// ==================================================================

ISimpleTableDispenser2::
HRESULT 
GetTable

(
[in] LPCWSTR i_wszDatabase,  [in] LPCWSTR i_wszTable, 






[in] LPVOID i_QueryData, [in] LPVOID i_QueryMeta, [in] DWORD i_eQueryFormat,






[in] DWORD i_fServiceRequests, 






[out] LPVOID* o_ppv
);
Provides a simple table in response to a specified database + table identity, query, and requested level-of-service.

i_wszDatabase, i_wszTable:

The combination of a database and table uniquely identifies a table.  Both identifiers are “virtual”.  A table name identifies a table having a certain logical schema independent of where its rows are actually stored.  A database name identifies a logical grouping of related table IDs.

i_QueryData, i_QueryMeta:

The query data and meta information.  The content of these parameters depends on the query format specified.  For eST_QUERYFORMAT_CELLS (the least-common-denominator query format for simple tables):

· The query data is an array of STQueryCell structures, defined as:

typedef struct {


LPVOID

pData;


DWORD

eOperator;


ULONG

iCell;


DWORD

dbType;


ULONG

cbSize;

} STQueryCell;

· iCell specifies the cell identity, which is either a column index in the requested table or one of the reserved cell identifiers which exist outside particular tables and can apply to numerous or all tables (eg: iST_CELL_COMPUTER is a cell indicating the computer name on which to look for the requested table).  Reserved cells can be identified by AND’ing iCell with iST_CELL_SPECIAL.

· pData specifes the value of interest for the particular cell or column.

· eOperator specifies the relationship operator between the specified cell/column and its data (eg: eST_OP_EQUAL and eST_OP_NOTEQUAL).

· dbType specifies the type of the cell or column.  A subset of the OLEDB DBTYPE’s are supported.

· cbSize specifies the size in count of bytes of the data.  cbSize can be 0 when the size of the data is easily determined either via the type or data (eg: cbSize can be 0 for fixed-length types, like DBTYPE_GUID; cbSize can be 0 for string data since the size is easily determined via wcslen; cbSize must be specified when the size cannot be easily determined without consulting schema, like DBTYPE_BYTES data).  When the size can be easily determined and is not specified, the dispenser simply fills it in.

· An array of query cells must be ordered with reserved cells first followed by primary key cells in order followed by other column cells.  This ordering requirement significantly reducing parsing overhead.

· In an array of query cells, cells with the same column index or cell identity are implicitly OR’ed together, whereas cells with different identities are implicitly AND’ed.  This approach satifies a large baseline of useful queries.  More complicated queries require the richness of a query language.

· The query meta is simply a pointer to the count of query cells supplied.  If the query data is NULL (ie: no cells specified), the query meta must also be NULL.

· The dispenser copies the array of query cells within the GetTable call, so the caller can change their query contents between GetTable calls.

i_fServiceRequests:

The “service requests” parameter takes level-of-service flags.  Not specifying any flags at all gives the minimum level of service with the most commonly used behavior, and also allows for the best potential performance.  Service flags specify richer behavior and/or less commonly used behavior.  Requesting increased level-of-service does not guarantee obtaining it (e.g: if the table you are requesting happens to be stored in a read-only format, requesting a write-able table won't help).  Here are the currently supported requests:

· fST_LOS_CONFIGWORK: Requests a service level appropriate for configuration time.  This may include routing all populates and updates through an administration process which enforces useful security, transaction, and isolation semantics.  By default, a service level appropriate for runtime is chosen.  This allows for the best potential performance, but typically means richer service is not available.

· fST_LOS_READWRITE: Requests a read-write table (caller receives an ISimpleTableWrite2).  By default, caller receives an ISimpleTableRead2.  The caller can still query for the ISimpleTableWrite2 interface, but UpdateStore will return E_ST_LOSNOTSUPPORTED.  Typically, fST_LOS_CONFIGWORK is required when requesting read-write capabilities.  Do not request this in code paths which never write.

· fST_LOS_UNPOPULATED: Requests that the dispenser not execute the query before supplying the table (table has an empty read cache).  By default, the dispenser calls PopulateCache for the caller.  This level-of-service is useful when the caller plans to write and without reading, saving the cost of a query execution.

· fST_LOS_REPOPULATE: Requests a table which can be re-populated after being retrieved.  ISimpleTableAdvanced::PopulateCache may be called to re-execute the query and re-populate the table.  By default, PopulateCache returns E_ST_LOSNOTSUPPORTED.

· fST_LOS_MARSHALLABLE: Requests a marshallable table. This level-of-service is only required by table marshalling implementations (while many are possible, one or two at most are required).  By default, ISimpleTableController::GetMarshallingInterface returns E_ST_LOSNOTSUPPORTED.

· fST_LOS_NOLOGIC: Requests a table with no logic faulted in under-the-covers.  Rarely used but very necessary when a caller must get around embedded logic.  Unless you know what you are doing, requesting this is a programming error which can result in inconsistent or corrupted data.

o_ppv:

Caller specifies the address of a pointer to an ISimpleTableRead2 interface, or to an ISimpleTableWrite2 interface if they specified the fST_LOS_READWRITE flag.  The pointer must be NULL.

HRESULT errors:

The caller’s simple table pointer is guaranteed not to be changed if any error occurs.

· E_ST_INVALIDTABLE: The database and/or table ID were not recognized.

· E_ST_INVALIDQUERY: The query specified is invalid.

· E_ST_QUERYNOTSUPPORTED: The query or query format is not supported for the table and/or level-of-service specified.

· E_ST_LOSNOTSUPPORTED: Service request could not be satisfied for the requested table. E_ST_DETAILEDERRORS: The read cache was populated with the rows matching your query, but errors were detected on some of those rows.  Use ISimpleTableAdvanced to obtain detailed error information.  See the reference on UpdateStore for common detailed errors.

· E_INVALIDARG: The caller’s pointer or pointer address was invalid.

· E_OUTOFMEMORY: Insufficient memory to obtain the table.  Pack up and go home.

· E_ST_INVALIDMETA: Problems were detected in the meta database on which all tables rely.

· E_ST_INVALIDWIRING: Problems were detected in the wiring database on which the table dispenser relies.

· Other errors may be returned which are table implementation specific.

// ==================================================================

ISimpleTableDispenser2::
HRESULT 
GetProductID
(   [out]       LPWSTR          o_wszProductID,

    [in, out]   DWORD *         io_pcchProductID);

Gets the Product ID that is associated with this dispenser.
o_wszProductID: 

Product ID will be stored here. Pass in null pointer if you only want to request the size of the product ID.

io_pcchProductID:

Contains maximum size of o_wszProductID before the call, and size of product ID after the call. Note that maximum io_pcchProductID character will be written in o_wszProductID
Reference: Reading From Tables

 (a.k.a. More Than You Wanted to Know about Reading Via Tables)
Be sure to read the “Obtaining Simple Tables” and “Reading From Simple Tables” introductory sections before reading this reference section.  

// ==================================================================

ISimpleTableRead2::


GetColumnValues


GetTableMeta


GetColumnMetas


GetRowIndexByIdentity

GetRowIndexBySearch
The ISimpleTableRead2 interface supports getting the column values of any row in the read cache, obtaining basic meta about the table and its columns, and finding a row by primary key identity in the read cache.

Once you obtain a table from the table dispenser, you can interact with it via ISimpleTableRead2.  An ISimpleTableRead2 pointer conceptually encapsulates a read cache containing the rows which matched your query.  The read cache is in-memory and in-process.  Thus, when reading, the only roundtrip to the datastore itself occurs when executing the query.  Iterating over the resulting rows and their column values occurs entirely in the caller’s process.

Think of the read cache as an array of rows which met your query criteria.  These rows are indexed from 0 to count of rows - 1.  If your query resulted in a single row, that row will be at index 0 in the read cache.  Besides iterating over rows in their retrieved order, you can also look up a row by specifying its primary key identity.

The column values of any row in the read cache can be obtained singly, as a specified subset, or all together.  Column values are fetched by giving the caller pointers directly into the values inside the read cache.  This alleviates the need to allocate/copy/de-allocate when fetching column values.  Obviously the caller must obey lifetime rules on these pointers and must never overwrite the values to which they point.

// ==================================================================

// Getting column values:

ISimpleTableRead2::

HRESULT
GetColumnValues
([in] ULONG i_iRow, [in] ULONG i_cColumns, [in] ULONG* i_aiColumns, 





[out] ULONG* o_acbSizes, [out] LPVOID* o_apvValues);

Obtain pointers to one or more requested column values on the specified row in the read cache.

Pointers remain valid only until the simple table is released.  The values are owned by the simple table: no copying takes place.  Attempting to modify the value is a programming error.  While not of concern to most callers, certain advanced or control methods also invalidate pointers obtained via GetColumnValues:

· Query re-execution via ISimpleTableAdvanced::PopulateCache.

· Cache reshaping via ISimpleTableController::ShapeCache.

· Read cache alteration via ISimpleTableController::PrePopulateCache/PostPopulateCache.

i_iRow:

Specifies the index of the row in this read cache on which to fetch column values.  Row indexes range from 0 to count of rows - 1.

i_cColumns:

Specifies the count of column values to be retrieved.  The count can range from 1 to count of columns.  For a given table, a fixed order to the columns is guaranteed, as specified by the schema.

i_aiColumns:

Specifies the array of column indexes for which to retrieve values.  i_cColumns indicates the count of column indexes in this array.  The following possibilities are supported:

· Retrieve a single specific value.  i_cColums is 1 and i_aiColumms is a one element array containing the single column index of interest.

· Retrieve a specific set of values.  i_cColums is the count of values of interest and i_aiColumms is an array of the indexes for the columns of interest.

· Retrieve the values for column indexes 0 to n.  i_cColumns is n and i_aiColumns is NULL.

· Retrieve the values of all columns.  i_cColumns equals the actual count of columns and i_aiColumns is NULL.

o_apvValues:

Specifies an array of pointers for the requested column values.  On success, these will point to the column values requested.  For a given table, all values for a column are guaranteed to be of the type specified for that column by the schema.  The column’s value can be NULL, and if so, that pointer will be NULL.  The value pointers themselves need not be set to NULL before calling.  The following possibilities are supported:

· When retrieving a single specific value, o_apvValues is the address of a pointer to hold the specified value.

· When retrieving the first n column values or all column values, o_apvValues is an array of pointers of count i_cColumns.

· When retrieving a specific set of values, o_apvValues must be an array of pointers whose count is the largest column index in the set + 1.  The array of pointers will be sparsely filled.  Only those at indexes requested will be pointed to column values.  This approach allows efficient subsequent lookup of each value.

o_acbSizes:

Optionally specifies an array of sizes of the requested column values (always in count of bytes).  Callers typically do not need to know the size because it is either fixed according to the column type or meta (eg: DBTYPE_GUID, or fST_COLUMN_FIXEDLENGTH), or easily determined by the data (eg: DBTYPE_WSTR).  NULL is specified when the caller is not interested obtaining sizes.  If the caller does request sizes, they need not initialize their size variable to 0 before calling.  The same possibilities for o_apvValues apply to o_acbSizes when specified.

HRESULT errors: 

On any error, the caller’s value pointers and requested sizes are guaranteed to be set to NULL and 0 respectively when possible.

· E_ST_NOMOREROWS: Specified row index was invalid.  Either the read cache is empty or the specified row index is out of range.

· E_ST_NOMORECOLUMS: The specified column count or a column index was out of range.

· E_INVALIDARG: The address supplied by the caller for their array of value pointers is NULL.

· E_ST_INVALIDCALL: Getting column values attempted while populating the read cache  (not applicable for normal callers: this error can occur internally in bad table implementations).

// ==================================================================

// Discovering meta:

ISimpleTableRead2::

HRESULT
GetTableMeta
(
[out] ULONG* o_pcBaseVersion, [out] DWORD* o_pfTable,






[out] ULONG * o_pcRows, [out] ULONG * o_pcColumns

);

HRESULT
GetColumnMetas
(
[in] ULONG i_cColumns, [in] ULONG* i_aiColumns,






[out] SimpleColumnMeta* o_aColumnMetas);

Provide basic meta information about a table and its columns.  All information is optionally available, so NULL may be specified for anything not of interest to the caller.  To obtain richer meta information, see the “Dynamic Schema Adaptation” section.

o_pfTable:

The table meta flags.  See the “Reference: The Meta Database” details about these meta flags.

o_pcBaseVersion:

The base version of this table.  Table columns are ordered.  The table version only changes if existing columns are re-ordered in the schema (which occurs either by re-ordering existing columns, deleting existing columns, or inserting a new column among existing columns).  The table version does not change when new columns are added after existing columns.  Column re-ordering affects callers who have compiled constants for the column indices, requiring such callers to re-compile.  However, re-ordering existing columns only occurs during the development cycle and rarely at that.  The base version is useful simply for such callers to assert that their column constants are valid.

o_pcRows, o_pcColumns:

The count of rows and count of columns respectively.  The count of rows refers to the number of rows currently in the read cache which resulted from the last execution of the caller’s query.  Obviously if the query was not yet executed (because the fST_LOS_UNPOPULATED level-of-service was specified and the table has not been subsequently populated), or the query was executed and no matching rows were found, the row count will be 0.  The count of columns is determined from the table’s schema and only changes if the schema itself is changed.

i_cColumns: 

Count of columns for which to fetch meta.  See the reference for the i_cColumns parameter of GetColumnValues.

i_aiColumns: 

Array of column indexes for which to fetch meta.  See the reference for the i_aiColumns parameter of GetColumnValues for supported possibilities.

o_aColumnMetas:

An array of simple column meta structures for the columns requested.  Simple column meta is defined as:

typedef struct {


DWORD

dbType;


ULONG

cbSize;


DWORD

fMeta;

} SimpleColumnMeta;
· dbType: The column type.  See the “Reference: The Meta Database” for details about column types.

· cbSize: The column size, always in count of bytes.  If the column type is a fixed-length type, or the column’s meta indicates the column values will be of fixed-length (fST_COLUMN_FIXEDLENGTH), this is guaranteed to be the size of any value for this column.  If the column’s meta instead indicate the column values will be of a maximum size, this size is that maximum.  The actual size of any given column value will vary up that maximum inclusively.  If none of the above is true, the size will be ~0, indicating that column values will be of variable and unlimited length.  When a column’s size is not fixed, the actual size of any given column value can be optionally obtained from GetColumnValues.

· fMeta: Column meta flags.  See the “Reference: The Meta Database” for details about these flags.

See the reference for the o_apvValues parameter of GetColumnValues for supported possibilities.

HRESULT errors:

On any error, the caller’s column meta structures are guaranteed to be zeroed when possible.

· E_ST_NOMORECOLUMS: For GetColumnMetas, the specified column count or an index was out of range. 

· E_ST_INVALIDCALL: GetTableMeta attempted while populating the read cache  (not applicable for normal callers: this error can occur internally in bad table implementations).

// ==================================================================

// Locating rows by identity:

ISimpleTableRead2::

HRESULT 
GetRowIndexByIdentity
([in] ULONG* i_acb, [in] LPVOID* i_apv, [out] ULONG* o_piRow);

Get the index of a row in the read cache by searching for its primary key identity.  Lookup by identity is rare compared to lookup by row index.  Rather than navigate by identity, callers interested in certain identities more commonly query for a single identity or set of identities when obtaining the table.

i_apv:

Specifies an array of pointers to primary key values.  Primary keys may be composed of multiple columns, and those columns are known via the table’s meta and ordered relative to each other.  Therefore, the count of pointers in this array must be the count of columns in the primary key, the pointers must be ordered in the relative order of the primary key columns, and the types to which the pointers point must be the types of the corresponding columns.  E.g.: For a table whose meta indicates columns 0, 1, and 10 are primary key columns, and they are a guid, string, and integer, an array of 3 pointers to a guid, string, and integer in that order would be supplied.

i_acb:

Specifies an optional array of sizes matching the values above, almost always NULL.  If all primary key columns are either of fixed-length data-types, or their size can be easily determined from the data (eg: DBTYPE_WSTR), or their meta specifies a fixed length even though the type is variable length, the array of sizes must be NULL.  If one of the columns is truly a variable length which cannot be determined by the type, meta, or data (extremely unusual for a primary key column), the array of sizes is required.  The array of sizes must then correspond to the array of pointers, but all elements will be ignored except for the columns which truly require a caller-specified size.

o_piRow: 

The returned index to the row in this read cache matching the specified primary key identity.  ~0 if not found.

HRESULT errors:

· E_ST_NOMOREROWS: Specified row identity was not found.  The row index returned will be ~0.

· E_INVALIDARG: Array of sizes was required but caller specified NULL, array of sizes was not required but caller specified non-NULL, array of pointers was NULL, at least one of the pointers in the array of pointers was NULL, or the pointer for the row index was NULL.

· E_ST_INVALIDCALL: Row navigation attempted while populating the read cache (not applicable for normal callers: this error can occur internally in bad table implementations).

// ==================================================================

// Locating rows by column values:

ISimpleTableRead2::

HRESULT 
GetRowIndexBySearch
([in] ULONG i_iStartingRow, [in] ULONG i_cColumns, ULONG* i_aiColumns, 
 [in] ULONG i_acbSizes, [in] LPVOID* i_apvValues, ULONG *o_piRow)

Get the index of a row in the read cache by searching for particular column values. Lookup by column values is rare compared to lookup by row index.  Rather than navigate by identity, callers interested in certain identities more commonly query for a single identity or set of identities when obtaining the table.

i_iStartingRow
Specifies the row in the read cache where the search should start. Because it is possible that there are multiple elements that match the column values, we need to indicate how to find the next match. This can be done by changing the i_iStartingRow paramter.

i_cColumns: 

Count of columns for which to compare information.  See the reference for the i_cColumns parameter of GetColumnValues.

i_aiColumns: 

Array of column indexes for which we need to compare information.  See the reference for the i_aiColumns parameter of GetColumnValues for supported possibilities.

i_acbSizes:

Optionally specifies an array of sizes of the requested column values (always in count of bytes).  Callers typically do not need to know the size because it is either fixed according to the column type or meta (eg: DBTYPE_GUID, or fST_COLUMN_FIXEDLENGTH), or easily determined by the data (eg: DBTYPE_WSTR).  NULL is specified when the caller is not interested obtaining sizes.  If the caller does request sizes, they need not initialize their size variable to 0 before calling.  The same possibilities for i_apvValues apply to i_acbSizes when specified.

i_apvValues:

Specifies an array of pointers for the column values.  They point to the values that are used in the compare. 

· When comparing a single specific value, i_apvValues is the address of a pointer to hold the specified value.

· When comparing the first n column values or all column values, i_apvValues is an array of pointers of count i_cColumns.

· When comparing a specific set of values, i_apvValues must be an array of pointers whose count is the largest column index in the set + 1.  The array of pointers will be sparsely filled.  Only those at indexes requested will be pointed to column values.

o_piRow: 

The returned index to the row in this read cache matching the specified column values. ~0 if not found.

HRESULT errors:

· E_ST_NOMOREROWS: No row was found that matches the column values.  The row index returned will be ~0.

· E_INVALIDARG: Array of sizes was required but caller specified NULL, array of sizes was not required but caller specified non-NULL, array of pointers was NULL, at least one of the pointers in the array of pointers was NULL, or the pointer for the row index was NULL.

· E_ST_INVALIDCALL: Row navigation attempted while populating the read cache (not applicable for normal callers: this error can occur internally in bad table implementations).

Reference: Writing Via Tables

 (a.k.a. More Than You Wanted to Know about Writing Via Tables)
Be sure to understand the “Reference: Reading From Tables” section before reading this reference section.

// ==================================================================

ISimpleTableWrite2: ISimpleTableRead2::


AddRowForInsert


AddRowForUpdate


AddRowForDelete


GetWriteColumnValues


SetWriteColumnValues


UpdateStore


GetWriteRowIndexByIdentity

GetWriteRowIndexBySearch
The ISimpleTableWrite2 interface contains methods for inserting, deleting, and updating rows, methods for getting and setting column values in the write cache, a method for updating the datastore with all the “pending” changes in the write cache, and a method for finding a row by primary key identity in the write cache.

Recall that the read cache of a simple table contains the rows resulting from the query executed by ISimpleTableDispenser2::GetTable.  The ISimpleTableRead2 interface pointer encapsulates that in-process, in-memory read cache.  Thus, when reading, the only roundtrip to the datastore itself occurs when executing the query.  Iterating over the resulting rows and their column values occurs entirely within the caller’s process.  Writing via simple tables follows a similar pattern.  

The ISimpleTableWrite2 interface derives from the ISimpleTableRead2 interface.  Because of this derivation, you can do everything with the write interface that you can with the read interface, and more.  Obtaining a table from the dispenser via its GetTable method either supplies an ISimpleTableRead2 interface pointer (by default) or an ISimpleTableWrite2 interface pointer (if the read-write level-of-service is requested).

The ISimpleTableWrite2 interface pointer conceptually encapsulates a read and a write cache.  The write cache contains all the pending changes made by the caller until they tell the simple table to update the underlying datastore with those pending changes.  Thus, when writing, the only roundtrip to the datastore itself occurs when the caller wants to push a set of pending changes out to storage.  Each row insertion, row update, row deletion, and column change in that set of  “pending” changes occurs entirely within the caller’s process.

The write cache consists of an ordered list of marked rows.  Each row is marked either for deletion, insertion, or update.  Rows marked for insertion or update contain various columns whose values have been changed.  A row in the write cache can also be marked to be ignored, in which case that row is entirely ignored when updating the datastore with the pending changes.  Pending changes are applied to storage in the order they were made by the caller.

Having a separate cache for pending writes as opposed to making the changes in place in the “read” cache has important advantages.  Accessing column values via simple tables occurs by pointer directly into the cache.  Having a separate write cache guarantees that the caller’s pointers into the read cache will be valid until they either re-populate or release the table.  If changes were made directly into the read cache, pointers to any column values might become invalid with every single change, and the invalidation scenarios would be implementation specific.  Also, having a read and write cache allows comparison between original and changed values.  While not of interest to most callers, this capability is critical to some.

// ==================================================================

// Adding a row for insertion, update, or deletion:

ISimpleTableWrite2::

HRESULT 
AddRowForInsert
([out] ULONG* o_piWriteRow);
HRESULT 
AddRowForUpdate
([in] ULONG i_iReadRow, [out] ULONG* o_piWriteRow);
HRESULT 
AddRowForDelete
([in] ULONG i_iReadRow);
Add a row to the write cache marked for insertion, update, or deletion.

AddRowForInsert adds a new row to the write cache marked for insertion.  Meta specified defaults for column values are applied.  The index in the write cache of the new row is returned.  AddRowForUpdate copies a row from the read cache, given its index, into the write cache, and marks it for update.  The index in the write cache of the copied row is returned.  AddRowForDelete copies a row from the read cache, given its index, into the write cache, and marks it for deletion.

On a row added for insertion, values for all columns which do not have defaults must be specified, primary key columns included.  On a row added for update, since the row was copied from the read cache, all columns already have values.  On rows added for update, the primary key columns may not be changed.  

Note that when inserting rows, having data-driven defaults instead of schema-driven defaults might be desired.  This can easily be accomplished assuming that a row containing those defaults can be queried for.  Given that, the caller can simply transfer the defaults from the queried row to the new row.  This operation can be encapsulated as logic specific to the applicable set of tables.

i_iReadRow: The index of the row in the read cache to be added to the write cache for update or deletion.

o_piWriteRow: The index of the row added to the write cache for insertion or update.

HRESULT errors:

· E_ST_NOMOREROWS: The read cache index specified by the caller is invalid.  No changes are made to the write cache.

· E_OUTOFMEMORY: Insufficient memory to add the row to the write cache.  Pack up and go home.

// ==================================================================

// Setting and getting column values:

ISimpleTableWrite2::

HRESULT
GetWriteColumnValues
(
[in] ULONG i_iRow, 







[in] ULONG i_cColumns, [in] ULONG* i_aiColumns, 







[out] DWORD* o_afStatus, 







[out] ULONG* o_acbSizes, [out] LPVOID* o_apvValues);

HRESULT
SetWriteColumnValues
(
[in] ULONG i_iRow, 







[in] ULONG i_cColumns, [in] ULONG* i_aiColumns, 







[in] ULONG* i_acbSizes, [in] LPVOID* i_apvValues
);

Get and set one or more requested column values on the specified row in the write cache.

Value pointers obtained from GetWriteColumnValues are invalidated by any subsequent ISimpleTableWrite2 method call or by releasing the simple table.  The values are owned by the simple table: no copying takes place.  Attempting to modify a value is a programming error.  While not of concern to most callers, certain advanced or control methods also invalidate pointers obtained via GetWriteColumnValues:

· Cache reshaping via ISimpleTableController::ShapeCache.

· Read cache alteration via ISimpleTableController::PrePopulateCache/PostPopulateCache.

· Discarding the write cache via ISimpleTableController::DiscardPendingWrites.

i_iRow:

Specifies the index of the row in the write cache on which to fetch column values.  Row indexes range from 0 to count of rows - 1.

i_cColumns: See the reference for the i_cColumns parameter of GetColumnValues.

i_aiColumns: See the reference for the i_aiColumns parameter of GetColumnValues.

o_apvValues: See the reference for the o_apvValues parameter of GetColumnValues.

o_acbSizes: Optional.  See the reference for the o_acbSizes parameter of GetColumnValues.

o_afStatus:

Optional array of column status flags.  The caller need not initialize their status variables to 0 before calling.  Be sure to use bit AND’ing (not equality) to check for flags.  The exposed column status flags are:

· fST_COLUMNSTATUS_CHANGED: The column value has been changed by the caller.  The flag will not be set if the column value has not yet changed.  Schema-specified defaults applied to column values on AddRowForInsert do not show up as changes.  Note that all column values (unless the meta specifies otherwise) are guaranteed to be written to the datastore on row insertions or updates.

The same possibilities for o_apvValues and o_cbSizes apply to o_afStatus  when specified.

i_apvValues: 

Array of pointers to values to be set on the specified row in the write cache.  These values are copied by SetWriteColumnValues.  The same possibilities for o_apvValues are supported.

i_apvValues: 

Array of sizes corresponding to the values specified in i_apvValues.  The same possibilities for o_acbSizes are supported.  When the size of a value can be determined by the column type, meta, or value itself, the size specified in this array is guaranteed to be ignored (i.e. 0 can be supplied in most cases).  If this is the case for all column values specified, this array can be NULL.

HRESULT errors:

Note that on any error from GetWriteColumnValues specifically, the caller’s value pointer, requested status and size are guaranteed to be set to NULL and 0 respectively when possible.

· E_ST_NOMOREROWS: The row index specified is out of range.  No change occurs.

· E_ST_NOMORECOLUMNS: The column index specified is out of range.  No change occurs.

· E_ST_SIZENEEDED: The caller did not specify the size of a column value passed to SetWriteColumnValues whose size cannot be determined by the column type, meta, or value itself.

· E_ST_SIZEEXCEEDED: The column value specified in the call to SetWriteColumnValues was determined to be greater in size than the maximum or fixed size specified by meta.  No change occurs.

· E_ST_VALUEINVALID: The value specified by the caller for a column is invalid according the meta.

· E_ST_PKNOTCHANGEABLE: The column specified in the call to SetWriteColumnValues while adding a row for update was a primary key which cannot be changed during update.  No change occurs.

· E_INVALIDARG: : The address supplied by the caller for their array of value pointers is NULL.

· E_OUTOFMEMORY: Insufficient memory to set column values.  Pack up and go home.

// ==================================================================

// Updating the store:

ISimpleTableWrite2::

HRESULT
UpdateStore
();
Apply all pending changes in the write cache to the datastore.  

The row updates, insertions, and deletions made by the caller are guaranteed to be applied in the order specified by the caller.  The write cache is cleared of pending changes, unless E_ST_DETAILEDERRORS is returned, in which case all pending changes remain.  If detailed errors occur, the caller may investigate those errors and clear the write cache of pending changes via ISimpleTableAdvanced.

UpdateStore is guaranteed to iterate over all pending row changes even when detailed errors (i.e.: errors specific to a row or column, which are typically failed validations) occur.  This allows the caller to see all the errors found while attempting to process their pending changes, as opposed to the first problem only.  This does not mean that in a mix of failed and successful changes, some of the changes are applied.  By convention, when any detailed errors occur, none of the pending changes are written to the datastore.  This convention does not mean that the datastore itself is fully transactional.  It simply means that the set of pending changes will be applied together, as a unit, if and only if no detailed errors were detected.  If the underlying datastore is not itself transactional, unavoidable failures can occur when actually persisting the changes.

More sophisticated validation requires evaluating the changes to a row as a whole and even validating those changes against other tables.  These validations will occur during UpdateStore.

When inserting or updating a row in the datastore, all column values are guaranteed to be written (unless their meta specifies otherwise).

HRESULT errors:

· E_ST_LOSNOTSUPPORTED: The caller tried UpdateStore on a table instance but did not request the fST_LOS_READWRITE level-of-service when they obtained the table.

· E_ST_DETAILEDERRORS: While updating the store with the pending changes in the write cache, errors occurred specific to one or more of the row changes.  Use ISimpleTableAdvanced to obtain detailed error information.  Common detailed errors include:

· E_ST_VALUENEEDED: On a row marked for insertion, the caller was required to specify a value for a particular column (because a default value was not specified in the meta), but failed to do so.  The specific column or columns will be indicated as part of the detailed error.

· E_ST_VALUEINVALID: The value specified by the caller for a column is invalid according to validation rules.  The specific column or columns will be indicated as part of the detailed error.

· E_ST_ROWALREADYEXISTS: Inserting a row was attempted and that row already exists. 

· E_ST_ROWDOESNOTEXIST: Updating a row was attempted and that row does not exist.

· E_ST_ROWALREADYUPDATED: Updating a row was attempted but that row was already updated between the time the caller read the row and applied their changes.  By default, overlapping updates are allowed.  (Preventing overlapping updates is possible, but currently no need exists.  The infrastructure will not be plumbed to support this until a consumer drives it based on a concrete need.)

· E_ST_FKDOESNOTEXIST: An inserted row includes a foreign key to another table whose corresponding primary key does not exist but must exist according to meta.

· E_ST_INVALIDCALL: Call attempted while populating the read cache (not applicable for normal callers: this error can occur internally in bad table implementations).

· Other errors may be returned which are table implementation specific.

// ==================================================================

// Locating rows by identity:

ISimpleTableWrite2::

HRESULT GetWriteRowIndexByIdentity
([in] ULONG* i_acbSizes, [in] LPVOID* i_apvValues, [out] ULONG* o_piRow);

Get the index of a row in the write cache by searching for its primary key identity.  See the reference for GetRowIndexByIdentity.  The two methods are semantically identical except that one is for the read cache and one is for the write cache, and that E_ST_INVALIDCALL does not apply to GetWriteRowIndexByIdentity.
// ==================================================================

// Locating rows in write cache by column values:

ISimpleTableRead2::

HRESULT 
GetWriteRowIndexBySearch
([in] ULONG i_iStartingRow, [in] ULONG i_cColumns, ULONG* i_aiColumns, 

 [in] ULONG i_acbSizes, [in] LPVOID* i_apvValues, ULONG *o_piRow)

Get the index of a row in the write cache by searching for column values.  See the reference for GetRowIndexBySearch.  The two methods are semantically identical except that one is for the read cache and one is for the write cache, and that E_ST_INVALIDCALL does not apply to GetWriteRowIndexBySearch.
Reference: Advanced Table Usage

 (a.k.a. Stuff Most Callers Who Work With Simple Tables Will Never Need)
Use of certain simple table features are historically rare but very necessary for a small set of sophisticated callers.  This reference section assumes a working knowledge of previous sections.

// ==================================================================

ISimpleTableAdvanced::


PopulateCache


GetDetailedErrorCount


GetDetailedError

The ISimpleTableAdvanced interface provides a method for re-executing the query on an existing table instance, reloading the read cache with the new results, and also provides methods for obtaining detailed errors.  Logic implementers aside, the configuration API is currently the only caller requiring these capabilities.

Before detailing the methods, let’s discuss concurrency semantics.  Making the same request to the table dispenser twice effectively yields two table instances, each with its own read cache and possibly its own write cache.  The table instances are independent and the results in each read cache will differ if the data in underlying storage changed between calls.

Sophisticated callers may want to share one read cache among multiple threads.  First the caller must obtain the table instance via the table dispenser which executes their query and populates the read cache with the resulting rows.  The caller can then give out references to this table instance to multiple threads.  These threads can then read the results safely.  On a particular thread the caller can either make changes via the table object or listen on applicable notifications.  When the caller pushes accumulated changes to storage or receives notification, they can request another table instance from the table dispenser to obtain the latest results from those changes.  The caller can then release their reference to the old copy and notify the other threads that a new copy is available.  This approach allows threads using the old copy to release their references independently and when the last thread does so the old copy will be automatically cleaned up.  Callers must of course obey the lifetime rules on pointers they obtain into the read and write cache as outlined in the references for GetColumnValues and GetWriteColumnValues.

// ==================================================================

// Re-populating the read cache…

ISimpleTableAdvanced::

HRESULT PopulateCache


();

When the caller obtains a table instance from the table dispenser, the read cache is typically already populated with the results from their query.  PopulateCache discards the existing results (if any) from the read cache, re-executes the query, and populates the read cache with the resulting rows.

HRESULT errors:

· E_ST_LOSNOTSUPPORTED: The caller tried PopulateCache on a table instance but did not request the fST_LOS_REPOPULATE level-of-service when they obtained the table.

· E_ST_DETAILEDERRORS: Errors occurred during population which are available via detailed errors.  See the reference on UpdateStore for common detailed errors.

// ==================================================================

// Obtaining detailed errors…

ISimpleTableAdvanced::

HRESULT GetDetailedErrorCount

([out] ULONG* o_pcErrs);

HRESULT GetDetailedError


([in] ULONG i_iErr, [out] STErr* o_pSTErr);

Obtain the count of detailed errors and the detailed errors themselves.  Detailed errors can occur on ISimpleTableDispenser2::GetTable, ISimpleTableWrite2::UpdateStore, and ISimpleTableAdvanced::PopulateCache.  The detailed errors apply to whichever of these calls was made last.

o_pcErrs: The count of detailed errors.  0 when no detailed errors were encountered.

i_iErr: The index of the detailed error to obtain.  Detailed error indexes range from 0 to count of errors - 1.

o_pSTErr: The detailed error information requested.  The fields need not be initialized by the caller.  A detailed error structure is defined as:
typedef struct {


ULONG

iRow;


HRESULT
hr;


ULONG

iColumn;

} STErr;
· iRow: The row index to which the detailed error applies.  iST_ERROR_ALLROWS means the error applies to all rows.  If the detailed errors resulted from UpdateStore, this is an index into the write cache, and otherwise this is an index into the read cache.

· iColumn: The column index to which the detailed error applies.  iST_ERROR_ALLCOLUMNS means the error applies to all columns on the denoted row.

· hr: The error code for the detailed error, expressed as an HRESULT.

HRESULT errors:  On error, the caller’s detailed error structure will be zeroed when possible.

· E_INVALIDARG: o_pcErrs or o_pSTErr was NULL.

· E_ST_NOMOREERRRORS: i_iErr was out of range.

Part II: Schema Evolution

Extending Schema

 (a.k.a. Give Me My New Configuration Properties Now!)

Dynamic Schema Adaptation

 (a.k.a. How NOT to Go Insane During the Development Cycle)
<todo/>A simple example of printing the contents of any table…

<notes>

· Detail the differences between generic table code and specific table code…

· Note schema versioning policies…

· I can pre-determine the schema for columns of interest either statically or dynamically; dynamically I can do it from the table or a meta table.

· The table dispenser is an example of a piece of code which dynamically evolves…so is the shapeable fast cache.

· Table name assumes fixed ordered subset of columns: callers which only need those can hard code...

· Note that primary keys must always be unique!  Multi-column ok.

· DT/LT-specific meta now obtained via query rather than modified table ID…

· Note that for hard-coded values, table version assertions are useful…

· What about meta enforcement while pre-to-post populating the read cache?

</notes>

Reference: The Meta Database

 (a.k.a. All You Need To Know About All You Can Know)

Be sure to read the “Dynamic Schema Adaptation” introductory sections before reading this reference section.  

// ==================================================================

METADATABASE:


DATABASEMETA


TABLEMETA


COLUMNMETA


TAGMETA

 
RELATIONMETA


QUERYMETA


INDEXMETA

The meta database is a collection of tables regarding meta.  The databases known to the catalog, their tables, the columns in those tables are all described (as well as the legal enumerations or flags for enumeration and flag columns).  The relationships between the tables, the queries supported by each table, and the indexes available on each table are also described.

Recall that a database, in simple table terms, is a logical collection of tables.  Those tables need not all come from one physical datastore or location, and typically they don’t.  In simple table terms, databases are virtual collections of tables, datastores are places where table information is persisted.  Simple tables encapsulate the datastore details from callers.

The meta database is a collection of meta information tables which are obtained via the table dispenser and readable as simple tables.  The table implementation serving up meta database tables is read-only and extremely efficient.  Writing to the meta database occurs via an out-of-band compilation from a XML-based source format.  Many simple table consumers can and should use the meta database to insure they dynamically adapt to schema changes.  

The meta database can answer all sorts of interesting questions, like:

· What are the databases known to the catalog?

· What are the tables in a database?

· What are the columns in a table?

· What is the type, size, and attributes of a column?

· What are the relationships between tables?

· Etc…

This reference succinctly describes each meta table and its columns.  The meta tables themselves are fully self-described via the meta database.

// ==================================================================

DATABASEMETA:


InternalName
DBTYPE_WSTR

PRIMARYKEY


PublicName
DBTYPE_WSTR


BaseVersion
DBTYPE_UI4


ExtendedVersion
DBTYPE_UI4


CountOfTables
DBTYPE_UI4

DATABASEMETA describes each database known to the catalog.

InternalName:

The internal name of the database.  Internal database constants are generated from this.

The table dispenser recognizes databases by their internal names.

PublicName:

The public name of the database.  Used by the administration api and public media.

BaseVersion:

The base version of this database.  

Each time tables are removed, the base version increments.  The base version must not change when tables are added.  Therefore, the base version guarantees a well-known minimum subset of tables.

ExtendedVersion:
The extended version of this database.  

The extended version increments whenever tables are added or removed.

CountOfTables:

The count of tables in this database (derived from the TABLEMETA table).

// ==================================================================

TABLEMETA:


Database


DBTYPE_WSTR
PRIMARYKEY | FOREIGNKEY


InternalName

DBTYPE_WSTR
PRIMARKKEY


PublicName

DBTYPE_WSTR


PublicRowName

DBTYPE_WSTR


BaseVersion

DBTYPE_UI4


ExtendedVersion

DBTYPE_UI4


NameColumn

DBTYPE_UI4


NavColumn

DBTYPE_UI4


CountOfColumns

DBTYPE_UI4


MetaFlags

DBTYPE_UI4
FLAG


SchemaGeneratorFlags
DBTYPE_UI4
FLAG

TABLEMETA describes each table known to the catalog.

Database:

The internal name of the one database to which this table belongs.

InternalName:

The internal name of the table, from which internal table and column constants are built. 

The table dispenser recognizes tables by their internal names.

PublicName:

The public name of the table.  Used by the administration api and public media.

PublicRowName:
The public name of the rows in the table.

BaseVersion:

The base version of this table.

Each time existing columns are re-ordered (either by re-ordering, inserting new columns, deleting existing columns) or the meta any existing columns is fundamentally changed, the base version increments.  The version must not change when new columns are added.  Therefore, a version guarantees a well-known subset of columns having well-known meta.

ExtendedVersion:
The extended version of this table: increments whenever table or column meta changes.

NameColumn:

The column in the table whose value is the public name for the row.  

The administrative api displays the names of the rows from this column.  The name column must be of type DBTYPE_WSTR.

NavColumn:

The column in the table used by the administrative api for hierarchical navigation.  

This column must be one of the a primary key columns.

CountOfColumns:
The count of columns in this table (derived from the COLUMNMETA table).

MetaFlags:

The meta flags for the table.  

When a flag represents a boolean choice, the flag specifies the less common choice, and the absence of the flag specifies the common choice.

· fTABLEMETA_INTERNAL: The table is not publically exposed by the administrative api.

· fTABLEMETA_NOLISTENING: The notification system will never listen for changes on this table.

· fTABLEMETA_RELATIONINTEGRITY: The integrity logic table is needed either to relational integrity.  The integrity table uses the RELATIONSMETA table for enforcing relational integrity.

· fTABLEMETA_ROWINTEGRITY: The integrity logic table will be used to enforce row integrity during UpdateStore (inserting a row fails if the row already exists; updating a row fails if the row does not exist).

· fTABLEMETA_UNKNOWNSIZES: The table has at least one column where the sizes of its values cannot be determined from the type, meta, or data directly (meaning the size must be requested when getting the column values and must be specified when setting them).  Derived from column meta.

· fTABLEMETA_HASDIRECTIVE: The table has a column for merge directives: derived from column meta.

· fTABLEMETA_NOPUBLICINSERT: The administrative api will block row insertions into this table.  Never set for internal tables.

· fTABLEMETA_NOPUBLICUPDATE: The administrative api will block row updates into this table.  Never set for internal tables.

· fTABLEMETA_NOPUBLICDELETE: The administrative api will block row deletes into this table.  Never set for internal tables.

· fTABLEMETA_HIDDEN: The table is hidden by the administrative api. This can be used to exclude tables from WMI.

SchemaGeneratorFlags:The schema generator flags for the table.

· fTABLEGENERATOR_XMLSCHEMA: Generate XML schema for the table.

· fTABLEGENERATOR_CLBSCHEMA: Generate CLB schema for the table.

// ==================================================================

COLUMNMETA:


Table

DBTYPE_WSTR

PRIMARYKEY | FOREIGNKEY


Index

DBTYPE_UI4

PRIMARYKEY


InternalName
DBTYPE_WSTR


PublicName 
DBTYPE_WSTR


Type

DBTYPE_UI4

ENUM


Size

DBTYPE_UI4


MetaFlags
DBTYPE_UI4

FLAG


DefaultValue
DBTYPE_BYTES


FlagsMask
DBTYPE_UI4


StartingNumber
DBTYPE_UI4


EndingNumber
DBTYPE_UI4


CharacterSet
DBTYPE_WSTR

COLUMNMETA describes the columns of each table known to the catalog.

Table:


The internal name of the table to which this column belongs.

Index:


The column index.  Indexes must range from 0 to count of columns - 1.

InternalName: 

The internal name of the column.  Internal column constants are built using this name.

PublicName: 

The public name of the column.  Used by the administration api and public media.

Type:


The column type:

· DBTYPE_UI4: A 32-bit value (futher qualified by column meta as a range, bool, flags, enums, etc).

· DBTYPE_GUID: A 16-byte guid.

· DBTYPE_WSTR: A unicode string.

· DBTYPE_BYTES: A byte array.

· DBTYPE_DBTIMESTAMP: A DBTIMESTAMP structure, consisting of year, month, day, hour, minute, second, and fraction.

· DBTYPE_VARIANT: A variant.  Supported on a case-by-case basis for specific tables only.

Size: 


The size, in count of bytes, of the column’s values.  

If the column type is a fixed-length type, or column type allows variable sizes but the meta specifies a fixed length, all column values (except NULL) are guaranteed to be of this size.  If the type and meta specify a variable length, the size indicates the maximum length.  A size of ~0 indicates unlimited length.

MetaFlags:

The meta flags for the column.  

When a flag represents a boolean choice, the flag specifies the less common choice, and the absence of the flag specifies the common choice.

Column classifications:

· fCOLUMNMETA_PRIMARYKEY: The column is part of the primary key.

· fCOLUMNMETA_FOREIGNKEY: The column is refers to a primary key column in another table.  This information is derived from the RELATIONSMETA table.

· fCOLUMNMETA_NAMECOLUMN: This is the name column.  Derived from table meta.

· fCOLUMNMETA_NAVCOLUMN: This is the navigation column.  Derived from table meta.

· fCOLUMNMETA_DIRECTIVE: The column is the merge directive for the table.

Type modifiers:

· fCOLUMNMETA_BOOL: Column values are boolean (DBTYPE_UI4 only).

· fCOLUMNMETA_FLAG: Column values are flags (DBTYPE_UI4 only): see TAGMETA.

· fCOLUMNMETA_ENUM: Column values are enums (DBTYPE_UI4 only): see TAGMETA.

Write restrictions (write always is the default):

· fCOLUMNMETA_WRITENEVER: Value changes to this column are never written.

· fCOLUMNMETA_WRITEONCHANGE: Only write this column value when the caller changes it.

· fCOLUMNMETA_WRITEONINSERT: Only write this column value when the row is first inserted.

Public exposure restrictions (public is the default; not public is always set for internal tables):

· fCOLUMNMETA_NOTPUBLIC: Column not exposed via the administrative api.

· fCOLUMNMETA_NOTDOCD: Column exposed via the administrative api but not documented.

Public write restrictions (read/write is the default):

· fCOLUMNMETA_PUBLICREADONLY: Column value cannot be modified via the administrative api.

· fCOLUMNMETA_PUBLICWRITEONLY: Column value write-able but not readable via administrative api.

Insert rules:

· fCOLUMNMETA_INSERTDEFAULT: Column value has a specified default on insertion.

· fCOLUMNMETA_INSERTGENERATE: Column value is generated on insertion (DBTYPE_GUID only).

· fCOLUMNMETA_INSERTUNIQUE: Column value on insertion must not duplicate any existing values. 

· fCOLUMNMETA_INSERTPARENT: Parent value will be used for this column value on insertion.  This functionality is only implemented by the administrative api.

Edit rules:

· fCOLUMNMETA_NOTNULLABLE: NULL is not an acceptable value for this column.  Applicable to any type since all values are passed by pointer.  Always specified for fST_COLUMNSTATUS_PRIMARYKEY.

· fCOLUMNMETA_FIXEDLENGTH: The size of all values for this column are fixed.  This flag is set automatically for fixed-length types.  Invalid when an unlimited length is specified for the size.

· fCOLUMNMETA_HASNUMERICRANGE: Column values are limited to a specified contiguous range (DBTYPE_UI4 only).

· fCOLUMNMETA_HASLEGALCHARS: Only specified legal characters allowed (DBTYPE_WSTR only).

· fCOLUMNMETA_HASILLEGALCHARS: Specified characters not allowed (DBTYPE_WSTR only).

MetaFlagsEx:

Additional MetaFlags
· fCOLUMNMETA_HIDDEN: The column will be hidden by the administrative API (i.e. not exposed via WMI).

DefaultValue:

Pointer to the default value for the column on insertion.  Can be NULL.  

Ignored and NULL when fST_COLUMNMETA_INSERTDEFAULT is not specified.

FlagsMask:

Mask of acceptable flags for an fST_COLUMNMETA_FLAG column.  

The mask is derived from the flags in the TAGMETA table.  0 when this column meta flag is not specified.

StartingNumber:
Continuous range start for an fST_COLUMNMETA_HASNUMERICRANGE column.  

0 and ignored when this column meta flag is not specified.

EndingNumber:

Continuous range end for an fST_COLUMNMETA_HASNUMERICRANGE column.  

0 and ignored when this column meta flag is not specified.

CharacterSet:

The illegal or legal character set.

Applicable for a fST_COLUMNMETA_HASLEGALCHARACTERS or fST_COLUMNMETA_HASILLEGALCHARACTERS column.

// ==================================================================

TAGMETA:


Table

DBTYPE_WSTR

PRIMARYKEY | FOREIGNKEY


ColumnIndex
DBTYPE_UI4

PRIMARYKEY | FOREIGNKEY


InternalName
DBTYPE_WSTR

PRIMARYKEY


PublicName
DBTYPE_WSTR


Value

DBTYPE_UI4

TAGMETA describes the supported enumerations or flags for a given enumeration or flag column.

Table:


The internal name of the table to which this tag belongs.

ColumnIndex:

The column index to which this tag belongs.

InternalName: 

The internal name of the tag.  Internal tag constants are built using this name.

PublicName: 

The public name of the tag.  Used by the administration api and public media.

Value: 


The value of the tag.

// ==================================================================

RELATIONMETA:


PrimaryTable
DBTYPE_WSTR

PRIMARYKEY | FOREIGNKEY


PrimaryColumns
DBTYPE_BYTES


ForeignTable
DBTYPE_WSTR

PRIMARYKEY | FOREIGNKEY


ForeignColumns
DBTYPE_BYTES


MetaFlags
DBTYPE_UI4

FLAG

RELATIONMETA describes the relationships between tables.

PrimaryTable:

The internal name of the primary table in this relation.

PrimaryColumns:
The primary columns for this relation.

ForeignTable:

The internal name of the foreign table in this relation.

ForeignColumns:
The foreign columns matching the primary columns in this relation.

MetaFlags:

The meta flags for this relation.  

When a flag represents a boolean choice, the flag specifies the less common choice, and the absence of the flag specifies the common choice.

· fRELATIONMETA_CASCADEDELETE: Cascade delete children as part of parent deletion.

· fRELATIONMETA_PRIMARYREQUIRED: Parent specified by child must exist on insertion.

· fRELATIONMETA_HIDDEN: The relation will not be exposed via the administrative API (i.e. Hidden for WMI)

// ==================================================================

QUERYMETA:


Table 

DBTYPE_WSTR

PRIMARYKEY | FOREIGNKEY


InternalName
DBTYPE_WSTR

PRIMARYKEY


PublicName
DBTYPE_WSTR


Order

DBTYPE_UI4


CellName
DBTYPE_UI4


Operator

DBTYPE_UI4

ENUM


MetaFlags
DBTYPE_UI4

FLAG

QUERYMETA describes the supported queries for a given table.  This meta describes cell-based queries.

Table:


The internal name of the table to which this query applies.

InternalName: 

The internal name of the query.  Internal tag constants are built using this name.

PublicName: 

The public name of the query.  Used by the administration api and public media.

Order:


The order of the cell.

CellName:

The cell name.  Typically the internal column name.

Operator:

The cell operator.

MetaFlags:

The meta flags for this query:  

· fQUERYMETA_ALL: Indicates the table supports requests for all rows (i.e. select *).

· fQUERYMETA_ANY: Indicates the table supports any cell-based query.

// ==================================================================

INDEXMETA:


Table

DBTYPE_WSTR

PRIMARYKEY | FOREIGNKEY


InternalName
DBTYPE_WSTR

PRIMARYKEY


PublicName
DBTYPE_WSTR


Column

DBTYPE_UI4

PRIMARYKEY | FOREIGNKEY


MetaFlags
DBTYPE_UI4

FLAG


INDEXMETA describes the indexes on a given table.

Table:


The internal name of the table to which this index applies.

InternalName: 

The internal name of the index.  Internal tag constants are built using this name.

The table dispenser recognizes indexes by their internal names.

PublicName: 

The public name of the index.  Used by the administration api and public media.

Column: 

The internal column name of a column contributing to this index.

MetaFlags:

The meta flags for this index.  

When a flag represents a boolean choice, the flag specifies the less common choice, and the absence of the flag specifies the common choice.

· fINDEXMETA_UNIQUE: The combined column values in the index are unique.

· fINDEXMETA_SORTED: A sorted as opposed to hashed index.

· fINDEXMETA_INSENSITIVE A case insensitive as opposed to case sensitive index.

Here is the self-description of the meta database itself and the relationships among its tables:

// ==================================================================

DATABASEMETA:


InternalName:
METADATABASE


PublicName:
MetaDatabase


BaseVersion:
1


ExtendedVersion:
1


CountOfTables:
7

RELATIONMETA:


PrimaryTable

PrimaryColumns

ForeignTable
ForeignColumns
MetaFlags

DATABASEMETA
InternalName

TABLEMETA
Database

PRIMARYREQUIRED


TABLEMETA

InternalName

COLUMNMETA
Table

PRIMARYREQUIRED


TABLEMETA

InternalName

QUERYMETA
Table

PRIMARYREQUIRED


TABLEMETA

InternalName

INDEXMETA
Table

PRIMARYREQUIRED


COLUMNMETA

Table, Index

TAGMETA
Table, ColumnIndex PRIMARYREQUIRED

Reference: The Meta Source

 (a.k.a. How To Describe And Compile Your Schema)

Assuming you read the pre-requisite section “Reference: The Meta Database”, you are probably hoping that you need not specify all of that meta each time you need a new table or a new column on an existing table.  Fear not, for reasonable defaults exist for most meta.  New meta is expressed via an XML-based source format.  This source format is very tolerant, allowing expression of your meta requirements as minimally as possible.  Astute readers probably also noted that several dependencies and redundancies exist across the meta database.  A meta compiler generates the meta database from the XML-based source format.  The compiler takes care synchronizing those dependencies and redundancies.

The meta source begins with the following header:

<?xml version=1.0?>

<MetaData xmlns=”x-schema:catmeta.xms”>

where catmeta.xms is the XML schema for the meta source.

Recall that databases contain tables, tables contain columns, and enum and flag columns contain tags.  Tables also contain queries and indexes.  Relations span tables.  The containment hierarchy for the meta source is:

<DatabaseMeta …>


<TableMeta …>



<ColumnMeta …>




<TagMeta …/>



</ColumnMeta>



<QueryMeta …/>



<IndexMeta …/>


</TableMeta>

</DatabaseMeta>

<RelationMeta …/>

The minimal containment necessary to describe a new table is that the table must belong to a database and the columns in the table must be specified.  The meta compiler minimally requires the internal names of the database, table, and columns, the types of the columns, and at least one column denoted as a primary key.  Reasonable defaults for all other meta can be derived from this information.  For example:

<DatabaseMeta InternalName=”URTConfig” >


<TableMeta InternalName=”Applications”>



<ColumnMeta InternalName=”Name” 

Type=”DBTYPE_WSTR” MetaFlags=”PRIMARYKEY” />



<ColumnMeta InternalName=”Description”
Type=”DBTYPE_WSTR” />



<ColumnMeta InternalName=”Site” 

Type=”DBTYPE_UI4” />


</TableMeta>

</DatabaseMeta>

The attributes supported on each type of meta are outlined below.  See the “Reference: The Meta Database” section for descriptions.  Some attributes and flags are never specified since the meta compiler can always correctly derive them.  Those attributes and flags appear in comments.

<DatabaseMeta 


InternalName

= ”string”


PublicName

= ”string”


BaseVersion

= ”0..n”


ExtendedVersion

= ”0..n”

/>
<!--CountOfTables

derived from TableMeta -->
<TableMeta 


InternalName

= ”string”


PublicName

= ”string”


PublicRowName

= “string”


BaseVersion

= ”0..n”


ExtendedVersion

= ”0..n”


MetaFlags

= “INTERNAL NOLISTENING RELATIONINTEGRITY ROWINTEGRITY


 


     NOPUBLICINSERT NOPUBLICUPDATE NOPUBLICDELETE”


SchemaGeneratorFlags
= “XMLSCHEMA CLBSCHEMA”

/>
<!-- Database 

derived from containing element -->


<!-- NameColumn

derived from ColumnMeta -->


<!-- NavColumn

derived from ColumnMeta -->


<!--CountOfColumns 
derived from ColumnMeta -->


<!--HASUNKNOWNSIZES and HASDIRECTIVES derived from ColumnMeta -->

<ColumnMeta 


InternalName

= ”string”


PublicName

= ”string”


Type


= “UI4 GUID WSTR BYTES DBTIMESTAMP”


Size


= “0..n”


MetaFlags

= “PRIMARYKEY FOREIGNKEY NAMECOLUMN NAVCOLUMN DIRECTIVE





     BOOL FLAG ENUM





     WRITENEVER WRITEONCHANGE WRITEONINSERT





     NOTPUBLIC NOTDOCD





     PUBLICREADONLY PUBLICWRITEONLY





     INSERTDEFAULT INSERTGENERATE INSERTUNIQUE INSERTPARENT





     NOTNULLABLE FIXEDLENGTH HASNUMERICRANGE





     HASLEGALCHARS HASILLEGALCHARS”


DefaultValue

= “data”


StartingNumber

= “0..n”


EndingNumber

= “0..n”


CharacterSet

= “string”

/>
<!-- Table

derived from containing element -->


<!-- Index

derived from position -->


<!-- FlagMask

derived from TagMeta -->

<TagMeta 


InternalName

= ”string”


PublicName

= ”string”


Value


= “0...n”

/>
<!-- Table

derived from containing element -->


<!-- Index

derived from containing element -->

<QueryMeta 


InternalName

= ”string”


PublicName

= ”string”


CellName

= ”string”


Operator


= “EQUAL NOTEQUAL”


MetaFlags

= “ALL ANY”

/>
<!-- Table

derived from containing element -->


<!-- Order

derived from position -->

<IndexMeta 


InternalName

= “string”


PublicName

= “string”


Column


= “string”


MetaFlags

= “NONUNIQUE SORTED INSENSITIVE”

/>
<!-- Table

derived from containing element -->

<RelationMeta 


PrimaryTable

= “string”


PrimaryColumns

= “0..n 0..n …”


ForeignTable

= “string”


ForeignColumns

= “0..n 0..n …”


MetaFlags

= “CASCASEDELETE PRIMARYREQUIRED”

/>

catutil.exe can validate the meta source.  Supported validation usages include:

CATUTIL catmeta.xml





CATUTIL /VALIDATE catmeta.xml



The former verifies catmeta.xml is well formed XML.  The latter validates catmeta.xml against an available DTD or XML schema.  Both the verification and validation work with any XML file.

catutil.exe also compiles the meta source.  The typical meta compilation usage is:

CATUTIL /COMPILE /meta=catmeta.xml /wire=catwire.xml /header=catmeta.h /schema=catalog.xms /dll=catalog.dll

· /COMPILE: 
Indicates this is a compile.

· /meta: 
The meta source XML.

· /wire: 
The wiring source XML (see “Part III: Stores And Logic”).

· /header: 
The name for the generated header file.

· /schema: 
The name for the generated XML schema file.

· /dll: 

The name of the catalog dll into which the meta and wiring databases will be compiled.

If the files catmeta.xml, catwire.xml, and catalog.dll are present in the same directory as catutil.exe, and catmeta.h and catalog.xms are acceptable filenames, the compilation syntax may be shortened to:

CATUTIL /COMPILE

The generated header creates C constant names for all databases, tables, columns, tags and other meta processed.  Constant names are generated as follows:

· Database constant names are generated by concatenating “wszDATABASE_” with the database internal name.  Table constant names are generated by concatenating “wszTABLE_” with the table internal name.

· Column constant names are generated by concatenating “i”, the internal name of the table in which the column exists, “_”, and the column internal name.

· Column value flag constant names are generated by concatenating “f”, the column internal name, “_”, and the tag internal name of the flag.  Column value enum constant names are generated by concatenating “e”, the column internal name, “_”, and the tag internal name of the enumeration.

Part III: Stores And Logic

The Wiring Process

 (a.k.a. !!!)

Easily Plugging in Stores

 (a.k.a. !!!)



Virtual Tables

 (a.k.a. !!!)

Plug-ins, Implementation Dispensers, and Table Implementations

(a.k.a. This is What Makes Simple Tables So Cool)
Interceptors

Defining a new interceptor

To create a new interceptor, follow the following steps:

1. Edit src\catinproc\catmeta_core.xml and find the collection SERVERWIRINGMETA

2. Add a new enum value to the interceptor property, i.e.

<Enum InternalName=”MyDummyInterceptor” Value=”16”/>

3. Go to your meta-file (i.e. URTMeta.xml), find the table you want to use the new interceptor, and add the following line:

<ServerWiring Interceptor=”MyDummyInterceptor” DLLName=”MyDLL”/>

4. Implement the new interceptor in MyDLL.dll.
5. Rebuild the catalog

The above assumes that the interceptor lives in its own DLL. In case the interceptor lives in catalog.dll, we have to do the following after step 4:

6. In catinproc.cpp, find DllGetSimpleObjectByID and add a new case statement for the new interceptor.

7. Implement the GetMyDummyInterceptro function in catinproc.cpp

8. Rebuild the catalog.
How does ServerWiring work

It is possible to define multiple interceptors for a single table. To find out which interceptors are invoked for a table, we have to distinguish between two different interceptor types:

1. Store interceptors

Store interceptors abstract a configuration store (i.e. abstract where the data is stored). A store interceptor is identified by metaflag ‘First’ in the SERVERWIRING element.

2. Logic interceptors
Logic interceptors to additional validation of data after it is read from the configuration store and before it is written to the configuration store.. A logic interceptor is identified by metaflag ‘Next’ in the SERVERWIRING element
To figure out which store interceptor to use the following logic is used:

1. Find the first store interceptor, and call Intercept on it. If this call succeeds, use this interceptor, and ignore all other interceptors. If this call fails with E_OMITDISPENSER, we try the next store interceptor. If no other interceptor is found an error is returned

2. After we have found a valid store interceptor, all logic interceptors are added in the order they are defined. Each logic interceptor will be called in succession during PopulateCache and OnUpdateStore.

For instance, suppose I have the following serverwiring for a table:

<SERVERWIRING Interceptor=”MergeInterceptor” MetaFlags=”First”/>

<SERVERWIRING Interceptor=”XMLInterceptor” MetaFlags=”First”/>

<SERVERWIRING ReadPlugin=”ReadPlugin1” MetaFlags=”Next”/>

<SERVERWIRING ReadPlugin=”ReadPlugin2” MetaFlags=”Next”/>
The order in which things are tried is:

1. Try the merge interceptor. If that succeeds use that as store interceptor. If that fails with E_OMITDISPENSER, try the next dispensor. Any other error code is a hard error.

2. Try the XML interceptor. If that succeeds use that as store interceptor.
3. Add Readplugin1

4. Add Readplugin2

As you can see, the readplugins are always added, i.e. they are independent of the underlying configuration store (store interceptor).
Read/Write Plug-ins
When you want additional validation of data beyond that what is available via the underlying interceptors, Plug-ins can be used to verify that data read or data written is valid according to certain constraints. For instance, suppose that I want to validate that a certain string is a social security number, and the format of the string should be XXX-XX-XXXX. The catalog itself does not have support for this, however a plugin can be used to verify that the string is of that particular format.
Currently, two  types of plugins are supported:

1. Read-plugins
These plugins verify that data that is read is valid. For instance, when the XML Interceptor is used, a read plugin validates that the data that is specified in the XML is valid according to the constraint defined by the plugin.
Read-plugins are called during PopulateCache after the interceptor has populated the cache, and the plugin is called for each row in the fastcache. When the validation fails for an individual row, PopulateCache fails, and the client gets an error.
2. Write plugins
These plugins verify that data is valid before it is written to a configuration store. For instance, when the XML Interceptor is used, the write plugin validates that the data is in the correct format (according to the constraints defined by the plugin), and only writes the information to the XML file when it is in the correct format.
Write plugins are called during UpdateStore for each row in the write cache, just before the data is returned from the fastcache to an XML Interceptor (i.e. before an interceptor has a change to write the data to disk). When one of the rows in invalid, an error is returned and none of the data is written to disk.

How to create Read/Write Plugins

To create plugins, the following steps need to be followed:

1. Edit src/inc/catmeta_core.xml, and find the SERVERWIRINGMETA collection
2. Add a new enum value to either the ReadPlugin or WritePlugin property (or both in case you want a plugin to be executed for both reading and writing). Note that you cannot use the same enum name for a read and write plugin, because catutil will fail if this is the case.
3. Add a new serverwiring element to your schema that has a ReadPlugin (or WritePlugin) attribute. If you have a serverwiring element with just ReadPlugin/WritePlugin, but no interceptor, you want to set the MetaFlags attribute to “Next” to indicate that this ServerWiring element indicates a logical interceptor.
4. Create a class that implements the ISimplePlugin interface.

5. Add code to catinproc.cpp that creates this new class in case the class lives in catalog.dll, or create a new DLL that implements this class. In case of a new dll, you also have to implement the GetObjectByID function.
6. Rebuild the catalog

ISimplePlugin Interface

interface ISimplePlugin : IUnknown
{


HRESULT OnInsert([in] ISimpleTableDispenser2* i_pDisp2, [in] LPCWSTR i_wszDatabase, [in] LPCWSTR i_wszTable, 
 [in] DWORD i_fLOS, [in] ULONG iRow, [in] ISimpleTableWrite2* i_pISTW2);


HRESULT OnUpdate([in] ISimpleTableDispenser2* i_pDisp2, [in] LPCWSTR i_wszDatabase, [in] LPCWSTR i_wszTable, 
    [in] DWORD i_fLOS, [in] ULONG iRow, [in] ISimpleTableWrite2* i_pISTW2);


HRESULT OnDelete([in] ISimpleTableDispenser2* i_pDisp2, [in] LPCWSTR i_wszDatabase, [in] LPCWSTR i_wszTable, 
   [in] DWORD i_fLOS, [in] ULONG iRow, [in] ISimpleTableWrite2* i_pISTW2);

}:

When a row is added to the write cached for insert, OnInsert is called, when a row is added to the write cache for update, OnUpdate is called, and OnDelete is called when a row is added to the write cache and should be deleted.

OnInsert is the only method called for a read-plugin.
When implementing a plugin, keep in mind that you are always working on rows in the write cache, even during read. This is because the plugin is invoked before the fastcache copies the rows from the write cache to the read cache.
<todo/>Note the set of interfaces all table objects must implement and then note plug-in support…

<todo>Document LogDetailedErrors on the table dispenser</todo>

· <todo>Doc reserved cells and hint behavior (not required for PK or single column queries)</todo>

Need to doc valid call sequences (done for reading and writing usage above)…

Don’t forget to doc the internal implementation interfaces!

Dealing with query cells: ignore what you don’t recognize.

Semantics:

· For read-only requests, must provide an ISimpleTableRead2 interface and reject QueryInterfaces on ISimpleTableWrite2.

· For unpopulated tables, must work the same as 0 results from query.

· Dispenser guarantees populatecache will be called before supplying to caller.  Subsequent calls must populate when fST_LOS_UNPOPULATED was specified.

· By default, when calling CompleteAddRow, column values which did not have a default should result in detailed errors…

· Do not UpdateStore when logic table detailed errors are found.  DT should support atomic units of work, but not required.

Ease of writing a new data table: 3 methods.

Error handling policy: continue to fail after first error or continue processing for maximum error feedback?

Note the impact of side-by-side support on table implementations.

Obviously some of the errors returned by the table dispenser come from the implementation dispenser: doc em!













Note the few caches, many data tables concept, and detail the template.

HRESULT policy: must comply to spec.

Doc all HRESULTs here…

Call sequence policy: must comply to spec.

The Wiring Configuration, Cookdown, and Database
(a.k.a. !!!)

· Simplify existing wiring database if possible…

· Basic wiring should include the data table and at most one or two logic tables.

· We should drop the extended wiring since this can instead be supported in the implementation dispenser.

· Implementation dispensers should probably have a combined interface instead of one for logic and one for data tables.

· The notion of client tables should be probably be removed from the basic wiring.  However, client-side logic tables still need faulted in on a per-table basis.  

· Client data tables should be faulted in based on particular query cells being present in the query or particular flags being present in the level-of-service request.  So the client table for the catalog server would be faulted in when the query included a computer name cell or when the configtime level-of-service was requested.

· Issue: when writes are restricted to within the administrative process, we deny the read-write level of service outside the administrative process except for the client table.  How does this get generically specified and implemented?

· Note the impact of side-by-side support on the wiring database.

· The advantage of specifying a data table default for a database id is that new tables can be added without updating the wiring.

· Need a table wiring flag which blocks tables being requested from the client…

· Tables must specify whether writes can occur outside the admin process / whether config-time isolation need not go through the admin process…

did+tid:
datastore handler; update handler; row change handler.

Add support for lookup overrides based on query / LOS flags.

Add LogDetailedErrors support.

Advanced service requests:

· fST_LOS_CLIENTSIDE: Internally supplied by the table dispenser to inform the implementation dispenser that the request is being made on the client.  Not valid for callers to specify.

· fST_LOS_DISABLERELATIONALINTEGRITY: Don’t cascade delete, don’t require primary.

· fST_LOS_UPDATEREADCACHEONUPDATE???  For administrative api…

Don’t forget to doc the internal implementation interfaces!

Table Control Usage

 (a.k.a. The Big Leagues of Table Implementations and Power Users!)

<todo>Intro</todo>

// ==================================================================

ISimpleTableController::
HRESULT
ShapeCache

(
[in] DWORD i_fTable, 







[in] ULONG i_cColumns, 







[in] SimpleColumnMeta* i_acolmetas
);

// <todo>Alter ShapeCache to use meta database</todo>

HRESULT 
PrePopulateCache

([in] DWORD i_fControl);

HRESULT 
PostPopulateCache

();

HRESULT 
DiscardPendingWrites
();

HRESULT 
GetMarshallingInterface 
([out] IID * o_piid, [out, iid_is(o_piid)] LPVOID * o_ppItf);
HRESULT 
BeginChangeWriteRow
();

HRESULT 
ChangeWriteRowAction
(DWORD i_eAction);

HRESULT 
ChangeWriteColumnStatus
(ULONG i_iColumn, DWORD i_fStatus); // works while adding too.

HRESULT 
AddDetailedError

([in] STErr* o_pSTErr); // Note how they get cleared…

<todo>Reference</todo>

<todo/>GetMarshallingInterface must take the IID in and supply the ITF if supported (multi marshal support)…

<todo>Note that ISimpleTableController inherits from ISimpleTableAdvanced</todo>

<todo>Add invalid call error codes</todo>

<todo>Note E_NOTIMPL error codes since both advanced and controller mix read/write methods</todo>

<todo>Need to add level-of-service requests for altering the cache, changing queries, etc</todo>

<todo>Doc semantics of the write interface methods when using the advanced or controller interfaces</todo>

<todo>

PopulateCache re-executes the query specified when the table was obtained, emptying the current contents of the read cache before doing so.

CloneCursor supplies an ISimpleTableRead2 interface pointer to a new cursor positioned at the same place as the cursor through which the request was made.  CloneCursor can be called even when the current read cursor is not currently on a row.

</todo>

Part IV: The Catalog

Performance Requirements
· TableDispenser::GetTable

· GetTable (specifically for fixed table too)

· PopulateCache (specifically for fixed table too)

· GetColumnValues (specifically for fixed table too)

· GetColumnValues:  No level of service requires; 1000 iterations on same row, all supported types of determinable sizes, sizes not requested:

· Single column fetches: 

· Fast cache and complib cache data tables: No more than 400 cycles on average per call.

· Fixed cache data tables: No more than 100 cycles on average per call.

· Whole row fetches:

· Fast cache and complib cache data tables: No more than 100 cycles on average per call.

· Fixed cache data tables: No more than 60 cycles on average per call.

· GetColumnValue implementations when no level-of-service requests are made should, over the course of 1000 iterations, with a variety of types/meta whose sizes are caller determinable, take no more than 400 cycles on average (fixed data should take less than 100 cycles on average).

· We need to experiment with GetRowValues!!!

Equivalent or better performance than in COM+ 1.0 for the following scenarios…

Need to evaluate performance of a per-process table dispenser.

Need to evaluate performance of a single global map of files to ICR pointers.

Working set requirements…

Here is a run-down of the perf of some of our data tables, populating and getting columns, when creating 5 new applications in COM+ 1.0:

Method






#calls


avg cycles per call

==================================

=======

==============

CLTOneToMulti::PopulateCache


  
  15


785940

CSLTComs::PopulateCache



  52


363194

CSimpleTable::PopulateCache



 156


105653

CRegSDT::PopulateCache



 139


 58562

CSLTClust::PopulateCache



     5


 53063

CSimpleTable::PopulateCache



 190


 27368

CSDTFxd::PopulateCache



2383


   171

CSimpleTable::GetColumn



2888


  1772

CSLTComs::GetColumn




1228


   571

CSimpleTable::GetColumn



 360


   489

CSLTShapeless::GetColumn



9156


   396

CSDTFxd::GetColumn
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Remoting, Security, Transactions, and Notifications
Note however that if the underlying datastore supports DTC coordinated transactions, and the work above is done within an encompassing transaction, all three UpdateStore calls will result in a single combined update in the datastore!

Describe notification logic table and events...

Side-by-Side Usage
How several teams can pickup different drops…

Appendices

Appendix A: Basic Database Vocabulary

(a.k.a. People Solved These Problems over a Decade Ago?)
For those unfamilar with database concepts, think of a database as a collection of tables, and a table as a two-dimensional grid of rows and columns where all rows in a given table have the same columns.  Note that rows may be inserted, deleted, or updated.  Column values may be changed.  In object-oriented terms, a table is a collection of objects, a row is an individual object, and columns are the properties on the object.  So I might have an applications table, where each row describes one application, and columns describe information like the name and description of the application, whether to run its components in the caller's process or in an isolated process, and so forth.  A schema describes the "shape" of a table, meaning the expected columns, their types, sizes, ordering, names, and so forth.  DTD, for example, is a "schema" for XML which describes the valid structure of an XML "document".  

Database implementations come in 3 basic flavors: flat, hierarchical, and relational, each more powerful than the previous.  INI files are flat databases, the Windows registry is a hierarchical database, and the COM+ regdb and SQL Server are a relational databases.  Relationships express how the various tables in a database relate to one another.  In a hierarchical database, tables are actually stored using a fixed hierarchy of relationships: working outside that fixed hierarchy is difficult and complex.  In a relational database, tables are related to each other.  One-to-one relationships express the fact that one row in a table is related to one row in another table.  One-to-many relationships express that one row in a table is related to many rows in another table.  Many-to-many relationships mean one-to-many relationships exist both ways.  These relationships allow for many different relationship hierarchies and graphs.  A hierarchical view can easily be projected atop a relational database.  

So I might have a table of applications, a table of components, and a table of interfaces.  Hierarchically I might say applications contain components which contain interfaces.  While other relationships exist outside this hierarchy, querying for them can be difficult if not impossible.  Relationally I might say there is a one-to-many relationship between applications and components, and a many-to-many relationship between components and interfaces.  So far I have just defined 3 tables and 2 relationships.  With that information I can easily dynamically create the abovementioned hierarchical relationship.  I can query for all applications, then for all components in an application, and then for all interfaces of a component.  But I can also query for all interfaces in an application, for all applications whose components use a particular interface, for all components period, and so forth.

A primary key typically identifies rows in a particular table.  A primary key may consist of multiple columns, and is most typically unique.  When unique, each row in a table is uniquely identified by its primary key.  A foreign key is simply your primary key in someone else's table.  So a components table might use the clsids column as the primary key, and a classmethods table might use the clsid, iid, and method index columns as the primary key, where the clsid and iid are actually foreign keys from the components and interfaces tables respectively.  Referential integrity refers to maintaining consistency among related tables, typically by enforcing one or more rules.  For example, when a row is deleted in one table, and its primary key appears as foreign keys in other tables, you might want to automatically delete none, some, or all rows in those other tables.  So if I delete application A from my applications table, and the application id is a foreign key in my components table, and a one-to-many relationship exists between the applications and components table, that delete could automatically delete components X, Y, and Z from my components table, since they reside in application A.

An index can be built on any column in a database, and is used to accelerate searches on that particular column.  Primary keys are great candidates for indexing, and might be automatically indexed.  So in my components table, the clsid is the primary key, and I want searches by clsid to be fast, so naturally I want to index that column.  However, my progid column is not part of the primary key, but because progid lookups are common, I also want to index that column.  Indexes increase disk footprint, can increase working set, and can slow writes.  The progid and clsid sections of the registry are a great example of grafting indexing atop a hierarchical store which does not support them.  This requires keeping the same information in two separate places, and exposing that duplication to users, and requiring them to handle its maintenance.  This approach stores the same information in multiple places, and results in non-normalized data.  A relational database supports this internally.  So from the user perspective, good relational databases appear to be normalized: that is, no data is stored in more than one place.

Selected subsets of rows in a given table can be retrieved via queries.  Queries select rows based on a criteria which may include identity (eg: primary key values), relationships (eg: foreign key values), and other values (eg: other columns in the table).  Very powerful general-purpose databases like SQL Server allow arbitrarily complex queries.  These queries may involve joins: where rows from two or more tables are combined into a new temporary “table” satisfying the query.  Queries are expressed via a variety of formats, like ISAM keys and OLEDB query cells.  Entire languages exist for queries, SQL being the most well known.

Databases remain consistent via transactions.  A transaction enforces ACID semantics: atomicity, consistency, isolation, and durability.  Transactions are used to arbitrarily combine multiple changes into a single operation.  Atomicity means either all changes within the transaction occur or do not occur; some changes never occur.  This incredibly powerful semantic enables programmers to make rich transformations without ever worrying about the failure of each transformation.  Consistency means the database state is always transformed from one consistent state to another; when consistency is violated, the enforcement code simply aborts the transaction.  Isolation means that transactions executing in parallel appear after the fact to have occured serially.  Isolation is a complicated topic.  Isolation levels describe the degree to which one transaction sees its own and others' changes.  Deadlocks can result from concurrent transactions and are influenced by the isolation level, so deadlock resolution strategies are necessary.  Remote batch updates lead to further isolation difficulties.  Optimistic concurrency is one approach helpful in resolving those difficulties.  Durability means that no matter what else happens, once a transaction is commited, the changes will be persisted.  This requirement must be met even in the face of any machine or network crashes which occur after the transaction commits.  Transactions require databases to implement logging, and those logging facilities must be extremely robust to achieve durability.  Businesses learned long ago to always use transactions to transform the data on which the business depends.

Distributed transactions enable databases on multiple machines and/or multiple different databases to participate in the transaction.  Databases are also referred to as resource managers, because they are responsible for durable resources.  Such transaction coordination requires a transaction manager.  Microsoft DTC (Distributed Transaction Coordinator) is an excellent example of a transaction manager.  A transaction manager must also log reliably.  Just about every major line-of-business database in the world can now participate in DTC coordinated transactions.

Client-server architectures, which distribute work among personal "client" computers and shared "server" computers, come in 2 basic flavors: 2-tier and 3-tier.  A 2-tier architecture consists of a presentation tier talking to a data tier.  OLEDB is a great example of a 2-tier architecture.  A 3-tier architecture consists of a presentation tier talking to a middle aka business tier talking to a data tier.  CORBA is a good example of a component model specification which failed to specify a 3-tier architecture.  WinDNA is a good example of a vision based on the 3-tier architecture.  Line-of-business software refers to software on which the business itself depends, as opposed to personal productivity software, on which individuals depend.  Office is a good example of personal productivity software.  Years ago, the line-of-business software community realized that the 3-tier architecture was a great way of scaling to support huge numbers of clients.

Appendix B: Design Considerations

(a.k.a. Wow!  You Thought of All That?<g>)
Getting multiple column values in one call: We are evaluating whether or not to replace or supplement the GetColumn call with a method which gets all column values at once...  

Methods which currently work on a per-column basis include: ISimpleTableRead::GetColumn, ISimpleTableRead::GetColumnMeta, ISimpleTableWrite::GetWriteColumn, ISimpleTableWrite::SetWriteColumn, ISimpleTableControl::ChangeWriteColumn status.  All methods which work with columns currently do so on a per-column basis.  A multi-column behavior change would either require breaking this commonality or converting all column methods from per-column to multi-column.  

The primary assumed benefit of of multi-column methods is performance improvement.  Is this assumption accurate?  First, recall that getting column values in Simple Tables involves pointing the caller to the actual data, not copying the data itself.  Basically, when getting n column values, this would eliminate n-1 in-process double-indirected function calls, which basically boils down to parameter pushes and a call and return, since the function pointer tends to end up in a register.  Also note that the function call will typically be in the CPU cache.  n-1 iterations of parameter checking would also be eliminated.  Making use of such a method does require allocating n pointers, where n should be determined based on meta information.  This actually adds a heap allocation in many cases where we currently just re-use a single pointer on the stack, and in those cases the heap allocation could very well result in worst performance than the n per-column gets without a heap allocation.  In order to see any gain, the multi-column method would need to be designed such that it did not itself require an allocation, and callers would need to write their code so that their array of pointer allocations were per table or per process as opposed to per row.

The majority of code in the COM+ 1.0 product actually gets and sets only a few of the column values per row.  Converting from a per-column to all-column approach would likely degrade performance in those scenarios.  Speaking to developers who have used simple tables a lot, the general consensus was that they liked the per-column approach for their usages, and viewed an all-column approach as complicating their code.  So we would need to support getting a subset of column values or single column value too.

More performance considerations.  I investigated an icecap report in a writing scenario.  Several GetColumn implementations were profiled.  5 of 7 implementations ranged from 300 to 600 cycles per call, so gains would have to be pulled from that range of cycles.  The other 2 implementations averaged 92 and 1772 cycles respectively.  Better gains might be achieved simply by optimizing the implementations.  These proportionally low cycle counts are offset by the potential number of calls.  Note that the count of columns for any table will not be huge: O(100) is a safe bet.  The largest count in COM+ 1.0 is just under 40.  However, the number of rows can be huge.  This scaling however is offset by that fact that scenarios where we query for the total set of rows and then get all column values are a bit artificial, seldomly occuring in the rather large code base for COM+ 1.0.  The typical queries and operations tend to scope the count of rows to small numbers.

Note that because the disk is involved in write scenarios, not to mention OOP or even network calls, performance gains in getting and setting column values in read and write caches have a negligible effect on overall performance.  Also note that catalog code has never shown up in the top performance bottlenecks in runtime scenarios for the COM+ 1.0 product.  Since the main reason for the proposed change is an assumed performance gain, and since COM+ 1.0 performance tests have not shown the current design to be a bottleneck, one approach to this issue would be to not change or replace the current design until we measure a real performance scenario in which the current per-column approach shows up as a bottleneck.

There are costs to converting to a multi-column approach.  As mentioned, given that all column methods are currently per-column, we would either need to update all of them or live with the introduced inconsistency.  Also, since we still need to support per-column and multi-column as opposed to just all-column usages, we would be complicating the model by introducing more than one way to accomplish the same thing.  Note that any approach other than supplying an array of pointers would make calling code very brittle to schema extensions.  While we can argue that is acceptable because our schema freezes when we ship, the COM+ 1.0 experience has shown that dealing with schema changes where the such brittleness exists is very costly, and that schema evolves rapidly, and that schema changes after beta releases.

For now, we have decided to retain the per-column approach to all interactions with columns in Simple Tables (4/6/99).

P.S.: Here are some perf results from COM+ 1.0 for getting column values in the scenario of creating 5 new applications with one component each:

Data table





#calls


avg cycles per call

==================================

=======

==============

(read only regdb) CSimpleTable::GetColumn

2888


  
1772

(fast cache regdb) CSimpleTable::GetColumn

360



489

(fast cache) CSLTShapeless::GetColumn

9156


  
396

(fixed) CSDTFxd::GetColumn
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The fixed data table obviously screams.  Interestingly though, the read-only regdb (which implements its own cache) is 4.5 times slower than the fast-cache implementation employed by most of the other data tables.  The read-write regdb sits atop the fast-cache and is only about 0.25 times slower.  The read-only regdb implementation takes locks and (at least sometimes) allocates and copies.  This clearly evidences the expense of doing doing so (5/20/99).

I have re-opened this issue.  I have asked Wenjunq to investigate the poor performance in the abovementioned scenario of the read-only regdb data table.  I have also dug deeper into the icecap and noticed that with the fast-cache implementation, about 33% of the time appears to be consumed in the virtual GetColumn method on the simple table which wraps the non-virtual InternalGetColumn method of the fast cache.  This indicates that the fast cache (and the fixed cache) are sufficiently fast that the call cost may come into play as significant.  I have asked Varshaj to implement and performance test a GetRowValues method on the fixed and fast caches (5/25/99).

<todo>The exciting results…

Enabling the getting and setting of multiple row

</todo>

Query format issues: Are query cells still sufficient?  Are other operators besides equality and inequality necessary?  Can we drop the type and size specifier for query cells passed to the table dispenser?  Should we go with copy/no copy this time?

Given an array of query cells, more than one cell containing the same cell identifier implies an OR expression among those cells, and cells with different cell identifiers implies an AND expression among those cells.  Therefore, query cells only support OR’ing expressions applied to the same column and AND’ing expressions applied across columns.  One additional field in the cell structure would be required to increase flexibility: namely a connector indicating whether to AND or OR two adjacent cells.  This however does not buy much, queries involving that level of complexity also typically require parenthetical expressions too.  A query language would be more appropriate in those scenarios.

Query cells have some big advantages over a query language:

· Because they are significantly simpler, they are significantly easier to implement.  Therefore they make a great least-common-denominator query format across all table implementations.

· An array of query cells is already parsed, eliminating the need for and overhead of a parser.  Queries executed at runtime as part of the execution environment are typically simple and must be extremely fast.

· Query cells are powerful enough in most cases.  COM+ 1.0 demonstrated this.  Raid usage on the COM+ team also demonstrates that most raid queries are expressible as query cells (and those that are not are well expressed with SQL).

For now, we will continue to use query cells as the least-common-denominator query format for simple tables.  This of course does not preclude supporting query languages in selected scenarios or across the board in the future (5/11/99).

For now we will continue to support the equality and non-equality operators.  Additional operators can be supported as actual demands arise.  We will continue to require that the caller specify the column/cell type in their query cells.  This simplifies and speeds up the table dispenser because the dispenser need not determine types via meta lookup (which can require roundtrips to the server on clients).  The type must be known to marshal the query.  The size however can easily be determined either the type is a fixed-length type or for strings where wcslen can be used.  In these cases the size need not be specified.  For DBTYPE_BYTES, the size is required even when the meta specifies a fixed length, because the dispenser would need to perform a meta lookup to determine that.  After discussion with development team today (people who used simple tables extensively for COM+ 1.0), we decided that the query will be copied within the table dispenser’s GetTable call.  Conceptually the dispenser makes the copy, but really it is the underlying data table.  This allows developers the convenience of updating and re-using their query cell array between GetTable calls and eliminates the confusion with the old lifetime issues (ie: the caller had to keep their query unchanged until releasing the table) (5/11/99).

Is MoveToRowByIdentity necessary?  Is it sufficient?

MoveToRowByIdentity, while less common than positional row navigation, is used quite a bit in COM+ 1.0.  MoveToRowByIdentity seeks through the read cache for a single row by its unique primary key identity.  Single rows however are more commonly (and efficiently in most cases) sought by specifying their identity in the query.  MoveToRowByIdentity could be expanded to seek for a row by arbitrary criteria instead of just by primary key.  The semantics of this are much more complicated, and so is the implementation.  Basically, you would end up supporting querying within the cache.  And if you are going to do that, you might as well do it right: i.e.: implement filters and views.  We have considered filtering, viewing, and sorting in the past.  They were deemed too complicated for COM+ 1.0 and were not sorely missed.  These advanced usages can be done above the cache anyway.  If we ever do support these, they will require a new interface, as opposed to just some changes to one method (ie: MoveToRowByIdentity), so for now the plan is to just keep the existing call as is (5/12/99).

Should we strongly differentiate inserts vs updates and enforce the implications?

AddRowForInsert and AddRowForUpdate are inconsistenly named with AddRowForDelete.  The latter actually adds a row marked for deletion to the write cache, whereas the former begins adding the row for insert or update to the write cache, but does not complete it until SetRow is called.  Also, we have seen the need to abort a row change as opposed to complete it.  Currently the change must completed and then marked to be ignored via the simpl table control interface.  However, validation logic on SetRow may fail by calling it prematurely, where such failure is not desired.

The only difference between the two methods is that AddRowForInsert does not copy the row from the read cursor, and marks the row for insertion instead of update.  Even though AddRowForUpdate copies the row from the read cursor, it does not necessarily imply an update to that row: all the caller needs to do is change the primary key columns.  Perhaps we should restrict the case of updating rows to disallow primary key changes?

Perhaps we should allow the case of inserting to do so from a copy of the row from the read cursor, as opposed to just restricting it to a totally new row?  This gets into the issue of applying defaults.  In COM+ 1.0, the admin api had default values as part of its meta.  Since we are adding defaults to the schema, those defaults will be automatically supplied to new rows for insertion.  However, IIS5 has a different model for URL properties: when you add a new URL, you inherit all the properties set on the ancestors.  The COM+ 1.0 model can be described as: when inserting a row, apply the defaults from the schema.  The IIS5 model can be generalized to: when inserting a row, apply the defaults from some data.  The difference between the two models is that in the first, defaults come from the schema, whereas in the other, defaults come from some data.

So we need to decide whether we want to support picking up defaults from the schema only, or also from “some” data.  We already know we’ll support defaults in schema.  A simple way to support defaults from some data would be to express an operation which creates a new row for insertion from the read cursor row.  This row can be chosen by arbitrary querying.  This supports both the IIS5 URL property approach of obtaining defaults from an inheritance chain, as well as an approach where a user specifies their own prefered defaults.

After a bit of discussion, the above issues have filtered down to:

Do we semantically differentiate inserts from updates? In version 1, we initially did not do that, since we allowed inserting rows which already existed and updating rows which did not.  This semantic was useful for internal logic.  An insert or update in one table could trigger further changes to other tables.  With this semantic it was un-necessary for the code triggering the further changes to first determine which operation was appropriate: insert or update.  More importantly though, it was simpler to implement because it did not require existence checking.  During the COM+ 1.0 development cycle, we realized we did need to distinguish between insert and update in many cases.  Thus, insert behavior when the row already exists and update behavior when it does not became a choice and therefore became part of the meta.  And because this enforce was done via an integrity logic table which worked across all tables, the issue of existence checking in many places became a non-issue.  The issue at hand is whether or not choice in this case is really necessary.  We know we cannot live with just the original behavior.  Can we live with just the newer behavior?

Upon consulting with the various developers, it seems we can live with inserts and updates being semantically different.  This has some important implications.   First, inserting a row which already exists always fails and updating a row which does not exist always fails.  Second, when inserting a row, the primary key columns can and must be set (but the meta may specify a default setting via guid generation for example), and when updating a row, the primary key columns cannot be changed.  Note that power developers can work around these restrictions simply by using the controller interface to change the row action.  Third, the means for changing the identity (ie: altering primary key columns) of an existing row becomes clear.  Originally, one could mistakenly assume that this change would occur by doing a row update and altering the primary key (this would instead just add another row, although a logic table could intercept the request and remove the old row).  Now it becomes clear.  The caller must add the row for insert and alter the identity in the inserted row and must also add the row for deletion.  This leads to the fourth implication: callers must be able to add a new row for inserting, or add an existing row for inserting (where they alter its identity) to pickup all the existing properties.  While this could be accomplished with a choice parameter on AddRowForInsert, it can just as easily be accomplished without altering the existing interfaces by moving to the appropriate read row, adding a row for insert, and transfering the read row properties via manually via GetColumnValue/SetWriteColumnValue.

There are some problems with enforcing insert and update semantics always.  Perf, who does it, and legacy.  The perf concern is that enforcing this behavior obviously costs more: the question is how much.  The concensus for now is that we can always special case internally and only if it evidences itself as a common bottleneck do we need to add the option to the meta.  The “who does it” concern is that the enforcer can either be the datastore, data table/logic table, or integrity table.  Basically in the meta we need to express whether the integrity table is expected to enforce it.  Obviously the cheapest means of enforcement is in the datastore itself.  The legacy concern is what code do we break which already requires the old semantic?  It looks like the old semantic is required by component install, but this is simply because the joined class table schema did not originally adequately express the notion of classically-registered vs self-described and non-configured vs configured; also, roles could originally be added if they already existed, but this was corrected later in the dev cycle.

A more appropriate naming convention for the insert/update methods would therefore be: 

BeginAddRowForInsert 

BeginAddRowForUpdate

CompleteAddRow

AbortAddRow (5/18/99).

Should we support bulk deletes and updates?

We already support bulk reading by query.  The concept of bulk deletes and updates here means you specify a query, and indicate that all rows resulting from the query should either be deleted or updated.  The critical feature is that the query is not actually executed and the read cache is not actually populated in order to perform the bulk operation.  This is a performance optimization.  However, given that you can bulk query, and we can already marshal all the results in one trip, and that you can add all the rows for update or deletion entirely in process to the write cache, and that the pending changes are all marshalled in bulk back to the server in one trip, bulk deletes and updates is already fairly optimized.  Further gains by eliminate the initial population and marshaling are offset by signficant problems with insuring that logic still gets faulted in during these bulk operations.

We extensively discussed a couple means of accomplishing this extra optimization and their implications.  The first means was to support methods for adding all rows for deletion or update to the write cache without actually requiring population of the read cache.  This approached ended in a dead-end because logic tables sitting atop the data table would not see the changes on UpdateStore if the call was initiated from the server.  Even when initiated from the client, a solid amount of marshalling trickery would be necessary to make it all work.

The second means was having a query cell which indicated the resulting rows should be deleted.  This would be implemented by actually carrying out the update on the server during the GetTable call.  While this insured the write cache would properly reflect the changes (the write cache needs to have all the deletes or updates so that logic can process each individually as it normally does) whether the call was initiated on the client or server, significant marshalling issues were still present specifically when handling detailed errors.  Not only would detailed errors need marshalled back during the GetTable, since the errors could have been either with the population or resulting update, the read or write cache would also need marshalled back.  While we can see how to make these changes to the code, it is a lot of work, and there are no doubt further unforeseen implications.

The need for such a bulk delete mechanism was obvious with MTS2, but this was because the cost of populating was far too high.  While both populating and updating performance has been vastly improved with the simple table implementation in COM+ 1.0, the admin api is still navigation based, meaning in order to perform certain bulk deletes, n populates and updates need performed to do so, resulting in plenty of roundtrips.  Simple tables supports much richer quering, and with the plan for the admin api to do the same, these cases disappear or become extremely rare.  Also, the population which occurs when doing huge amounts of changes on very large registrations has not been in the bottleneck list recently in the COM+ 1.0 implementation.  For all these reasons, supporting bulk deletes/updates without initial population has been postponed for now (5/19/99).

Also getting and setting column values by name?

While internal code gets and sets column values by index (significantly more efficient than by string), the admin api gets and sets by name.  The admin api in COM+ 1.0 has a fast map between name and index.  Those fast maps are filled in by the admin api’s own hard-coded meta.  With simple tables v2, those maps can and must be built from the column meta dynamically.  We enterained the idea of supporting get/set column methods by name in the tables themselves.  This adds 3 new methods which every data and logic table must implement and means every table needs to load and retain strings.  This was deemed too much overhead since the map could be built from the meta database on the fly for the few consumers that actually require it (5/20/99).

Ditch CompleteAddRow/AbortAddRow?

Radu, Emily, and I, in discussing edit rules as part of the meta database today, slipped into a continuing discussion on the admin api using simple table caching directly rather than rolling more caching on top.  That discussion led to the following (simplifying) proposal:

Ditch the model for inserting and updating rows where one BeginAddRowForUpdate/Insert is followed by n SetWriteColumnValues and conclude by one CompleteAddRow/AbortAddRow.  The new and simpler model is to do away with CompleteAddRow/AbortAddRow altogether.  The add-row methods become: AddRowForDelete, AddRowForUpdate, and AddRowForInsert.  Each of these methods positions the write row cursor on a new row in the write cache.  SetWriteColumnValues can be called at any time while the cursor remains on the row.

What does this buy us?  Two big advantages:

· This allows the administrative api to support its current model where a caller can roam the collection and change any of the objects in any order (including partially changing one, changing another, and completing the first) up until saving their changes.

· This also eliminates the need for internal callers to retain buffers for all their value changes until calling Complete/AbortAddRow.  This need to retain those buffers has bit just about every first time user of simple tables.

What do we lose?  The original two reasons for supporting CompleteAddRow were:

· A performance optimization to minimize allocations and copies.  The intention was to allow implementations to do a single allocation per row rather than per column.  Our fast cache implementation, the primary cache used for writing, actually does much better than this.  It maintains two buffers, one for fixed data and one for variable data, and each time it needs to grow a buffer it doubles its size.  The net effect is that the implementation is already doing significantly less allocations than one per row.  There is a cost of additional un-necessary copying, which also adds dead data to the variable buffer, in a very limited scenario.  Namely, on an AddRowForUpdate, each variable length column value changed by the caller would be copied twice, once from the read cache, and once from the caller's data, whereas each was previously copied only once.  However, this extra cost can be eliminated by doing this fixup in the fast cache in PreUpdateStore.

· A place to inject validation logic.  Validating a row as a whole cannot be done on column sets, since the validation needs to occur once the caller is done.  The one standard validation which needs a home is validating that all non-nullable column values were set on an inserted row.  We still need to perform this validation, but will probably instead end-up doing it on UpdateStore.  This validation would need to occur on the client-side.

· The caller needs discard their pointers into the write cache when calling AddRowFor* or even SetWriteColumnValues, since any of those calls might require buffer re-allocation.  <todo>This needs formally defined as part of the write cache semantics.</todo>

(6/8/99).

Making proper use of COM?

Radu, Wenjun, Murat and I discussed today why we use CoCreateInstance in the binding process.  Originally, the binding process was entirely CoCreateInstance-based.  In COM+ 1.0, since we had to run inside the SCM and since we had to service CoCreateInstance requests, we had to run in a mode where CoCreateInstance would not be used in the binding process (otherwise we would infinitely recurse).  The wiring database contains initial mapping information which the table dispenser uses to select an implementation dispenser which can choose the appropriate table implementation for the job.  Really what this means is that we have an idenity-to-implementation mapping database, just like the COM HKEY_CLASSES_ROOT registry, but “idenity” is a more granular, sophisticated, domain specific concept, as are the mappings.  What we did originally was store the CLSID for the implementation dispenser.  To support operation without COM CoCreateInstance, we also stored the module name, and then did what CoCreateInstance itself does: load the module and call DllGetClassObject with the CLSID to get the class factory for the implementation dispenser.  However, we also wanted to leverage COM+ transactions and role-based security.  To do so, we needed to also be able to CoCreateInstance everything to flow the transaction and security information, or so we thought.

As it turns out, due to the in-process semantic and concurrency semantic fundamental to simple tables, we always run in the caller’s context and therefore never “block” the flow of transaction and security information during the binding process, so CoCreateInstance is totally un-necessary during the binding process.  All we have to do to insure that context information flows is to use CoCreateInstance when we go out of context, which we already do.  Namely, when the client table, used by the admin api, wants to talk to the catalog server, it (naturally) CoCreateInstances it.  Thus context information flows across the context boundary.  What all this means is that we actually do not need to use COM CoCreateInstance at all for the binding process (since we have our own “registry”, the wiring database, so therefore indirecting to another “registry” is artificial anyway).

Since we don’t need to use CoCreateInstance, what would not using it buy us?  Actually quite a bit.

· We would not need to implement DllRegisterServer/DllUnregisterServer.

· We could opt to use a different entry point than DllGetClassObject which would also allows to drop class factories from the binding process.  Class factories are pretty irritating because they just cost us without buying anything, since implementation dispensers are a special sort of class factory anyway.  We actually ended up implementing the class factory on the implementation dispenser itself to eliminate creating yet another object (well actually several when you consider common binding scenarios).  Instead, we could implement DllGetDispenser (REFGUID i_clsid, REFGUID i_iid, LPVOID* o_ppv).

· Thus we would not need to implement class factories.

· We would eliminate the overhead of CoCreateInstance, which is important, given that it is un-necessary, and given our performance requirements.

· Minor: we would always run in the caller’s context.  You couldn’t mistakenly run in another context by declaring the wrong threading model.

· Supporting side-by-side drops becomes a lot less complicated (because we would not need to register (n+1)*(count of implementation dispensers) in the registry).

Bootstrapping is still necessary to obtain the table dispenser itself.  Callers link with a lib which implements the GetSimpleTableDispenser api.  This api needs to choose the right implementation for the product.  See the discussion regarding side-by-side support for how this works in detail (6/17/99).

Providing side-by-side drops of simple tables: Should we do it and how?

The catalog will be used in both the URT and AS.  We are already providing private drops to specific teams.  DLL hell comes from shared components and the catalog is a “shared” component.  Because simple tables have their own “registry” mechanism (the wiring database), side-by-side drops are certainly do-able.  Since the URT and AS will be installed on the same machines, and since both will evolve throughout the development cycle, and since both depend on the catalog, it makes sense to isolate them from incompatibilities between their catalog drops.

Here is how we can do it (see the discussion on the proper use of COM first):

· Each product gets its own copy of the primary catalog dll, appropriately renamed for the product.  During product setup, this dll must be copied into a location on the path.  Setup must LoadLibrary the primary catalog dll, and call the exported function RegisterCatalogByProduct (HINSTANCE i_hinst, DWORD i_eProduct).

· RegisterCatalogByProduct, under a well-known key in the registry, it adds the product ID as a named value and its own base file name as the value.

· Simple table callers link to a static lib which implements GetSimpleTableDispenser.  When they call this api with their product ID, the code looks up the product ID in the registry, calls GetModuleHandle to see whether the dll is already loaded, and if not, calls LoadLibrary.  The exported function GetTableDispenser (HINSTANCE i_hinstance, LPVOID* o_ppv) is called to obtain the table dispenser, a singleton.

· The implementation dispenser supporting the wiring database is a well-known CLSID assumed to be accessible in the same dll as the dispenser.  GetImplementationDispenser (REFGUID i_clsid, REFGUID i_iid, LPVOID* o_ppv) to obtain the wiring database.

· Each product will need its own meta and wiring configuration file.  The modules specified will need to be those specific to the product.  The cookdown utility will simply need to know the name of the dll into which to embed the meta and wiring database from the specified configuration file.

(6/18/99).

Drop the multiple stateful cursors approach in favor of stateless “cursoring”?

Radu and I were discussing how the table dispenser could be built as a singleton.  Unless we decided to obtain the meta tables on the stack, we would need to clone the cursor for each separate caller.  Radu suggested adding a non-cursor-based hack to the meta table implementation specifically.  I noted that if this was a problem for the table dispenser it was potentially a problem for any singleton using simple tables.  I then began investigating whether or not we discard the cursor oriented approach altogether.  After going through all the interfaces and the fast cache and fixed cache implementations (and checking with Wenjun regarding the CLB cache implementation), it looks like we can dramatically simplify the interfaces and cache implementations by eliminating the cursor-based approach.  The row navigation methods (which are by index) will be eliminated completely.  Row navigation by identity will simply return a row index.  Getting and setting column values will requiring specifying the row index as well.  Clone cursor will be dropped.  This will allow multiple threads into one read cache, for example, without requiring a cursor per thread.  Of course, since we hand out pointers into the cache directly, the caller will still need to manage locking everyone out should the cache need repopulated (6/21/99).

Is a super lightweight version of the fast cache of value?

The fast cache implementation is fast, but since it supports both read-only and read-write scenarios, as well as multi-cursor scenarios, it is fatter than need be for a runtime read-only fetch.  The question is: is it worth making a super-lightweight version of the fast cache with super-lightweight data table shell atop, optimized for read-only, populate-once fetches of one or a few rows?  Would this benefit runtime scenarios which currently cache again atop simple tables?  Could it alleviate some of the secondary caching?

Should an instance of the table dispenser be created on each GetSimpleTableDispenser call or should it be created once per process or should it be created once per scope?

Spoke with Wenjun and we agreed her need for scoping should be implemented inside the implementation dispenser for CLB rather than be exposed to either the table dispenser or callers.

<TODO/>

Optimistic concurrency: Will it really meet our needs?

<TODO/>

What about queries for matches in a table against another table where no direct primary-foreign key relationship exists?

<TODO/>

Do we support the configured component in many applications scenario with cascading deletes?  I.e.: Do we support reference counting and cleanup on shared resources?  Yes to both.

<TODO/>

Do we need a MoveToRowByIdentity on the write cache too?

<TODO/>

Need to investigate SQL-like query support in WMI scripting. How real is it?  How complicated is it to implement?  Is there a minimum baseline of support required of all providers and if so what is it?

</TODO> 

Appendix C: Changes From Simple Tables v1

(a.k.a. I’m Already a Simple Table Guru, Just Tell Me What Changed…)

In general…

All the clsids and iids have been rev’ed, even for interfaces which did not change, to allow side-by-side operation with COM+ 1.0 in W2K.  Various minor name changes have occurred (eg: reserved cell indexes are now named iST_CELL_* instead of iST_COLUMN_*: the original did not make much sense, since reserved cells are not really columns in any table).  The name changes made were done for clarity moving forward.  Error codes have been improved and expanded as well and some common detailed errors have been specified.  See the discussion “Regarding constants and structures…” for details.

Regarding obtaining tables…

GetSimpleTableDispenser api now takes a product ID for side-by-side isolation of the simple table core.  CoCreateInstance of the table dispenser is no longer supported.

The caller no longer requests a client vs server table via ISimpleTableDispenser::GetClientTable/GetServerTable.  All tables now obtained via one call: ISimpleTableDispenser2::GetTable.  Whether or not a client table is chosen now depends on whether the level-of-service specifies runtime work (the default) or configuration-time work (via fST_LOS_CONFIGWORK) and whether the query requires going off computer (eg: iST_CELL_COMPUTER or iST_CELL_CLUSTER is used in the query).  If configuration-time work is specified, the caller will always receive a client-side table and all populates and updates will pass through the administration process.  If the query requires going off computer, a client table will also be automatically supplied.  Otherwise, a server table will be provided.

The level-of-service flags have been altered such that the most common usages are assumed by default (eg: to obtain a read-only table, you originally requested the fST_TABLE_READONLY level-of-service, whereas now a read-only table is the default, and to request a read-write table you specify fST_LOS_READWRITE).  Increasing the level-of-service also decreases the maximum potential performance, so no level-of-service requests naturally allows for the highest potential performance.  See the discussion “Regarding constants and structures…” for details.

Databases and tables are now identified by UNICODE strings rather than GUID types.

The caller need not specify the size of the data in their query cells if the table dispenser can easily determine it.  The array of query cells passed to the table dispenser are now copied within the GetTable call, allowing the caller to either discard or alter their copy once the call returns.  Previously the caller had to retain their copy as-is until they released the table obtained from GetServer/ClientTable.  The query meta for query cells now takes the address of the count of cells rather than the count of cells directly.  The new query format with these changes is eST_QUERYFORMAT_CELLS.

Regarding working with tables (reading)…

The table returned by GetTable is already populated unless the fST_TABLE_UNPOPULATED flag is specified.

The cursor-based approach has been eliminated.  The row index of interest is now simply specified when obtaining column values.  This allowed elimination of ISimpleTableRead methods RestartRow, MoveToNextRow, MoveToRowByIndex, and CloneCursor.  MoveToRowByIdentity is replaced by GetRowIndexByIdentity which takes the row identity as before but now simply supplies the corresponding row index.  The cursor-less approach results in fewer methods, simpler and faster implementations, and less surface area for testing.

ISimpleTableRead::GetColumn call has been replaced by GetColumnValues to support obtaining multiple column values at once.  Column values are still obtained via pointers, not copying.  Support includes obtaining one column value per call, a specific set of column values per call, a range of column values per call, or all column values in one call.  The count of column values of interest is always specified, along with an array of column indexes of interest (which can be NULL, which simply fetches column values for column’s 0 to count of columns - 1).  An optional array of sizes is specified which will be filled in if specified.  An array of pointers must be supplied which will point to the column values requested.  For single column value requests, this is just a pointer to one pointer.  Otherwise, this is an array of pointers whose count must be highest column index requested + 1.  When a subset of column values is requested, only those pointers will be filled.

PopulateCache is no longer necessary unless the caller wants to re-execute the query or delay query execution, and almost no callers do that.  This is therefore an advanced method and has been moved to the new ISimpleTableAdvanced interface.

GetTableMeta no longer supplies the database/table identity, query, and service level.  These were never requested in the COM+ 1.0 source, the caller knows them anyway, and the actual query retained by the table and service level requested can both change during the binding process (to be correct, the call should supply exactly what the caller specified, and that would requiring keeping it around and flowing it all the way down).  Eliminating the need to provide the database and table identity allows lightweight implementations to not store them.  GetTableMeta now supplies table properties, similar to how GetColumnMeta supplies column properties (a.k.a. column meta flags) and the table version (actually the base version).

Regarding working with tables (writing)…

As for reading, the cursor-based approach has been eliminated, allowing removal of RestartWriteRow and MoveToNextWriteRow.  GetWriteRowIndexByIdentity has been added to match the corresponding method available on the read cache.  To support the cursor-less approach, AddRowForInsert now supplies the write row index of the added row, AddRowForUpdate now takes a read row index and supplied the write row index of the copied row, and AddRowForDelete now takes a read row index.

The SetRow method has been removed.  Thus, there is no longer an “adding” state for changing rows added for insertion or update.  Calling AddRowFor* simply adds a new row to the write cache.  Column values can be set on the row at any time.  All row-level validations previously done in SetRow must instead occur during UpdateStore.

The semantic differences between inserting and updating a row has been strengthened and made formal.  For the insertion of row into the datastore to succeed, the row must not already be present (previously either behavior was supported on a case-by-case basis, with the opposite semantic being the default).  For the update of a row in the datastore to success, the row must be present (previously either behavior was supported on a case-by-case basis, with the opposite semantic being the default).  When adding a row into the write cache for insert, the primary key columns must be specified unless they are already defaulted by the meta.  When adding a row into the write cache for update, the primary key columns cannot be changed.

SetWriteColumn and GetWriteColumn have been replaced by SetWriteColumnValues and GetWriteColumnValues, with equivalent semantics to GetColumnValues.  All values supplied during a SetWriteColumnValues call are copied during the call: previously, the caller was required to retain their copy of each changed value until SetRow was called. 

The SetWriteColumnValues semantic for the size parameter has changed from requiring the size to be 0 when the size can be determined from the type, meta, or data to guaranteeing that the size will simply be ignored when the size can be determined from the type, meta, or data.

Not halting processing of the write cache on the first detailed error has been formally defined as a requirement for UpdateStore implementations.  Applying none of the pending changes in the write cache whenever any detailed errors occur has also been formally defined as a requirement for implementations.  Another formalization regards writing column values to the datastore on inserts and updates: all column values are guaranteed to be written regardless of whether the caller changed them (unless the meta specifies otherwise).

Regarding working with tables (advanced)…

A new interface, ISimpleTableAdvanced, contains methods which certain advanced callers other than storage and logic implementers require.  As mentioned, ISimpleTableRead::PopulateCache has been moved here because the first population is typically done by the table dispenser internally.  The GetDetailedErrorCount and GetDetailedErrrors methods from ISimpleTableControl are also moved here.

Eliminating the cursor-based approach has also made concurrency semantics simpler.  See the reference section on advanced table usage for details.

Working with meta…

<todo/>

Storage and logic plug-ins…

<todo/>Implementation dispensers…

<todo/>ChangeQuery eliminated…

Regarding constants and structures…

Level of service flags were prefixed with fST_TABLE_ and are now prefixed with fST_LOS_ (or fST_LOSI_ for internal level of service flags).  Most of the existing flags have been inverted, since in v1, specifying a flag was required to degrade service and increase performance, and in v2, specifying a flag increases services and potentially decreases performance.

· fST_TABLE_READONLY is inverted to fST_LOS_READWRITE.

· fST_TABLE_NONMARSHALLABLE is inverted to fST_LOS_MARSHALLABLE.

· fST_TABLE_SINGLECURSOR has been eliminated.  Simple tables are now cursorless.

· fST_TABLE_INCOMING and fST_TABLE_EMPTY have been eliminated.  They are not used due since fST_TABLE_UNPOPULATED fills the same purpose.

· fST_TABLE_NOLOGIC remains the same.

· fST_TABLE_CLIENTSIDE is an internal level of service and is thus renamed fST_LOSI_CLIENTSIDE.

· fST_TABLE_ALWAYSMARSHALLREAD was un-used and has been removed.

The wiring information request enums (eST_WIRING_SERVER and eST_WIRING_CLIENT) were un-used and have been removed.

The column meta flags were prefixed with fST_COLUMN_ and are now more appropriately prefixed with fST_COLUMNMETA.

· fST_COLUMN_INDEX is now fST_COLUMNMETA_CASEINDEX to indicate a case-sensitive index.

· fST_COLUMN_CASEINSENSITIVE was simply OR’d with fST_COLUMN_INDEX to indicate a case-insensitive index.  fST_COLUMNMETA_NOCASEINDEX replaces this.

fST_COLUMNSTATUS_DONTWRITE was a workaround hack and has been removed.  This is really column meta information.  The new column meta supports this concept.

All simple table errors continue to be prefixed with E_ST_.  All error numbers themselves are new, even for errors which retain the same constant name (note that some error numbers were publicly exposed but the constant names were not).

· E_ST_NOMORE has been expanded into E_ST_NOMOREROWS, E_ST_NOMORECOLUMNS, and E_ST_NOMOREERRORS.

· E_ST_NOTNULLABLE has been replaced by E_ST_VALUEINVALID.

· E_ST_INVALIDCACHESTATE has been replaced by E_ST_INVALIDCALL.

· E_ST_LENGTHTOOBIG has been replaced by E_ST_SIZEEXCEEDED.

· E_ST_FOREIGNKEYMISSING has been replaced by E_ST_FKDOESNOTEXIST.

· E_ST_MISSINGROW has been replaced by E_ST_ROWDOESNOTEXIST.

The detailed error indices iST_ROW_ALL and iST_COLUMN_ALL have been renamed iST_ERROR_ALLROWS and iST_ERROR_ALLCOLUMNS respectively.

The population control flags were prefixed with fST_CONTROL_ and are now prefixed with fST_POPCONTROL:

· The fST_CONTROL_APPLYTOCACHE control flag was not used and has been removed.

eST_QUERYFORMAT_1, which was the query cell array, is replaced.  eST_QUERYFORMAT_CELLS is a slight variation on the same query format: i_QueryMeta is now the address of the count of cells rather than the count of cells.  eST_QUERYFORMAT_2 was not used and has been removed.

The query cell operators were prefixed with eST_OPERATOR_ and are now prefixed with eST_OP_.

The reserved cell indexes were prefixed with iST_COLUMN_ and are now prefixed with iST_CELL_.

· iST_COLUMN_CMPNAME is now iST_CELL_COMPUTER.

· iST_COLUMN_DSNAME is now iST_CELL_CLUSTER.

· iST_COLUMN_JOINHINT was a bad design (the caller should never be required to specify from which direction to perform a table join) and has been removed.

· iST_COLUMN_SPECIAL_CUSTOM is renamed iST_CELL_SPECIAL.

· iST_COLUMN_TID, now iST_CELL_TID, will be removed once the meta database work is complete.

The STQueryCell::iColumn member has been renamed iCell.
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