

COM+ 2.0 Application Manifest
November 19, 1999, Draft Rev 0.1

Markus Horstmann
This document describes features in COM+ 2.0 that facilitate installation and configuration of applications.

TOC \o "1-3"
1.
Scenarios
2
1.1
Staging
2
1.2
Application Export
2
1.3
Application upload/install
2
1.4
Replication
3
1.5
Application download/install (Personal tier)
3
2.
Requirements
4
2.1
Web application upload
4
2.1.1
Remote install/upload from browser client
4
2.1.2
Brandable setup pages
4
2.1.3
FTP/WebDav upload of entire web application tree
4
2.2
Auto-Registration
4
2.2.1
Secure registration of DSNs, MSMQ, perfmon, eventlog etc.
4
2.2.2
Secure registration of COM components (without Fusion 2.5)
4
2.2.3
Secure, zero-impact install of COM components (with Fusion 2.5 support) (P2)
4
2.3
Configuration/Customization
4
2.3.1
Integrated with WebServer admin UI
4
2.3.2
Brandable config pages
4
2.3.3
Discoverability of Managed Properties
4
2.4
Replication / “Export”
4
2.4.1
Filter unwanted files from a web site
4
2.4.2
Assembly dependencies for non-code/late-bound consumers
4
2.4.3
Deployment instructions for shared assemblies
4
2.4.4
Deployment instructions for COM components
4
2.5
Download of Personal Tier Web Apps to an IE 5.5 client
4
3.
Manifest details
4
3.1
Application identity
5
3.2
List of files to be included/excluded
5
3.3
List of Assembly Dependencies of the app
5
3.4
List of COM Components to be installed/replicated
5
3.5
List of Shared Assemblies to be installed/replicated
5
3.6
Custom registration
6
3.7
Custom Configuration UI
6
3.8
DSN, MSMQ configuration
6
3.9
Default VSite information
6
3.10
Filtering out machine specific config
6
3.11
Preserving/reconciling configs during staging
6
4.
Implementation considerations
7
4.1
Auto-registration
7
4.2
Web download for personal tier
7
5.
Open Issues
7
6.
Revision History
7

Note: This document is an early release of the final specification. It is meant to specify and accompany software that is still in devel​opment. Some of the information in this documentation may be inaccurate or may not be an accurate representation of the func​tionality of the final specification or software. Microsoft assumes no responsibility for any damages that might occur either directly or indirectly from these inaccuracies. Microsoft may have trademarks, copyrights, patents or pending patent applications, or other intellectual property rights covering subject matter in this document. The furnishing of this document does not give you a license to these trademarks, copyrights, patents, or other intellectual property rights.

1. Scenarios

1.1 Staging

A development team is using VS7’s web project feature to author a web site. Their app consists of XSP pages, message queue objects, eventlog/perfmon registrations, private assemblies and two COM+ 1.0 components in a COM+ 1.0 application. The app also uses the shared XDO assembly. The development team has a dedicated development server on which the web project and the application reside. The development server, although a single node, runs ACS “Gemini”
, Developer Edition, to enable the team to develop and unit test their eventlog/perfmon functionality with ACS “Gemini”’s monitoring and logging features.

The development team has reached a milestone and is ready to hand the application over to the test team. The test team wants to copy the application onto their staging server, which is an ACS “Gemini” server array. The test manager uses ACS “Gemini”’s replication feature on the developer server to copy the web project to the master server of the test server array. The source files are automatically filtered out; only the required pages, assemblies and the shared XDO assembly are copied over to the test server. ACS “Gemini” creates a new message queue on the test server, registers eventlog/perfmon entries and installs the COM+ 1.0 application. The test manager uses the ACS “Gemini” admin UI to configure the database location for the app
, so that all the XSP pages and assemblies that access the database via XDO use the test SQL Server database instead of the developer SQL Server database.

The test team accesses the home page of the application, and gets an error page indicating that a file was not found. A developer quickly detects a hard-coded reference to the f: drive on the dev server, and fixes the bug. The test manager copies the changes to the test server using the ACS “Gemini” replication feature; only the changed files are updated; the test manager does not have to reconfigure the database location.

1.2 Application Export

The test team determines that the application has met the quality and performance bars. The release manager uses the Application Export tool (in ACS “Gemini”? VS7?) to generate a CAB file. All environment specific configuration information is automatically stripped out. The release manager posts the CAB file to the company’s release web server.

1.3 Application upload/install

Customer “xyz” receives notification that the first release of the application is available on the company’s release web server. The customer wants to install the application on a test server, which is an ACS “Gemini” server array.

The customer opens the ACS “Gemini” admin UI, selects the test server array and chooses the “Install Application” feature. The ACS “Gemini” admin UI asks the customer to type in the URL of the source application. The admin UI then shows the branded setup page of the application and suggests a default VSite/Directory to install the application into. The customer chooses the suggested default and the application is downloaded from the company’s release web server and uploaded to the customer’s test server array. The ACS “Gemini” UI then asks the customer to configure the application by indicating the location of a SQL Server database, and providing security information.

The uploaded application is ready to use: shared assemblies are in the assembly cache, COM+ 1.0 applications are registered, message queues are created, eventlog/perfmon entries are created.

Soon after, the company releases a service pack to the application. The customer selects the application in the ACS “Gemini” admin UI, and chooses the “Update Application” feature. The ACS “Gemini” UI confirms that the previous source URL is still valid, and downloads/uploads the new application to the test server. The customer does not need to reconfigure the application.

1.4 Replication

The customer has installed the application onto the master server of the test server array. ACS “Gemini” automatically replicates the application to the member servers. The customer does not have to specify any additional information. All elements in the application are properly propagated and registered.

1.5 Application download/install (Personal tier)

An end-user is using an e-commerce web site using IE 5.5. The web site offers an option of supporting off-line shopping. The customer clicks on the off-line link and the web application is automatically downloaded to the machine. A configuration page (branded to the e-commerce web site), shows and lets the end-user select certain preferences (pin for offline, automatic upload of orders on connect etc.). The customer disconnects from the Internet and continues using parts of the e-commerce web site functionality.

The end-user runs out of disk-space and flushes the browser cache. The off-line application continues to be available because the customer selected to pin it for off-line use.

The end-user goes to the “Off-line application add/remove” page and sees a list of all off-line applications. The end-user can manually configure or uninstall each of the applications.

2. Requirements

2.1 Web application upload

2.1.1 Remote install/upload from browser client

2.1.2 Brandable setup pages

2.1.3 FTP/WebDav upload of entire web application tree

2.2 Auto-Registration

2.2.1 Secure registration of DSNs, MSMQ, perfmon, eventlog etc.

2.2.2 Secure registration of COM components (without Fusion 2.5)

2.2.3 Secure, zero-impact install of COM components (with Fusion 2.5 support) (P2)

2.3 Configuration/Customization

2.3.1 Integrated with WebServer admin UI

2.3.2 Brandable config pages

2.3.3 Discoverability of Managed Properties

2.4 Replication / “Export”

2.4.1 Filter unwanted files from a web site

2.4.2 Assembly dependencies for non-code/late-bound consumers

2.4.3 Deployment instructions for shared assemblies

2.4.4 Deployment instructions for COM components

2.5 Download of Personal Tier Web Apps to an IE 5.5 client

3. Manifest details

 Need to reconcile this with Fusion 2.5 manifest work, and Darwin XML work.

Manifest information is stored in the application configuration file in the application root directory. The application configuration file is named “Config.cfg”.

 We may want to partition configuration files based on developer vs. administrator or machine-specific vs. structural.

The application configuration file is an XML file that can be read and written through the URT Configuration System. The application configuration file should have the following XML header definition (automatically generated if the file is created through the URT Configuration System:

<?xml version ="1.0"?>

<configuration xmlns="x-schema:catalog.xms">

</configuration>

3.1 Application identity

The application identity is used for UI purposes (ACS “Gemini” UI, Add/Remove programs).

<ApplicationManifest

 Identity=”<assemblyname>”

 Name=”401K Server Application” />

 Should we simply add this to the URT <Application> tag?

<ApplicationManifest

 Identity=”<assemblyname>”

 Name=”401K Off-line Application” PinForOffline=”True” />

3.1.1 Default VSite information

 How do we express this? Should be useable in both server and personal tier scenarios.

<ApplicationManifest

 Identity=”<assemblyname>”

 Name=”401K Application”

 DefaultVirtualDirectory=”MyCompanyApps/401K”

/>

The DefaultVirtualDirectory attribute is a relative URL, indicating the default directory name to be used when installing an application onto a machine for the first time. The ACS “Gemini” installation tool will use a sub directory under the default site, that corresponds to the URL that is obtained by composing the default site binding with the DefaultVirtualDirectory relative URL. Example:

Default site: http://www.microsoft.com, home directory: c:\inetpub\wwwroot.

Application directory: c:\inetpub\wwwroot\MyCompanyApps\401k,

Application URL: http://www.microsoft.com/MyCompanyApps/401k.

3.2 List of files to be included/excluded

This section indicates the physical files under the application root directory (= the directory containing the manifest file) that should be included or excluded. If no <FileExportFilter> tag is specified all files in the application root directory and all its sub directories are considered to be part of the application.

<FileExportFilter>

 <File Path=”<regex>” Exclude=”[True | False]” /> <!-- defaults to “False” -->

</FileExportFilter>

 Should we really allow regular expressions?

3.3 List of Assembly Dependencies of the app

 Existing XML encoding?

3.4 List of COM Components to be installed/replicated

<ComComponents>

 <ComPlus1Application AppID=”<guid>” />

 <Component File=”<path>” /> <!-- relative or absolute -->

</ComComponents>

 What is the Fusion XML syntax for COM components?

3.5 List of Shared Assemblies to be installed/replicated

 Existing XML encoding?

<SharedAssemblies>

 <Assembly Name=”<assemblyname>” AllowPrivateInstall=”True” />

</SharedAssemblies>

3.6 Custom registration

<CustomRegistration>

 <RegistrarClass attr1=”…” attr2=”…” … />

 <AssemblyInstaller Path=”<path>” />
</CustomRegistration>

3.7 Custom Configuration UI

<CustomConfigPages>

 <ConfigPage Url=”[relative url]”

 ConfigTypes=”[All | <configtype> <configtype>]”

 AddToAdminApp=”[True | False]” />

</CustomConfigPages>

<CustomConfigTemplates>

 <ConfigTemplate Url=”[relative url]”

 ConfigTypes=”[All | <configtype> <configtype>]”

 AddToAdminApp=”[True | False]” />

</CustomConfigTemplates>

<CustomConfigApps>

 <ConfigApp Url=”[relative url]” AddToAdminApp=”[True | False]” />

</CustomConfigApps>

3.8 DSN, MSMQ configuration

 How can we discover this information and provide UI for it? Should we host managed properties on the config system?

3.9 Filtering out machine specific config

<RemoveOnExport>

 <Config ConfigType=”<configtype”> Selector=”<selector>” />

 <Config … />

</RemoveOnExport>

 Should we make this part of the definition of a collection/property?

3.10 Preserving/reconciling configs during staging

The source machine of a staging replication can carry multiple application manifests for the same application. One of the manifests (“config.cfg” in the current proposal), carries the information used when running the application on the source itself. Other manifests carry the configuration information for each of the target servers. It is up to the developer/administrator to propagate any structural changes from the real manifest to the manifests for the target servers.

 Should we make this easier by separating config from definition into two files?

4. Implementation considerations

4.1 Auto-registration

The URT configuration system is already listening for change notifications for web applications. When it refreshes its cache from newly installed configuration files, it also detects the custom registration section in the configuration file and performs the indicated steps. The custom steps are performed in the same application domain that the application would run in, so that all custom steps are subject to the same restrictions as the actual application.

4.2 Web download for personal tier

 How can we use IE code-download/CDF/OSD for this? Having a list of files in a CAB is a good first step.

 How can we put the application files into the browser HTTP cache? Assembly loading already is redirectable into the HTTP cache. Config and XSP would have to do similar work.

5. Open Issues

In addition to the issues outlined throughout the document, the following items require further attention:

6. Revision History

November 19, 1999
Rev 0.1 (MarkusH): Created.

� ACS “Gemini” is the set of features in a future ACS release that targets the URT1/VS7 platform.

� This could happen either on the source (= developer) server or on the target (= test) server.

Page 6 of 7

