

COM+ 2.0 Configuration System Architecture
November 14, 1999, Draft Rev 0.8

Markus Horstmann
This document describes the architecture of the COM+ 2.0 configuration system, including the configuration manager, configuration objects and configuration interceptors. Refer to the COM+ 2.0 Configuration System specification for an introduction to using or extending the configuration system.
1.
Goals
2
2.
Requirements
2
3.
Configuration Manager
2
3.1
Concepts
2
3.1.1
Configuration Type: ConfigType
2
3.1.2
Configuration location: Selector
3
3.2
Configuration Manager Class
4
3.2.1
Caching
5
3.3
Behavior information
5
4.
Configuration Objects
6
4.1
Configuration Schema
6
4.1.1
Collections
6
4.1.2
Items
7
4.1.3
Primary Key
7
4.1.4
Item Name
7
4.1.5
Relations
7
4.1.6
Obtaining Schema Information
7
4.2
Configuration Item and Configuration Collection
8
4.2.1
Configuration Item: IConfigItem interface
8
4.2.2
Configuration Collection: IConfigCollection interface
8
4.2.3
Base Configuration Objects
9
4.2.4
Strongly typed Configuration Objects
9
4.2.5
Custom Configuration Objects
10
4.3
Arbitrary Custom Objects in the Configuration Manager
10
5.
Configuration Interceptors
10
5.1
Read operations
11
5.2
Write operations
12
5.3
Methods in details
12
5.4
Typical usage patterns for Configuration Interceptors
12
5.4.1
Single interceptor for a Key/Protocol combination
13
5.4.2
“1 of n” interceptors for a Key/Protocol combination
13
5.4.3
Chain of n interceptors for a Key/Protocol combination
13
5.4.4
Hierarchy Interceptors
13
5.4.5
Merge Interceptors
13
5.4.6
Storage Interceptors
13
5.5
Generally useful Interceptors
13
5.5.1
Native Catalog Storage Interceptor
13
5.5.2
Schema Validation Interceptor
13
6.
Administrative Interfaces
13
7.
Utility Classes
15
8.
Related Specs
15
9.
Open Issues
15
10.
Revision History
15

Note: This document is an early release of the final specification. It is meant to specify and accompany software that is still in devel​opment. Some of the information in this documentation may be inaccurate or may not be an accurate representation of the func​tionality of the final specification or software. Microsoft assumes no responsibility for any damages that might occur either directly or indirectly from these inaccuracies. Microsoft may have trademarks, copyrights, patents or pending patent applications, or other intellectual property rights covering subject matter in this document. The furnishing of this document does not give you a license to these trademarks, copyrights, patents, or other intellectual property rights.

1. Goals

Please refer to the overview presentation on http://appcenter/config/Slides/URT%20Configuration.ppt for the high level goals of the URT configuration system.

2. Requirements

Please refer to the requirements document on http://appcenter/config/specs/URT1/URTConfigSysReq.htm for a detailed list of requirements, broken up by consuming URT team.

3. Configuration Manager

The Configuration Manager orchestrates discovery, retrieval, caching and update of configuration information. It is the core of an extensible architecture in which all specific functionality is implemented in the form of – mostly reusable – modules called Interceptors.

3.1 Concepts

In order to identify a specific piece of configuration information, two concepts are introduced: the ConfigurationType
 and the Selector.

3.1.1 Configuration Type: ConfigType

The Configuration Type (short Config Type) indicates the type of configuration information.

Examples: “Applications”, “ScriptMaps”, “Permissions”, “Version Policies”.

3.1.2 Configuration location: Selector

In many cases, multiple instances of configuration information exist for a given Config Type, for example the Config Type “Application” may have an instance for the “401K App” and another instance for the “Payroll App”.

When requesting configuration information the caller indicates the instance(s) of configuration for a specific Config Type using a “Selector”. This selector is dependent on and scoped by the Config Type. The selector is often a URL, but whoever defines the Config Type is free to define one or more arbitrary URI’s or even custom objects as selectors for this Config Type. The only limitation on the Selector is that it must have a protocol prefix.

In order to enable more efficient handling of selectors (pre-parsing of protocol prefix, handling of complex queries etc.), an abstract Selector class is defined:

public abstract class System.Config.Selector {

 public String
Protocol { abstract get;}

}

The Configuration Manager is able to handle arbitrary classes derived from the Selector class.

However, some of its methods have special knowledge of the UrlSelector class:

public class System.Config.URLSelector : Selector {

 public

URLSelector(String s);

 public String
Protocol{ override get };
 public String
Argument{ get, set };

 public bool

IsRootURL{ get, set };

 public override String ToString();

}

 Need to change code to UrlSelector (lower-case "rl") to conform to URT naming conventions.

Another selector class, which is commonly used by administrative interfaces, is given here merely as an example to motivate the choice of introducing Selectors as objects:

// Syntax: “query:<name1><op><value1>;<name2><op><value2>”

public enum System.Config.QueryCellOp {

Equal,

// “=”

NotEqual };
// “<>”

public class System.Config.QueryCell {

String

Name;

QueryCellOp
Operator;

Object

Value;

};
class System.Config.QuerySelector : Selector {

public

QuerySelector();

 public

QuerySelector(String s);
 public String

Protocol { override get; set };
 public String

FileName { get; set };
 public String override
ToString();

 public QueryCell

this[int Index] { get; set};

 public void

Add(QueryCell cell);
 public void

Add(int Index, QueryCellOp Operator, Object Value){
 public void

Remove(int nIndex);

 public int

Count { get };

}

 Will callers typically have the URL as a single string, or will the prefix already be available separately? In the latter case, it might be good to provide a method with two separate parameters (Protocol, Selector) to avoid parsing/allocations.

3.2 Configuration Manager Class

The Configuration Manager Class provides a simple set of functions to consumers of configuration information. Consumers range from administrative tools to the system runtimes themselves.

enum System.Config.LevelOfService {

Read =

0x0001;

Write =

0x0002;

Delete =

0x0004;

Empty =

0x0008;

NoValidation =
0x0010;

NoInheritance =
0x0020;

DoNotCacheResult =
0x0040;

BypassCache =

0x0080;

// others

}

 Need to validate this list!

class System.Config.ConfigManager {

public:

 Object Get(String ConfigType, String selector, LevelOfService LoS);

 Object Get(String ConfigType, Selector selector, LevelOfService LoS);

 // The first flavor of the Get method assumes that the selector string is a UrlSelector.

 // For all other selectors, the caller must create/cast to desired Selector class and

 // call the second flavor of the Get method .

 Admin/Write methods are not currently implemented!

 // Admin interfaces are not currently implemented

 // IAdminCollection GetAdmin(String ConfigType, String selector, LevelOfService LoS);

 // IAdminCollection GetAdmin(String ConfigType, Selector selector, LevelOfService LoS);

// void Write(IAdminCollection Config);

// void Write(IAdminCollection Config, LevelOfService los);

// Utility methods primarily for use by interceptors

 Object GetEmptyConfigCollection(String ConfigType);

 Object GetEmptyConfigItem (String ConfigType);

}

3.2.1 Caching

The Configuration Manager caches results of previous requests based on ConfigType and Selector. The LevelOfService parameter controls the caching behavior of a request.

All objects returned from the cache must be read-only, in order to guarantee consistency of the running system.

 How exactly do we invalidate the cache?

 Do we have separate read and write caches? Do we even need a write cache?

 Can we use the XSP cache classes?

 Should wiring/meta indicate the possible/default caching behaviors for a config type?

3.3 Behavior information

The Configuration Manager uses the behavior information to determine how to return a representation of the configuration information being requested. The behavior information maps a combination of ConfigType and Selector to a chain of managed classes that is to be invoked in order to render a configuration object.

The Configuration Manager invokes each class in the chain of managed classes in order until one of the classes indicates that it has returned a fully rendered configuration object. These chained managed classes are referred to as Configuration Interceptors and are described in detail below.

Example:

<Interceptor ConfigType=”Applications” Protocol=”http” Order = “1”

 InterceptorClass = ”System.Config.Core.FileNameInterceptor”
 InterceptorType="Reader" />

<Interceptor ConfigType=”Applications” Protocol=”http” Order = “2”

 InterceptorClass = ”System.Config.Core.ComplibInterceptor”
 InterceptorType="Reader" />

 Should we allow more than one chain for a type/selector combination to facilitate consumers with different rendering requirements for the same config information? Examples: runtime vs. admin, two different runtimes (DT/XSP) with different perf/access requirements.

Behavior information is described in more detail in the Schema & Behavior specification.

4. Configuration Objects

Configuration objects provide an in-memory representation of configuration information, tuned to the requirements of the primary consumer of the configuration information. Configuration objects are returned by the Configuration Manager’s “Get” and “GetEmpty” methods and consumed by the “Write” methods.

Although the Configuration Interceptors invoked by the configuration manager can return any managed class, the requirements of administrative tools for a generic representation of configuration information can only be satisfied if the configuration object implements the generic configuration object interfaces defined below and thus provides a Configuration Schema for the configuration information.

4.1 Configuration Schema

The schema for configuration objects is typically described in an XML-data document. The format of the XML-data representation of configuration schemas is defined in the XML schema definition document (http://appcenter/config/specs/urt1/Schema & Behavior.doc).

4.1.1 Collections

Like XML Data, the schema represents configuration information as groups of typed and named properties. A group of properties is in turn named using a string, which corresponds to the Config Type as defined above.

Example 1:

Config Type: “Application”

Properties: “Name” (String), “Location” (String), “AppEnabled” (Bool)

Example 2:

Config Type: “Machine Policy”

Properties: “JITCompiler” (enum (“Standard JIT”, “Econo JIT”), “CodeBufferMax” (DWORD)

4.1.2 Items

Some Config Types may have only a single instance (Example 2 above: there is only one “JITCompiler” property on a given machine), while others by nature contain many different instances (Example 1 above: Each application has a different “Name”, “Location” etc.). These instances are hereafter referred to as “Configuration Items” or short “Items”, a set of Configuration Items is referred to as a “Configuration Collection” or short “Collection”.

 TODO: add description of PublicRowName etc.

4.1.3 Primary Key

In order to distinguish between different Items belonging to a specific Config Type, the schema declares one or more properties in the group as establishing the identity of the item. This set of properties is hereafter referred to as the “Primary Key” of the Config Type (the definition) or the “Primary Key” of the Item (the specific set of values). The Primary Key is often specified as part of the Selector to request a single instance of configuration information for a given Config Type.

Example 1: Primary key: “Name”, “Location”

Example 2: Primary key: N/A.

4.1.4 Item Name

Often, an Item must be referred to in a human readable form. In order to address this requirement, the schema designates one of the properties as the “Name” of an Item. The property establishing the Name may or may not be part of the Primary Key, but should be “sufficiently unique” (for UI purposes) across different Item instances.

4.1.5 Relations

Often, two Config Types are related to each other, in the sense that the Items in one Config Type contain references to the Items in another Config Type, typically by listing the values of the Primary Key of these Items. The schema can capture these relations between Config Types to facilitate navigation between Config Types in administrative tools and to enable consistency checks.

4.1.6 Obtaining Schema Information

The schema for a given Config Type can be retrieved through the Configuration Manager, by using the Config Type “System.Config.Schema”, and using the Config Type for which the schema is to be retrieved as the Selector string.

 Should this be the Config Type for schema? What’s the Selector prefix?

Example (using strongly typed Configuration Objects, see Section 4.2.4 below for details):

SchemaCollection Schema=ConfigManager.Get(“System.Config.Schema”, “Applications”);

for (int i=0; I<Schema.Count(); i++)

{

Console.WriteLine(Schema[i].Name+”(“+Schema[i].Type+”)”);

}

// Resulting output:

//
Name (String)

//
Location (String)

//
AppEnabled (Bool)

Similarly, the Config Type “System.Config.Relations” retrieves relationship information:

RelationCollection Relation=ConfigManager.Get(“System.Config.Relation”, “Applications”);

For details on the available properties in the Schema and Relations collections, please refer to the XML schema definition document.

4.2 Configuration Item and Configuration Collection

The concepts defined by the schema (Config Type, Item Collection, Item) are expressed in the form of interfaces, in order to ensure that all configuration information can be accessed by administrative tools in a generic manner.

4.2.1 Configuration Item: IConfigItem interface

public interface System.Config.IConfigItem : ICloneable {

 Object

this[int PropertyIndex] {get,set};
// the value of a Property

 int

Count {get};

// the number of properties

 void

Freeze();

// Makes the item read-only

 bool

IsFrozen { get };

// indicates if the item is read-only

}

 TODO: add detailed description of all the methods

 Should we make access to related config types obligatory?

4.2.2 Configuration Collection: IConfigCollection interface

public interface System.Config.IConfigCollection : ICloneable {

 void

Add(IConfigItem Item);
// Adds an Item to the Collection

 IConfigItem
this[int Index] {get,set};
// Retrieves the Item

 void

Insert(int Index, IConfigItem Item); // Inserts an Item at position Index

 void

Remove(int Index);

// Removes an Item

 Int

IndexOf(IConfigItem Item);
// retrieves the index of a config item

 void

Clear();

// Removes all Items from the Collection

 int

Count {get};

 void

Freeze();

// makes the collection read-only
 bool

IsFrozen();

// indicates if the collection is read-only
}

 TODO: add detailed description of all the methods

 Need to sync up with new IList interface.

 Should we use code access security to protect the system from untrusted callers (i.e Clone before returning a cached config object)?

 How do we expose the schema itself for totally generic/late bound consumers? Of course “Get(“Schema”, …) just works but we may want an easier mechanism to discover properties, maybe on the collection object?

 Should we make access to related config types obligatory?

A Config Collection that contains a single Config Item can be implicitly cast into a Config Item object. This enables intuitive coding for queries that always return a single Config Item (Example: query by full primary key).

 Can we make this cast part of the interface definition?

4.2.3 Base Configuration Objects

The Configuration System provides a standard implementation of both Configuration Collection and Item objects:

class System.Config.BaseConfigItem : IConfigItem, ICloneable
{

public BaseConfigItem(int ObjectCount);

// all IConfigItem / ICollection methods

}

class System.Config.BaseConfigCollection : IConfigCollection
{

public
BaseConfigCollection();

// all IConfigCollection / ICollection methods

}

If the behavior information does not specify a class to be used for a specific Config Type, the configuration manager returns Base Configuration Objects upon requests for this Config Type.

4.2.3.1 Level Of Service

The valid flags for Configuration Objects and their semantics are:

	LevelOfService
	Item
	Collection

	Read
	Allow reading of data
	Allow reading of data

	Write
	Allow changes to property values
	Allow addition of items

	Delete
	Invalid (Exception)
	Allow deletion of items from a collection

	NoValidation
	Performs no validation of property changes against edit rules in the schema
	Performs no validation of referential integrity (Primary Key semantics are still enforced)

	All other flags
	Invalid (Exception)
	Invalid (Exception)

 Do we want to use LoS for this or should we define another enumeration?

 TODO: need to spec out the exact semantics for property and relation validation.

4.2.4 Strongly typed Configuration Objects

The Configuration System generates two managed classes for each Config Type defined in the schema: A Configuration Item class with name “<ConfigType>Config” and a Configuration Collection class with name “<ConfigType>Collection”. The Item class has fields for each of the properties and the fields are typed according to the type of the property. The Collection class has overridden methods for every method in IConfigCollection that uses IConfigItem, using the Item collection class instead of IConfigItem.

 <ConfigType> should really be the “PublicRowName”/”PublicTableName”. Need to update schema section accordingly.

The generated classes derive from the ConfigItem and ConfigCollection base classes respectively. The behavior information for this Config Type must indicate the name of the Item and Collection class so that the Configuration Manager can instantiate and return the correct class(es).

4.2.4.1 Generating Strongly Typed Configuration Objects

The Configuration System provides a class (name and methods tbd) that generates strongly typed Configuration Objects for a specific Config Type. The classes are generated into a regular assembly (a DLL), that can be deployed as any other COM+ 2.0 class. The assembly must be within the assembly resolution scope of the Application Domain in which the Configuration Manager is invoked.

A command line utility is provided that enables creating the objects at build time, typically at schema compilation time.

 Although technically feasible, no requirements are known to generate these objects automatically (on the fly) upon request.

4.2.5 Custom Configuration Objects

Any class that implements the IConfigItem or the IConfigCollection interfaces can be used with the Configuration System. Most interceptors interact with the Configuration Objects only through these interfaces. However it is possible to write specific interceptors that interact with Custom Configuration through arbitrary custom interfaces and methods.

Custom configuration objects can derive from the Base Configuration Objects, the Strongly typed Configuration Objects or simply implement the IConfigItem/IConfigCollection interfaces in whichever way they see fit.

 Need to test that the generic interceptors work with arbitrary IConfigItem/IConfigCollection implementations.

 Should we provide utility classes that make it easy to add validation functionality to custom IConfig* implementations? If many scenarios require storing config information in completely customized/optimized data representations, this may be a good approach. Another approach is to provide a rich set of base config object implementations that provide common data structures.

 Should we allow custom objects to be instantiated from a config collection instead of forcing them to also be the collection object?

4.3 Arbitrary Custom Objects in the Configuration Manager

It is possible to use arbitrary objects (i.e. not implementing IConfigItem or IConfigCollection) within the Configuration System. Many standard interceptors may not work with these objects, but the Configuration Manager is largely agnostic of specific signatures of the objects returned from the last interceptor in the chain. Specifically caching of request results works also for arbitrary objects.

Administrative tools will not be able to deal with arbitrary objects, nor is it guaranteed that the configuration information that these objects represent can be discovered via schema.

 Need to test that arbitrary objects work.

 How can we ensure that arbitrary objects in the cache are read-only?

5. Configuration Interceptors

The behavior information defines a chain of interceptors to be used for each Config Type. The Configuration Manager invokes the interceptors for Get and Write requests.

Interceptors are stateless classes, i.e. they do not retain any invocation-specific state between method invocations.

The Configuration Manager will create one or more interceptor instances and reuse them as it sees fit. The interceptors are responsible for their own synchronization. Interceptors must provide a default constructor.

 We really only use one instance at this time. Will we ever want to use more than one?

 Do we need/want to support a wiring flag that indicates that an interceptor wants to be stateful? Singleton interceptors (i.e. guaranteed at most one instance per app domain)?

interface System.Config.Interceptors.IConfigReader {

 Object
Read(

String ConfigType,

Selector Selector,

LevelOfService LoS,

Object currentObject,
// for chained interceptors: config read by previous

// interceptor. NULL for store interceptors

);

}

//interface System.Config.Interceptors.IConfigWriter {

//void
Write(IAdminCollection adminCollection, LevelOfService Los);

//}

 Write interceptors are not currently implemented.

public struct System.Config.Interceptors.RequestParams{

public String configType;

public Selector selector;

public LevelOfService los;

}
interface System.Config.Interceptors.IConfigTransformer {

 RequestParams Transform(String ConfigType, Selector Selector, LevelOfService LoS);

}




5.1 Read operations

A read operation read (i.e. an invocation of ConfigManager.Get or ConfigManager.GetEmpty) consists of three separate stages:

· A transform stage, in which zero or more interceptors can modify Config Type, Selector and LevelOfService before any data is retrieved.

· A read stage, in which at most one interceptor creates an initial, typically writeable Config Object and typically populates it with configuration data.

· A validation stage, in which zero or more interceptors can validate or modify the initial Config Object
.

 Need a better term for “validate”, since these interceptors can do much more than just validation…

The behavior information for a Config Type declares the stages in which an interceptor is to participate.

The Configuration Manager controls the read operation and performs the three stages in order. In each of the stages the Configuration Manager only invokes interceptors that match the Config Type and Selector prefix being requested.

It first invokes the interceptors for the Transform stage, in the order indicated in the behavior information. After invoking each interceptor it validates if the Config Type or Selector have changed, and if either have changed, it restarts the read operation for the new Config Type / Selector.

If the Transform stage is completed without Config Type/Selector changes, the Configuration Manager invokes the interceptors that are marked to participate in the Read stage, again in the order indicated in the behavior information.

As soon as one of the interceptor returns a Config Object, the Configuration Manager finishes the Read stage. If none of the interceptors return a Config Object, the entire read operation fails and the Configuration Manager raises an exception.

The Configuration Manager then invokes the interceptors marked to participate in the Validation stage, again in the order indicated in the behavior information.

After the Validation stage, the Configuration Manager sets the Selector and Config Type on the resulting Config Object (iff the Config Object implements the IConfigCollection or IConfigItem interface). If the LevelOfService indicates read-only, the Config Manager then converts the Config Object into read-only (by calling the ConvertToReadOnly method), before adding it to its cache (again obeying the LevelOfService).

5.2 Write operations

 Need to add description of write details.

Tbw (Stages: Transform, Validate, Write)…

5.3 Methods in details

 Need to describe the methods and their parameters.

5.4 Typical usage patterns for Configuration Interceptors

 Need to fill these in.

5.4.1 Single interceptor for a Key/Protocol combination

5.4.2 “1 of n” interceptors for a Key/Protocol combination

5.4.3 Chain of n interceptors for a Key/Protocol combination

5.4.4 Hierarchy Interceptors

5.4.5 Merge Interceptors

5.4.6 Storage Interceptors

5.5 Generally useful Interceptors

5.5.1 Native Catalog Storage Interceptor

This interceptor allows the managed config manager to obtain information from the native catalog. This is used to bootstrap the managed config system without the need to port the existing native interceptors (XML, CLB etc.).

5.5.2 Schema Validation Interceptor

This interceptor can be used in the validation stage to validate the contents of a config collection against the schema constraints for the config type, i.e. primary key, edit rules, relations to other collections etc.

6. Administrative Interfaces

 This section is just a collection of thoughts/fragments. Need to flesh out.

The interfaces use the following class to facilitate handling of Primary Keys:

class System.Config.ItemKey {

 ItemKey(String PrimaryKey);
// String of the form “<Name>=<Value>;<Name>=<Value>;...”

 Implicit op (String PrimaryKey);

 Object [String Name] [get,set];

 String ToString();

}

 Can/should we use a Dictionary class instead? Is this class merely derived from Dictionary?

public interface System.Config.IAdminItem {

 ItemKey
PrimaryKey [get];

// the values of the properties making up the

// Primary Key of the Item

 String

Name {get};

// the value of the Name property of the Item

 Object

this[String PropertyName] {get,set};

}

public interface System.Config.IAdminCollection {

 void

Add(IConfigDataItem Item);
// Adds an Item to the Collection

 IConfigItem
Add(ItemKey PrimaryKey);
// Adds a new Item to the Collection,

// setting the Primary Key to the values

// in “PrimaryKey”

 IConfigItem
this[ItemKey PrimaryKey];
// Retrieves the Item whose Primary

// Key matches “PrimaryKey”

 void

Remove(ItemKey PrimaryKey);
// Removes the Item matching “PrimaryKey”

// from the Collection (or marks the Item for

// deletion, if LevelOfService & Delete).

// In either case, the deleted Item is not visible through the standard

// collection methods, only through the “GetDeletedItems” enumerator.

 void

Remove(IConfigItem Item);
// Removes the “Item” from the Collection

// (or marks it for deletion)

 void

Clear();

// Removes all Items from the Collection

// (or marks them for deletion)

 String

ConfigType [get, set];

// Config Type of all Items in this Collection

 String

Selector [get, set];

// Selector used to retrieve the Collection

 int

Count();

 IEnumerator
GetEnumerator(bool AllowRemove);

 IEnumerator
GetChangeList (bool AllowRemove); // Returns the Items that have been

// marked for deletion using on of the Remove methods or the Clear method

 IConfigCollection
GetRelated(String RelatedConfigType, ItemKey PrimaryKey);

// Retrieves the Collection related to the Item “PrimaryKey” in this Collection

 IConfigCollection
GetRelated(String RelatedConfigType, IConfigItem Item);

// Retrieves the Collection related to the Item “Item” in this Collection

 Object

Clone(); // Creates an independent Clone of the Collection object

}

7.


8. Utility Classes

 Need to define these.

· PrimaryKeyFromItem (ConfigType, IConfigItem)

· NameOfItem(ConfigType, IConfigItem)

· ValidateCollection

· GetPropertyIndexFromName

9. Related Specs

10. Open Issues

In addition to the issues outlined throughout the document, the following items require further attention:

11. Revision History

October 4, 1999
Rev 0.1 (MarkusH): Created.

October 13, 1999
Rev 0.2 (MarkusH): Updated to reflect current state of discussions: Key -> Config Type, Selector object, Transform/Read/Write/Validate, clarified read/write stages, castability of singleton collections into items, added rudimentary caching section.

October 18, 1999
Rev 0.3 (MarkusH): Trimmed down IConfigCollection/Item interfaces. Moved other functionality to IAdminCollection/Item interfaces. Added Selector, URLSelector, QuerySelector class details. Added section on utility classes.

October 20, 1999
Rev 0.4 (MarkusH): Added Count/IsFrozen methods to IConfigItem.

October 22, 1999
Rev 0.5 (MarkusH): Added IsObjectCached and GetEmptyConfigCollection/Item methods. Added Clone method to config objects (Merge interceptor needs to clone the parent config). Changed interceptor methods, factored into separate interfaces. Added RequestContext object to support intermediate result registration for merge interceptors. Added InterceptorStages to wiring info. Changed of classes capitalization to mixed case (UrlSelector). Added clarification that interceptors are stateless.

October 25, 1999
Rev 0.6 (MarkusH): Moved RequestContext to implementation detail section in Hierarchy/merge spec. Added Flags property for wiring info section. Clarified Selector base class and selector handling. Added section on generally useful interceptors. Changed title to “URT Config System Architecture”

November 2, 1999
Rev 0.7 (MarkusH): Incorporated initial feedback: custom methods for runtime consumers on separate objects?; Selector object overhead. IList interface.
November 14, 1999
Rev 0.8 (MarkusH): Changed Wiring to Behavior. Updated classes/interfaces to reflect implementation.
� The ConfigType was previously referred to as the “Key”, but this terminology was multiply overloaded (Primary Key, ICollection method etc.).

� In fact, the configuration system treats the schema information as just another piece of configuration information, and obtains it through the exact same extensibility mechanisms that apply to other configuration information. Only the “schema for the schema” is hard coded in most parts of the Configuration System. The Configuration System uses this flexibility to compile a core schema - that is known to the system at “ship time” –into a compact, binary representation stored inside the system binaries themselves. Other schema information is merged with the core schema using the standard configuration system mechanisms.

� Even though typically the incoming config object is just modified and returned, an interceptor can also choose to create a new config object and populate it in whatever way it sees fit, including copying data from the incoming config object.

Page 15 of 16

