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Introduction

(a.k.a. Why Text?  Why Binary?  Why Both?)

The plan moving forward is to express configuration in text-based configuration files.  These text-based files become the “database of record” for configuration on a system.  Text-based configuration is attractive for numerous reasons:

· Configuration can be altered simply by editting text files: learning an api and writing code is not necessary.

· Configuration can be easily copied from one computer to another.

· Configuration can easily be backed up and restored.

· Configuration can manipulated remotely from extremely thin clients via tools as telnet.

· Configuration can be checked into a source control system as part of a development effort.

· Changes to configuration can be easily diff’ed provided a history of snap-shots are maintained.

Of course, a purely text-based configuration approach has various problems too:

· Not all configuration required by the underlying system can be expressed in text.

· The performance of reading configuration from text totally sucks.

· The performance of reading configuration from multiple text files sucks more.

· Each time configuration is read from text, that configuration must be fully validated.

· A user can totally cripple a system with innocent mistakes.

· Implementation/computer-specific configuration should not be exposed to users (provided it can be derived).

To retain the advantages of text-based configuration and balance out the disadvantages, we employ a cookdown process, where text-based configuration is validated and cooked into one or more efficient, compact, binary, persisted caches.  The key design points of this cookdown model include:

· Text-based configuration is the “database of record”. 

· The text-based configuration does not expose “implementation-specific” configuration which is derivable from implementation-agnostic configuration.

· Cooking the text-based configuration into the cooked-down format does full validation as part of the cooking.

· The cooked-down format is produced exclusively from the text format.  The cooked down format cannot itself be otherwise re-configured.  

· The cooked down format is not exposed to customers except via an encapsulating api.

· A cookdown process which fails because the configuration is totally bogus never results in the invalidation of a previous good cookdown.

· The details of this cookdown process and when it happens is encapsulated from the runtime system consuming the configuration.

· The runtime system consuming configuration only consumes from the cooked-down format.

· The cooked-down format consumed by the runtime system is always guaranteed to be “correct”.  This means that vast volumes of code attempting to deal with bogus-ness need not be scattered throughout the runtime system.

This cookdown approach retains the advantages of a text-based configuration approach and corrects the disadvantages:

· Configuration not expressible in text is still consumable by the runtime system.

· The performance of reading configuration text and reading from multiple files can be vastly improved.

· The process of performance improvements is encapsulated from the runtime system.

· Configuration validation only occurs during cookdown and cookdown need not happen each time configuration must be read.

· A user cannot cripple the system with bogus configuration provided a previously good cooking exists.

· Implementation- and computer-specific internal configuration is not exposed to users.

Simple tables are used to both implement and encapsulate this cookdown process.  They encapsulate validation and transformation logic.  They also serve up the cooked configuration to the runtime system.  Because they encapsulate storage, callers are insulated from storage dependencies.  The runtime system sees the expected configuration.  Users can alter configuration either via editing text directly or via a helpful api.  This approach allows the runtime system to focus on being a runtime system, while the configuration system does its job.

Part I: Ducttape

The Configuration Manager

(a.k.a. Encapsulating Configuration Further)

The configuration manager (config_manager.cxx) encapsulates the process of extracting configuration for sites, application pools, and applications from the metabase and feeding that configuration into the ul-and-worker manager in the kernel.  When the ducttape service starts, the configuration manager is initialized.  Within this initialization, the configuration manager feeds the configuration for all application pools (one at a time), then all sites (one at a time), then all applications in each site (one at a time) into the ul-and-worker manager.

The configuration manager is currently tied to the metabase.  It also implements a lot of validation logic.  The goal is to encapsulate this code from configuration storage, the cookdown process, and validation logic.  Here is a proposed code snippet which accomplishes this encapsulation via simple tables (error handling omitted):

#define cAPPPOOLS_BASEVERSION

1

#define cSITES_BASEVERSION


1

#define cAPPS_BASEVERSION


1

…

static const ULONG
aiAppPoolColumns [] = { 


iAPPPOOL_NAME, 


iAPPPOOL_PERIODIC_RESTART_TIME,


iAPPPOOL_PERIODIC_RESTART_REQUESTS,


iAPPPOOL_MAXPROCESSES,


iAPPPOOL_PINGING,


iAPPPOOL_IDLETIMEOUT,


iAPPPOOL_RAPIDFAIL_PROTECTION
};

static const ULONG
cAppPoolColumns = sizeof (aiAppPoolColumns) / sizeof (ULONG);

static const ULONG
cmaxAppPoolColumns = iAPPPOOL_RAPIDFAIL_PROTECTION + 1;

static const ULONG
aiSiteColumns [] = { 


iSITE_ID, 


iSITE_BINDINGS
};

static const ULONG
cSiteColumns = sizeof (aiSiteColumns) / sizeof (ULONG);

static const ULONG
cmaxSiteColumns = iSITE_BINDINGS + 1;

static const ULONG
aiAppColumns [] = { 


iAPP_SITE, 


iAPP_APPPOOL,


iAPP_URL
};

static const ULONG
cAppColumns = sizeof (aiAppColumns) / sizeof (ULONG);

static const ULONG
cmaxAppColumns = iAPP_URL + 1;

CComPtr<ISimpleTableDispenser2>
pISTDisp;

ULONG



cBaseVersion;

ULONG



i;

HRESULT


hr;

CComPtr<ISimpleTableRead2>
pISTAppPools;

void*



apvAppPoolValues [cmaxApppoolColumns];

WCHAR*


wszAppPoolName;

APP_POOL_CONFIG

AppPoolConfig;

CComPtr<ISimpleTableRead2>
pISTSites;

void*



apvSiteValues [cmaxSiteColumns];

ULONG*



acbSiteValues [cmaxSiteColumns];

CComPtr<ISimpleTableRead2>
pISTApps;

void*



apvAppValues [cmaxAppColumns];

hr = GetSimpleTableDispenser (ePRODUCT_URT, fST_LOS_READONLY, &pISTDisp);

hr = pISTDisp->GetTable (
didURTGLOBAL, tidAPPPOOLS, 




0, 0, eST_QUERYFORMAT_CELLS, fST_LOS_COOK,




(void**) &pISTAppPools
);

#ifdef _DEBUG


hr = pISTAppPools->GetTableMeta (&cBaseVersion, NULL, NULL, NULL);


if (cAPPPOOLS_BASEVERSION != cBaseVersion)


{



return E_UNEXPECTED;


}

#endif // _DEBUG

for (i = 0;; i++)

{


hr = pISTAppPools->MoveToRowByIndex (i);


if (E_ST_NOMOREROWS == hr)


{



break;


}


hr = pISTAppPools->GetColumnValues (cAppPoolColumns, aiAppPoolColumns, NULL, apvAppPoolValues);


wszAppPoolName



= (WCHAR*) apvAppPoolValues[iAPPPOOL_NAME];


AppPoolConfig.PeriodicProcessRestartPeriodInMinutes =



((ULONG)*(apvAppPoolValues[iAPPPOOL_PERIODIC_RESTART_TIME]));


AppPoolConfig. PeriodicProcessRestartRequestCount =



((ULONG)*(apvAppPoolValues[iAPPPOOL_PERIODIC_RESTART_REQUESTS]));


AppPoolConfig.MaxSteadyStateProcessCount
= ((ULONG)*(apvAppPoolValues[iAPPPOOL_MAXPROCESSES]));


AppPoolConfig.PingingEnabled

= ((ULONG)*(apvAppPoolValues[iAPPPOOL_PINGING]));


AppPoolConfig.IdleTimeoutInMinutes

= ((ULONG)*(apvAppPoolValues[iAPPPOOL_IDLETIMEOUT]));


AppPoolConfig.RapidFailProtectionEnabled =



((ULONG)*(apvAppPoolValues[iAPPPOOL_RAPIDFAIL_PROTECTION]));


hr = GetWebAdminService()->GetUlAndWorkerManager()->CreateAppPool (wszAppPoolName, &AppPoolConfig);

}

hr = pISTDisp->GetTable (
didURTGLOBAL, tidSITES, 




0, 0, eST_QUERYFORMAT_CELLS, fST_LOS_COOK,




(void**) &pISTSites
);

#ifdef _DEBUG


hr = pISTSites->GetTableMeta (&cBaseVersion, NULL, NULL, NULL);


if (cSITES_BASEVERSION != cBaseVersion)


{



return E_UNEXPECTED;


}

#endif // _DEBUG

for (i = 0;; i++)

{


hr = pISTSites->MoveToRowByIndex (i);


if (E_ST_NOMOREROWS == hr)


{



break;


}


hr = pISTSites->GetColumnValues (cSiteColumns, aiSiteColumns, acbSiteValues, apvSiteValues);


hr = GetWebAdminService()->GetUlAndWorkerManager()->CreateAppPool (



((ULONG)*(apvSiteValues[iSITE_ID])),



(BYTE*) apvSiteValues[iSITE_BINDINGS],



acbSiteValues [iSITE_BINDINGS]
);

}

hr = pISTDisp->GetTable (
didURTGLOBAL, tidAPPS, 




0, 0, eST_QUERYFORMAT_CELLS, 0,




(void**) &pISTApps
);

#ifdef _DEBUG


hr = pISTApps->GetTableMeta (&cBaseVersion, NULL, NULL, NULL);


if (cAPPS_BASEVERSION != cBaseVersion)


{



return E_UNEXPECTED;


}

#endif // _DEBUG

for (i = 0;; i++)

{


hr = pISTApps->MoveToRowByIndex (i);


if (E_ST_NOMOREROWS == hr)


{



break;


}


hr = pISTApps->GetColumnValues (cAppColumns, aiAppColumns, NULL, apvAppValues);


hr = GetWebAdminService()->GetUlAndWorkerManager()->CreateApplication (



((DWORD)*(apvAppValues[iAPP_SITE])),



(WCHAR*) apvAppValues[iAPP_URL],



(WCHAR*) apvAppValues[iAPP_APPPOOL]
);

}

Here is a brief description of what the code snippet above does.  First note that 3 simple tables are used: the sites, apppools, and apps tables.  No query is specified in GetTable for any of the tables, meaning that all sites, all app pools, and all apps respectively are retrieved.

For each table, the expected base version is verified in debug builds using GetTableMeta.  This is required to insure none of the expected columns were re-ordered or removed.

For each table, we navigate to each row (ie: each app pool, site, or app) with MoveToRowByIndex.  For each row, we retrieve all column values of interest with GetColumnValues.  Values of interest are appropriate cast or copied, and the configuration for each row is passed into the ul-and-worker manager.

The Cook-Down Process

(a.k.a. Under the Covers)

So far as the configuration manager is concerned, all sites, app pools, and apps are extracted from the persisted cooked cache via simple tables.  What happens under the covers though?  Basically, when the cooked cache is read, we want allow for the opportunity to re-cook the cache if the configuration changed.  All the configuration manager does to indicate this behavior is specify the fST_LOS_COOK level-of-service.  The cook-down magic occurs in the table’s implementation dispenser, which is invoked during the binding process within the GetTable calls.

In general, if the text-based configuration has not changed, the configuration is simply served directly from the cooked cache.  Here is the algorithm used:

· If fST_LOS_COOK is not provided, just fetch the configuration from the cooked cache.  Otherwise:

· If the cooked cache does not exist (ie: either this is a clean product installation or it was deleted), cook the configuration from the database-of-record into version 1 of the cooked cache and store the date-time stamp of the database-of-record, then serve up the configuration from the cooked cache.  Otherwise:

· Check the database-of-record against the date-time stamp in the cooked cache, and if it changed, begin a new cookdown process into a new version of the cooked cache:

· If the cookdown succeeds, eliminate the old cache, and serve up the configuration from the new cache, again recording the date-time stamp.

· If the cookdown fails catastrophically, discard the new cache, update the date-time stamp in the old cache, and serve up the configuration from the old cache.

· Otherwise, if the date-time stamp is still current, simply serve up the information from the persisted cache.

During the cookdown, rich validation of the configuration occurs, as well as any necessary transformations and expansions.  Problems with the configuration for individual sites, app pools, or apps are logged in detail.  If the problem is severe enough, the particular site, app pool, or app does not get cooked and therefore does not appear at runtime.  Only for catastrophic problems is the cookdown abandoned entirely.

The XML-based Configuration Files

(a.k.a. Show Me The Text!)

Here are snippets of the relevant configuration files.  Note that properties which are optional and which were omitted are properly defaulted.  Note that configuration files are recognized by extension.

Global configuration (from one *.global file located at the well-known root):

<todo/>

Sites configuration (from one or more *.sites files located at the well-known root):

<SitesConfiguration xmlns="x-schema:SitesConfiguration.Schema">


<SiteConfiguration

ID=”0”
Name=”MySite”
PathRoot=”c:\mysite”>



<Binding
Sting=”…”/>


</SiteConfiguration>

</SitesConfiguration>

Application pools configuration (from one or more *.apppools files located at the well-known root):

<ApplicationPoolsConfiguration xmlns="x-schema:ApplicationPoolsConfiguration.Schema">


<ApplicationPoolConfiguration
Name=”MyPool”
RestartTime=”10”
MaxProcesses=”4”
Pinging=”True”
/>

</ApplicationPoolsConfiguration>

Application configuration (from multiple *.appcfg files distributed throughout the file system):

<ApplicationsConfiguration xmlns="x-schema:ApplicationsConfiguration.Schema">


<ApplicationConfiguration
Name=”MyApp”
ApplicationPool=”MyPool”
/>

</ApplicationsConfiguration>

Sites configuration can be kept in 1 to n files, where n is the number of sites.  Any .sites file can have one or more sites configurations.  One factor in the decision of how few or how many .sites files to have is security.  (For example, assume 10 sites.  If each were owned by a different person/group, each site configuration should be in its own file so that it can be secured such that only the owner(s) and system administrator can change it.  If the same group owned 7 sites, the configuration for those 7 sites could all be in one file.)  Another factor is scaling.  For huge numbers of sites, administrators may well choose to conglomerate them both for ease of maintenance (maintaining 1000 files could get very ugly) and cookdown at startup efficiency.  All this is true of .apppools files too.

Known .sites files are compared against their last date/time stamp during cookdown.  New .sites files are also consumed during cookdown. Same with .apppools.
Now consider applications.  The cookdown process for applications does not occur when starting the web service and initializing the configuration manager.  .appcfg files are distributed throughout the file system.  A “kick-the-system” command-line utility can be run which will cookdown applications.  Note that while the scenario for developers is different, on a production system it is typically undesirable for application changes to just be picked up dynamically: controlled staging is the norm.  The kick utility runs by specifying a directory and whether or not sub-directories should be scanned as well.

Site configuration includes a required root-path into the file system.  The directory tree under this root path is the URL namespace under that site.  Note that the application configuration does not include what site the app belongs to or its URL path.  This is because both are derived by its location in the file system.  This does create a tight binding between the file system and URL namespaces  underneath each site.  The application pool to which the application belongs is specified because it cannot be derived.  When not specified, it is properly defaulted.

Note that .appcfg files have the same flexible paritioning as .sites and .apppools.  For example, given a directory with two child directories and an app in each child directory.  A .appcfg file in each child directory is acceptable, and so is one in the parent directory for both apps.  Note that applications can be copies by xcopying the appropriate subtree.

Suppose someone maliciously kicks the system.  Because cookdown only occurs when configuration files have changed, unless that person has permission to make configuration file changes, the persisted cache is unaffected by the kicking.

The Administrative API
(a.k.a. Managing a Large Server)

Beyond a certain point, an administrative api becomes a strong necessity.  With an api, the administrator can query for a set of things to manage (egs: all app-pools with pinging enabled, all sites owned by a certain group, etc) and then apply changes to that set en masse.  Beyond a certain number of things to manage, this becomes much simpler than editting scores or even hundreds of files.

The administrative api should also provide a means of managing the configuration file boundaries.  For example, if an administrator wants to secure sites configuration for two different sites differently, there should be a metaphor this in the administrative api which under-the-covers takes care of details like splitting those sites into separate files and securing those files.  Conglomeration of files should occur in appropriate scenarios too.

Securing files may not be intuitive to customers.  Not only can the administrative api support security in a much cleaner fashion, it also provides a bridge to insure that this security approach unifies along with the rest of URT security.  Security management via an api can also appear much flatter: such as securing site or app configuration, whereas under-the-covers file system grovelling might be required.

The administrative/configuration api is also the public api to configuration.  Consider consumers which need to read configuration at runtime.  Parsing XML just won’t fly here.  An api is necessary.  And in read-only scenarios, the api should not itself be parsing XML: it should be reading from the very efficient cooked formats.

Validation Rules And Transformation Logic

(a.k.a. !!!)

<todo/>
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