Project Denver

DENali VERification Plan

Synopsis

Denali will have several native objects and collections that script writers will use. We need to ensure that all objects and all their methods/properties are functioning properly. For the moment, we are concerned with testing the Request, Server and Response objects What is needed is a set of scripts exercising these objects that will be useful not only during validation testing but also during stress testing. Because the number of scripts will be large, we need to develop an automated verification system that is initiated from a ‘wininet’ client. The goals of this system are not to develop a stress tool. However, the scripts developed for the verification system should ideally be reused in stress cases with WebCat.

Architecture

A key objective of this proposed verification system is that it be easily extensible so that it can accommodate a variety of scripts in the future. Therefore, the client side of the system must be designed such that newer and different server-side scripts do not break the client. The only thing that changes on the client is the list of scripts (in the form of URL’s) that must be tested.

To achieve the goals of automated verification and easy extensibilty, clearly, the .asp script itself must tell the client what the correct output is, and then also serve the actual Denali output to the client. In other words, the script must live in two modes: In the first mode, the script sends the client the hardwired ‘expected’ output. In the second mode, the script sends the client the output from Denali’s objects. The client application will compare the expected output with the Denali object generated output and log errors when there is a difference. These two modes are differentiated by whether a query string was passed along with the GET request. When a query string is not passed, the script will execute in the first mode.

Client and Server interaction

The client application will use the wininet library to make HTTP requests to Denali. It will take two arguments: (1) a file that lists all the scripts to execute, henceforth called ScriptsFile and (2) name of a file to log test results to, now called LogFile.

For each URL in the ScriptsFile, the client will first make a connection, and then make a GET request with no query string. The Denali script will detect , by the absence of a query string, that this is Phase 1 of the test. Therefore, it will send back to the client two pieces of information embedded within the HTML BODY section. The first part comprises a FORM element where the script is self-referenced, with the addition of a query string that has already been hardcoded by the tester. The second part consists of the expected output of the script that has been hardcoded by the tester. This output is within a section called <VALIDDATA>.

Once the client has received the above information, it stores the expected output in memory, and parses the FORM element to get the query string. Based on the METHOD attribute of the FORM element, Denver will do either a POST or a GET during the second phase. For GETs, please make sure that the query string does not exceed 4k. For POSTs, you can have arbitrarily long data as the query string, which Denver will then convert into a POST request by sending the entire query string in the body of the request.

Denver now makes a second request to Denali, this time with the query string. In the case of a POST, a dummy query string of “test” is sent to force the script to execute the second phase condition of the script. In the case of a GET, Denver will just send the query string along with the request automatically causing the script to execute in the second phase. Denali objects are referenced, properties and the return values from methods are output and sent to the client. The client application compares the output of this second phase with the recently-received hardwired output. Any differences are immediately logged as errors in the LogFile

�

Example of a script that tests the Request Object’s QueryString collection

This script tests whether the Query String collection is returning the correct query for the request.

The script hardwires the query string in the FORM element’s ACTION attribute. The script also sends a VALIDDATA section to the client application telling it that it must expect <P> ANDROMEDA </P> in Phase 2 of the test. And in the second phase of the test, the Denali Query String collection is referenced and the query is output within the OUTPUT section.

<% if (Request.ServerVariables("QUERY_STRING") = "") then %>

<!-- This code executes during Phase 1 of the test

 The first condition will be executed only during the first phase

 This part of the code sends the FORM and VALIDDATA elements so that client knows

 what to do

-->

<HTML>

<HEAD>

</HEAD>

<BODY>

<!-- This sets up the query string that the client will send later

-->

<FORM METHOD="GET" ACTION="http://epiphany/scripts/query.asp?key1=ANDROMEDA">

<input type=submit value="Submit Form">	

</FORM>

<!-- This tells the client what to expect as the valid data

(Tell client to expect <P> ANDROMEDA </P> as output

-->

<VALIDDATA>

<P>ANDROMEDA</P>

</VALIDDATA>

</BODY>

</HTML>

<% else %>

<!--

Phase 2 of the test. This is the part that really tests Denali objects

-->

<HTML>

<HEAD>

</HEAD>

<BODY>

<!-- This starts sending the actual results of the Denali run. Note the use of OUTPUT tags.

(If Denali is working correctly, this will output <P> ANDROMEDA </P>

-->

<OUTPUT>

 <% Response.Write("<P>") %>

 <% Request.QueryString("key1") %>

 <% Response.Write("</P>") %>

</OUTPUT>

</BODY>

</HTML>

<% end if %>

�
The same script can be used during Webcat stress testing by copying the entire ACTION attribute in the FORM element of the script to the .scr file that Webcat uses. This way, the first part of the script that hardly uses any Denali objects will not be referenced.

Testing Headers

Server Response Headers

Like the <ValidData> tag, there is a <SERVERHEADERS> tag that can be used to test whether Denali is returning headers correctly. This tag needs to be in the first phase, so that the client knows the kind of headers the script will be sending in the second phase (through use of the Response.Add method or any method that results in a response header being sent)

<% if (Request.ServerVariables("QUERY_STRING") = "") then %>

<!-- The first condition will be executed only for the Verification suite

 This part of the code sends the FORM and VALIDDATA tags so that client knows

 what to do

-->

	<HTML>

	<HEAD>

	</HEAD>

	<BODY>

<!-- This sets up the query string that the client will send later

-->	

	<FORM METHOD="GET" ACTION="http://epiphany/scripts/smoke/srvhead.asp?test">

	<input type=submit value="Submit Form">	

	</FORM>

<!-- This tells the client what to expect as the valid data

-->

	<VALIDDATA>

	</VALIDDATA>

	<SERVERHEADERS>

	<P>HeaderBlah1: headerValue1</P>

	<P>HeaderBlah2: headerValue2</P>

	<P>HeaderBlah3: headerValue3</P>

	<P> SET-COOKIE:Grandma=Strawberry</P>

	<P> SET-COOKIE:Grandpa=Chocolate </P>

	</SERVERHEADERS>	

</BODY>

</HTML>

<% else %>

<!-- This is the part that really tests Denali

-->

<HTML>

<HEAD>

	<title>Server Headers Test</title>

</HEAD>

<!-- This starts sending the results that the client is expecting

-->

<BODY>

	<OUTPUT>

	</OUTPUT>

	<P><% Response.Add "HeaderBlah1", "headerValue1") %> </P>

	<P><% Response.Add("headerBlah2", "HeaderValue2") %> </P>

	<P><% Response.Add("headerBlah3", "HeaderValue3") %> </P>

	<P> <% Response.SetCookie("Grandma", "Strawberry") %> </P>

	<P> <% Response.Add("Set-Cookie", "Grandpa=Chocolate") %> </P>

	

</BODY>

</HTML>

<% end if %>

Client Request Headers

Because Denali provides functionality to access client request headers, we need to verify the methods that provide access to the client headers. Hence, a <CLIENTHEADERS> tag is needed in the first phase to alert Denver so that it sends these headers during the second phase. This also requires the use of a <VALIDDATA> tag during the first phase and the use of <OUTPUT> tags in the second phase, otherwise how is Denver to know whether the client headers were accessed correctly by Denali during the second phase? Here is an example.

<% if (Request.ServerVariables("QUERY_STRING") = "") then %>

<!-- The first condition will be executed only for the Verification suite

 This part of the code sends the FORM and VALIDDATA tags so that client knows

 what to do

-->

	<HTML>

	<HEAD>

	</HEAD>

	<BODY>

<!-- This sets up the query string that the client will send later

-->	

	<FORM METHOD="GET" ACTION="http://epiphany/scripts/smoke/clihead.asp?test">

	<input type=submit value="Submit Form">	

	</FORM>

<!-- This tells the client what to expect as the valid data

-->

	<VALIDDATA>

	<P> HTTP_COOKIE = cookiename=cookievalue </P>

	</VALIDDATA>

	<CLIENTHEADERS>

	<P> COOKIE: cookiename=cookievalue </P>

	</CLIENTHEADERS>

</BODY>

</HTML>

<% else %>

<!-- This is the part that really tests Denali

-->

<HTML>

<HEAD>

	<title> </title>

</HEAD>

<!-- This starts sending the results that the client is expecting

-->

<BODY>

	<OUTPUT>

	<P> HTTP_COOKIE = <% Request.ServerVariables("HTTP_COOKIE") %> </P>

	</OUTPUT>

</BODY>

</HTML>

<% end if %>

Various Denver modes

Use the following command line:

	denver -S <scrlist.txt> -L <file to log test run into>

where -S is a list of scripts like:

	http://epiphany/scripts/smoke/1.asp

http://epiphany/scripts/smoke/2.asp

-L is the log file for test results to be logged into.

	

ADDITIONAL SWITCHES (available by typing denver /?)

Monitor statistics: (Optional)

This flag causes a monitor thread to monitor the state of every thread every 5 seconds. The flag takes the name of a file to write statistics to.

Application Mode:(Optional)

This is indicated by the -A switch with a value of 1. During application mode, Denver will go through all the scripts from the list of scripts without disconnecting and maintaining cookie state across all the scripts. This is ideal for testing a templication. This switch is optional, and in that case, Denver behavior defaults to disconnection and reconnecting on every script execution, and to flush the cookie cache between every script. -A with a value of 2 causes Denver to reuse the cookie (i.e. preserve the session) for every script on a thread as well as for every repeated execution of the same script set. This is to get around a bug in denali where sessions are not cleaned up faster than they are being allocated. When you use this switch, denver causes fewer sessions to be allocated in denali by reusing cookies.

Repetitions: (Optional)

Indicated by the -P switch. This is optional and defaults to 1, where 1 is the number of times each script will be run. When the value of -P is 10, it means that Denver will go through the script list 10 times, executing script1, script2, …, scriptN and then script1, script2, …, scriptN 9 more times. In application mode (-A 1), connections and cookie cache are recycled at the top of every loop. In the non-application mode case, the default (-A 0), the cookie cache and the connections are recycled after every script execution and at the top of the every loop.

Threads: (Optional)

Indicated by the -T switch. This is optional and defaults to 1. When you set the number of threads to, say 5, all 5 threads will execute all the scripts. This allows Denver to stress test Denali with more connections.

Unique log files are created for each thread. The log file for Thread 1 is the user-specified log file, say log.txt. Subsequent threads are assigned log files by the ordinal number of the thread, for instance log.txt2, log.txt3, log.txt4 etc…

Compiler Test: (Optional)

Indicated by the -C switch. Optional and defaults to 0. When you run Denver in compiler mode, Denver will notify the touchflt.dll filter about an impending compiler verification test. Refer to the touchflt.doc for more information on the unique naming convention for such .ASP scripts.

Wininet Test:

Indicated by the -W switch. Optional and defaults to 1, which means use WININET.DLL. 0 means use sockets. The Sockets value must be used when testing in application mode because wininet.dll screws up cookie-handling when multiple threads on a client have their own connections.

Monitor statistics: (Optional)

Indicated by the -M switch. This flag causes a monitor thread to monitor the state of every thread every 5 seconds. The flag takes the name of a file to write statistics to. Below is an example of a file created during a regular denver run. Note that this file is truncated and update every 5 seconds. In the monitor statistics file below, the two scripts were run 15 times (using the -P switch for repetitions), and the result indicates that both scripts passed 15 times. The thread statistics indicates that 5 threads ran these scripts 3 times each, thus accounting for 15 executions of each script.

Monitor statistics as of Sun Jul 07 18:46:58 1996

Script Statistics

#######################

								Passes		Fails

								------		-----

http://bhavesh1/function/query/query111.asp?			15		0

http://bhavesh1/function/query/query113.asp?			15		0

Thread Statistics

#######################

Thread		Iterations

------		----------

1		3

2		3

3		3

4		3

5		3

Conclusion

Denver provides an ideal solution for automated verification of Denali scripts. While the client side of the program is already complete and fully functional, the server side is not. More scripts need to be developed, so that all features in Denali are verified as fully operational. That is the subject of another document. (denfunc.doc)

Notes For users of Denver

Denver uses wininet.dll, so please watch out for mail on the IE build to install off \\psd1\products\ie30

Current version of Denver uses Build 1086.

For ActiveX SDK, look at \\ntpdk\activex\latest

WININET ERRORS (copied from inetsdk\include\wininet.h

#define INTERNET_ERROR_BASE 12000

#define ERROR_INTERNET_OUT_OF_HANDLES (INTERNET_ERROR_BASE + 1)

#define ERROR_INTERNET_TIMEOUT (INTERNET_ERROR_BASE + 2)

#define ERROR_INTERNET_EXTENDED_ERROR (INTERNET_ERROR_BASE + 3)

#define ERROR_INTERNET_INTERNAL_ERROR (INTERNET_ERROR_BASE + 4)

#define ERROR_INTERNET_INVALID_URL (INTERNET_ERROR_BASE + 5)

#define ERROR_INTERNET_UNRECOGNIZED_SCHEME (INTERNET_ERROR_BASE + 6)

#define ERROR_INTERNET_NAME_NOT_RESOLVED (INTERNET_ERROR_BASE + 7)

#define ERROR_INTERNET_PROTOCOL_NOT_FOUND (INTERNET_ERROR_BASE + 8)

#define ERROR_INTERNET_INVALID_OPTION (INTERNET_ERROR_BASE + 9)

#define ERROR_INTERNET_BAD_OPTION_LENGTH (INTERNET_ERROR_BASE + 10)

#define ERROR_INTERNET_OPTION_NOT_SETTABLE (INTERNET_ERROR_BASE + 11)

#define ERROR_INTERNET_SHUTDOWN (INTERNET_ERROR_BASE + 12)

#define ERROR_INTERNET_INCORRECT_USER_NAME (INTERNET_ERROR_BASE + 13)

#define ERROR_INTERNET_INCORRECT_PASSWORD (INTERNET_ERROR_BASE + 14)

#define ERROR_INTERNET_LOGIN_FAILURE (INTERNET_ERROR_BASE + 15)

#define ERROR_INTERNET_INVALID_OPERATION (INTERNET_ERROR_BASE + 16)

#define ERROR_INTERNET_OPERATION_CANCELLED (INTERNET_ERROR_BASE + 17)

#define ERROR_INTERNET_INCORRECT_HANDLE_TYPE (INTERNET_ERROR_BASE + 18)

#define ERROR_INTERNET_INCORRECT_HANDLE_STATE (INTERNET_ERROR_BASE + 19)

#define ERROR_INTERNET_NOT_PROXY_REQUEST (INTERNET_ERROR_BASE + 20)

#define ERROR_INTERNET_REGISTRY_VALUE_NOT_FOUND (INTERNET_ERROR_BASE + 21)

#define ERROR_INTERNET_BAD_REGISTRY_PARAMETER (INTERNET_ERROR_BASE + 22)

#define ERROR_INTERNET_NO_DIRECT_ACCESS (INTERNET_ERROR_BASE + 23)

#define ERROR_INTERNET_NO_CONTEXT (INTERNET_ERROR_BASE + 24)

#define ERROR_INTERNET_NO_CALLBACK (INTERNET_ERROR_BASE + 25)

#define ERROR_INTERNET_REQUEST_PENDING (INTERNET_ERROR_BASE + 26)

#define ERROR_INTERNET_INCORRECT_FORMAT (INTERNET_ERROR_BASE + 27)

#define ERROR_INTERNET_ITEM_NOT_FOUND (INTERNET_ERROR_BASE + 28)

#define ERROR_INTERNET_CANNOT_CONNECT (INTERNET_ERROR_BASE + 29)

#define ERROR_INTERNET_CONNECTION_ABORTED (INTERNET_ERROR_BASE + 30)

#define ERROR_INTERNET_CONNECTION_RESET (INTERNET_ERROR_BASE + 31)

#define ERROR_INTERNET_FORCE_RETRY (INTERNET_ERROR_BASE + 32)

#define ERROR_INTERNET_INVALID_PROXY_REQUEST (INTERNET_ERROR_BASE + 33)

#define ERROR_INTERNET_HANDLE_EXISTS (INTERNET_ERROR_BASE + 36)

#define ERROR_INTERNET_SEC_CERT_DATE_INVALID (INTERNET_ERROR_BASE + 37)

#define ERROR_INTERNET_SEC_CERT_CN_INVALID (INTERNET_ERROR_BASE + 38)

#define ERROR_INTERNET_HTTP_TO_HTTPS_ON_REDIR (INTERNET_ERROR_BASE + 39)

#define ERROR_INTERNET_HTTPS_TO_HTTP_ON_REDIR (INTERNET_ERROR_BASE + 40)

#define ERROR_INTERNET_MIXED_SECURITY (INTERNET_ERROR_BASE + 41)

#define ERROR_INTERNET_CHG_POST_IS_NON_SECURE (INTERNET_ERROR_BASE + 42)

#define ERROR_INTERNET_POST_IS_NON_SECURE (INTERNET_ERROR_BASE + 43)

//

// FTP API errors

//

#define ERROR_FTP_TRANSFER_IN_PROGRESS (INTERNET_ERROR_BASE + 110)

#define ERROR_FTP_DROPPED (INTERNET_ERROR_BASE + 111)

//

// gopher API errors

//

#define ERROR_GOPHER_PROTOCOL_ERROR (INTERNET_ERROR_BASE + 130)

#define ERROR_GOPHER_NOT_FILE (INTERNET_ERROR_BASE + 131)

#define ERROR_GOPHER_DATA_ERROR (INTERNET_ERROR_BASE + 132)

#define ERROR_GOPHER_END_OF_DATA (INTERNET_ERROR_BASE + 133)

#define ERROR_GOPHER_INVALID_LOCATOR (INTERNET_ERROR_BASE + 134)

#define ERROR_GOPHER_INCORRECT_LOCATOR_TYPE (INTERNET_ERROR_BASE + 135)

#define ERROR_GOPHER_NOT_GOPHER_PLUS (INTERNET_ERROR_BASE + 136)

#define ERROR_GOPHER_ATTRIBUTE_NOT_FOUND (INTERNET_ERROR_BASE + 137)

#define ERROR_GOPHER_UNKNOWN_LOCATOR (INTERNET_ERROR_BASE + 138)

//

// HTTP API errors

//

#define ERROR_HTTP_HEADER_NOT_FOUND (INTERNET_ERROR_BASE + 150)

#define ERROR_HTTP_DOWNLEVEL_SERVER (INTERNET_ERROR_BASE + 151)

#define ERROR_HTTP_INVALID_SERVER_RESPONSE (INTERNET_ERROR_BASE + 152)

#define ERROR_HTTP_INVALID_HEADER (INTERNET_ERROR_BASE + 153)

#define ERROR_HTTP_INVALID_QUERY_REQUEST (INTERNET_ERROR_BASE + 154)

#define ERROR_HTTP_HEADER_ALREADY_EXISTS (INTERNET_ERROR_BASE + 155)

1. You can test all scripts (which specify GET in their FORM element) from Explorer. This is a quick way to test scripts. Unless you really want it, don't use POST in the FORM METHOD. Browsers like IE will not pick up the query string in the action tag to do a POST of that querystring data.

2. All scripts have 2 phases.

The first phase is distinguished from the second phase by looking at Request.ServerVariables("QUERY_STRING").

		

First phase

3. Request.ServerVariables("QUERY_STRING") is NULL.

4. Remember to emit the proper <HTML>, <HEAD>, <BODY>, <FORM> and <VALIDDATA> tags (and their endtag equivalents)

5. Within the VALIDDATA element, remember to bunch up logical units of work(i.e. expected output) between <P> and </P> tags.

6. Within the FORM element, remember to set the METHOD property and the ACTION property.

7. For the FORM METHOD, you can specify either GET or POST. But remember that if you specify GET, don't expect Request.Body stuff to work. That works only when you do POST's. For POSTs, don’t test the second phase from Internet Explorer. 8. Some scripts may not need any query strings at all (look at co.asp which does 'if then' testing) during either phase, but by our convention, we'll add a ?test to the URL within the FORM element. This is important to distinguish the second phase (which will pass the dummy "?test" value to the script at that time) from the first phase. If you are doing a POST, this does not apply because you must specify data in the query string for the ACTION attribute.

9 For <CLIENTHEADERS> and <SERVERHEADERS> please specify headername headervalue pairs within <P> </P> tags for every header. It is also important to note that the header must conform to the HTTP header rules. Make sure that the header name is separated by a colon and a space from the header value.

Second phase

10. Request.ServerVariables("QUERY_STRING") is NOT NULL.

11. Remember to emit the proper <HTML>, <HEAD>, <BODY>, and <OUTPUT> tags (and their endtag equivalents)

12. Remember to bunch up logical units of output just the same as the first phase.

13. Don't worry about white space or case-sensitivity as you emit things within the output section. (Same is true for VALIDDATA section, but _not_ true for SERVERHEADERS which is whitespace sensitive!) For instance, you can emit <P> somedata moredata </P> in the OUTPUT section whereas earlier in the VALIDDATA section (phase 1), you emitted: <P>SOMEDATA moredata </P>

14. In all cases, the program makes case-insensitive comparisons.

Every token within any of the Denver tags must not exceed 10k.

16. Make sure the output from scripts does not exceed 100k. Denver will be modified to handle bigger output soon.

