


JPI/Poison


Development Guide


Author:		Brendan Dixon (Andrew Sigal)


Version:	� SAVEDATE  \* MERGEFORMAT �10/05/95 2:37 PM� (1/30/96)


�
Contents� TOC \o "1-2" �General Issues	� GOTOBUTTON _Toc299339914  � PAGEREF _Toc299339914 �1��


Files and Formatting	� GOTOBUTTON _Toc299339915  � PAGEREF _Toc299339915 �1��


Using C++	� GOTOBUTTON _Toc299339916  � PAGEREF _Toc299339916 �1��


Threads, 32-bits, and Portability	� GOTOBUTTON _Toc299339917  � PAGEREF _Toc299339917 �2��


Code Reuse and Performance	� GOTOBUTTON _Toc299339918  � PAGEREF _Toc299339918 �4��


Check-list Items	� GOTOBUTTON _Toc299339919  � PAGEREF _Toc299339919 �4��


Coding Style	� GOTOBUTTON _Toc299339920  � PAGEREF _Toc299339920 �5��


Commenting	� GOTOBUTTON _Toc299339921  � PAGEREF _Toc299339921 �5��


Class Declarations	� GOTOBUTTON _Toc299339922  � PAGEREF _Toc299339922 �8��


Functions Declarations and Definitions	� GOTOBUTTON _Toc299339923  � PAGEREF _Toc299339923 �9��


Standard Hungarian Notation	� GOTOBUTTON _Toc299339924  � PAGEREF _Toc299339924 �10��


Statements	� GOTOBUTTON _Toc299339925  � PAGEREF _Toc299339925 �11��


Attaining Zero-Defects	� GOTOBUTTON _Toc299339926  � PAGEREF _Toc299339926 �12��


Design and Code Reviews	� GOTOBUTTON _Toc299339927  � PAGEREF _Toc299339927 �12��


Asserts, Debug code, and Work in Progress	� GOTOBUTTON _Toc299339928  � PAGEREF _Toc299339928 �12��


Error Handling	� GOTOBUTTON _Toc299339929  � PAGEREF _Toc299339929 �12��


Resource Failure Simulation (RFS) Testing	� GOTOBUTTON _Toc299339930  � PAGEREF _Toc299339930 �14��


�� TOC \o "1-2" \* MERGEFORMAT �


1. IMPORTANT NOTE	� GOTOBUTTON _Toc347650267  � PAGEREF _Toc347650267 �1��


2. General Issues	� GOTOBUTTON _Toc347650268  � PAGEREF _Toc347650268 �2��


2.1 Using C++	� GOTOBUTTON _Toc347650269  � PAGEREF _Toc347650269 �2��


2.2 Threads, 32-bits, and Portability	� GOTOBUTTON _Toc347650270  � PAGEREF _Toc347650270 �2��


2.3 Error Handling	� GOTOBUTTON _Toc347650271  � PAGEREF _Toc347650271 �3��


2.4 Performance and Code Re-use	� GOTOBUTTON _Toc347650272  � PAGEREF _Toc347650272 �3��


2.5 Check-list Items	� GOTOBUTTON _Toc347650273  � PAGEREF _Toc347650273 �4��


3. Coding Style	� GOTOBUTTON _Toc347650274  � PAGEREF _Toc347650274 �5��


3.1 Files and Formatting	� GOTOBUTTON _Toc347650275  � PAGEREF _Toc347650275 �5��


3.2 Header Files	� GOTOBUTTON _Toc347650276  � PAGEREF _Toc347650276 �5��


3.3 Code Files	� GOTOBUTTON _Toc347650277  � PAGEREF _Toc347650277 �7��


3.4 Statements	� GOTOBUTTON _Toc347650278  � PAGEREF _Toc347650278 �9��


3.5 Commenting	� GOTOBUTTON _Toc347650279  � PAGEREF _Toc347650279 �10��


3.6 Standard Hungarian	� GOTOBUTTON _Toc347650280  � PAGEREF _Toc347650280 �11��


4. Attaining Zero-Defects	� GOTOBUTTON _Toc347650281  � PAGEREF _Toc347650281 �14��


4.1 Design and Code Reviews	� GOTOBUTTON _Toc347650282  � PAGEREF _Toc347650282 �14��


4.2 Asserts, Debug code, and Work in Progress	� GOTOBUTTON _Toc347650283  � PAGEREF _Toc347650283 �14��


4.3 Resource Failure Simulation (RFS) Testing	� GOTOBUTTON _Toc347650284  � PAGEREF _Toc347650284 �15��


�


�
IMPORTANT NOTE


This document is a hack.  This is the Sterling Dev methodolody document, and will act as a starting point for the JPI/Poison/Stinger developer methodology.  





Note that Sterling is based around MFC and uses C++ exceptions for error handling.  Poison will NOT use either MFC nor C++ exceptions.





General Issues


Using C++


All Sterling code is C++.   This does not mean that classes should be used for everything, but that each source file must contain valid C++ code.   Using C++ brings several benefits:   inline functions, function overloading, stricter type checking, greater freedom with variable declarations, and (when appropriate) object support. Here some general points to remember when writing C++ code:


Prefer and use inline functions over macros�inline functions are better than macros since they provide type checking and are easier to debug (unlike macros, the debugger can step into inline functions).  Like everything in C++, use inline functions judiciously.   Generally, using one inline function within another makes it very difficult for the compiler to correctly optimize the code and, for that reason, should be avoided.


Overload functions rather than define several with similar names�Similarly, overloading functions is preferable to defining multiple functions with similar semantics but which vary in name and arguments.  If the additional overloaded functions are provided as a convenience to the caller (for example, to accept a broader array of input arguments), consider providing just one declaration that provides default arguments instead.   In any case, as much as is possible, forward the bulk of the work to a single function (usually marking with the additional functions as inline routines which that pass control to the main function).


Declare variables at the point needed rather than all at function entry�C++ also allows the declaration of variables anywhere within a function or statement (rather than only at the beginning as in C).   Since the instantiation of some variables (for example, objects) may be very expensive, the C++ community tends to encourage declaring variables near their usage.   Simple variables used throughout a function are probably still best declared at or near the beginning of the routine.   Also, make use of the const keyword whenever appropriate (especially on function arguments); and let the compiler enforce your assumptions.


Use const references to pass objects or large variables by value�Reference types are similar to C pointers.   A reference is an alias for another variable, like a pointer, except that no address operator is required when setting and no de-referencing required when accessing. Use const r  eferences, instead of pointers, when passing large variables if the receiving routine is not allowed to change the variable. Continue to use   pointers whenever the receiving routine intends to change the variable.


Design and use classes carefully�Poor class design leads to buggy, slow code; good class design leads to robust, efficient code. Keep constructors and destructors light. Pass objects by reference or by pointer. Do not create classes unnecessarily, they are not free. (Though well-designed classes can be very inexpensive and have benefits which outweigh creation costs.) Do not return objects on the stack.   (Additional information regarding how to best use classes, in addition to several articles that I have (and are easily found), may be found in Effective C++ by Scott Meyers, published by Addison-Wesley.)


Threads, 32-bits, and Portability


One of Sterling’s goals is to be great Win32 application. Sterling has no Win16 or Mac requirements. Some implications of this are:


Code to Win32 conventions�Sterling is a full 32-bit, multi-platform application. Become familiar with and use the Win32 API, prefer the newer Ex APIs (e.g., RegOpenKeyEx) over the existing Win16 equilivents. Also, follow 32-bit conventions in your code. Do not use the FAR modifier, for example, on pointer declarations (and use just “p” rather than “lp” for hungarian pointers).


Code for multiple platforms�Since Sterling must run on RISC platforms, design data structures, especially those persisted, for all platforms. Pack structures on 8-byte boundaries. Do not assume the size of ints, longs, or other built-in C/C++ types. Do not use sizeof to determine the number of entries in an array (use the Sterling DimensionOf macro instead).


Sterling is also (eventually) shipping a single, world-wide .EXE. As a result, Sterling uses the Unicode character set, even on Win95. As with previous versions of Access, all international resources are kept outside the .EXE in a stand-alone .DLL. Keep the following points in mind:


Use Unicode, characters are no longer 1 byte long�Similarly, Sterling uses Unicode and declares all characters as instances of WCHAR. Do not use sizeof to determine the number of characters in an array: use DimensionOf. Distinguish carefully between passing and storing the number of characters (a “cch”) vs. the number of bytes (a “cb”).


Do not #ifdef out country specific code�Instead, determine the locale and react correctly at run-time. While we might not fully implement this for the ’97 product, we will for the ’98.


Keep international resources in the international .DLL, all others in .EXE�Use the standard Sterling routines for loading and accessing resources and keep them in the appropriate module: the international .DLL for anything that may need translation, the .EXE for things that must not be translated. (Everything kept in the international .DLL is acceptable for translating.)


We will utilize threads only opportunistically, likely having only one long-running task thread. Guard access to global objects shared between threads with one of the CUL objects designed for that purpose. (If a global object is not shared, protection is unnecessary.)


Error Handling


Sterling uses C++ exceptions to propagate errors and HRESULTs to represent errors. See the Sterling technical note (\\sterdev\slm\src\sterling\docs\except.doc) for details on throwing, catching, and using exceptions.


Performance and Code Re-use


sequence (notice the Unicode constant begins with an underscore).  Likewise, multi-byte specific sections (that is, DBCS) should be brackted with an


#ifdef _MBCS�. . .�#endif


sequence (again, it begins with an underscore).  (The details of our Mac (PowerPC) strategy are still being resolved).


As we are all painfully aware, enhancing a product’s performance gets more difficult as development progresses, not easier. It is a another key Sterling goal to be as fast and light as possible. To meet that goal, performance, like other features, must be designed in. Performance is not the job of testing or a performance guru; the job belongs to everyone.


Application performance is affected by two related parameters: length of the code-path and amount of memory consumed by the application. Most developers focus on the first, while most of our evidence indicates the second is our main problem. Throughout development, Sterling will monitor working-set consumption. We will also use profiles to analyze hot-spots (such as loading a form).


The day-to-day guidelines we should all follow are:


As much as possible, write each line of code only once�Sharing code generally shortens code paths and saves memory. It also reduces bugs and improves product stability. Performance sensitive routines can share code via inline functions. In general, if you have to write the same code twice, see if there is some way to reasonably share the implementation.


Prefer clear design over obtuse performance�While performance is critical, so is stability and longevity: changes must not easily break the code or require hidden secrets. Strive first for clarity in your routines and second for fast performance. (We will tweak routines which profiles determine are critical later in the process. Such tweaks will be more difficult if the original code is poorly designed.)


Select carefully what you cache vs. what you create�Don’t assume you have all the memory in the world. Don’t cache every imaginable pointer in your classes and structures. Cache frequently used items or those things are (or impossible) to recreate. Recreate that which is used infrequently or can be easily recreated.


Be performance aware…even in code you don’t own and file performance bugs�Lastly, don’t assume that someone else will notice problems you find. If you find performance problems running Sterling, assume it’s a bug and report it. We can always close the bug if it was unnecessary.


Check-list Items


The following list contains some random items which should affect much of the code you write.


Only check-in changes after passing the acceptance suite


Set all invalid pointers to NULL


Initialize all locally declared variables


Validate all parameters coming from an external source (for example, use IsBadxxxx Win32 APIs)


Ensure all locally allocated resources are freed on normal and error exits


Verify loop initialization and termination states/conditions


Confirm that all object methods leave the object in a internally consistent state (even if they exit with an errorincluding under error conditions)


Coding Style


Files and Formatting


All files are tab (not space) formatted set at every 4 characters. To make it easier to find files, their names should reflect what they implement.


Header Files


Basic Style


A single, project-wide pre-compiled header file will include all system headers (e.g., Windows, OLE), C/C++ runtime headers, and project wide headers.   Each header file should include all other header files upon which it is dependent.  To prevent multiple inclusion, each header needs to conditionally include its contents by checking for and defining a preprocessor constant derived from the file name.   For example:


/*-----------------------------------------------------------------------------�Microsoft Sterling��Microsoft Confidential�Copyright 19924 - 19935 Microsoft Corporation. All Rights Reserved.��File:	<filename>�Area:	<area used (e.g., Shell>�Contents:   <brief description of the routines and/or classes contained>�-----------------------------------------------------------------------------*/��#ifndef   _FOO_H�#define   _FOO_H��// Includes -------------------------------------------------------------------�	. . .��// Types and Constants --------------------------------------------------------�	. . .� �// Globals --------------------------------------------------------------------�	. . .� �// Prototypes -----------------------------------------------------------------�	. . .��/*-----------------------------------------------------------------------------�Name: CFoo��Description:�This is the CFoo class.�-----------------------------------------------------------------------------*/�class CFoo�{�public:�	. . .�protected:�	. . .�private:�	. . .�};��// Inlines --------------------------------------------------------------------�_AFX_INLINE void CFoo::Foo()�	{ Assert(FALSE); return m_j; }�_AFX_INLINE void CFoo::Bar()�	{ Assert(FALSE); return m_h; }��#include <foo.inl>		// Other inline routines��#endif   // _FOO_H


Header files start with other includes, types, constants, globals, and prototypes. Next come class declarations. Small inline routines are collected at the bottom of the file. If an inline routine requires more than one or two lines, it should be placed in a separate .INL file that’s included by the .H.


Class Declarations


Class declarations include three parts: the public interface, the protected interface, and the private interface. Within each part, list data members first, methods second. The public part should not contain any data items (provide accessors instead) and should list the class constructors/destructors, followed by interface methods, and then class methods.


Declare OLE interfaces using the standard OLE macros (e.g., STDMETHOD); in fact, it’s best if you cut-and-paste the definitions from the official header file to make certain the signatures are identical. Do not use the OLE macros for any other methods.


/*-----------------------------------------------------------------------------�Name: CMyObject��Description:�This class implements a COM object��Thread-Safety: None�-----------------------------------------------------------------------------*/�class CMyObject : public IUnknown,�			public IDoThisInterface�{�public:�	CMyObject();�	CMyObject(int j);�	~CMyObject();��	// IUnknown methods�	STDMETHOD(QueryInterface)(THIS_ REFIID riid, void** ppvObject);�	STDMETHOD_(int, AddRef)(THIS);�	STDMETHOD_(int, Release)(THIS);��	// IDoThisInterface�	STDMETHOD(DoingThis)(THIS_ LPCOLESTR pszThat);��	void MyClassMethod();�	void AnotherClassMethod(int j);��protected:�	int	m_j;�	int	m_h;��	void MyInternalClassMethod();��private:�};


Code Files


Code files, .INL or .CPP, are similar in layout to .H files. Class implementations should be grouped together, rather than interspersed (for example, implement all CFoo methods followed by the CBar methods). Each grouping of class methods is marked off by a comment block. Each function has a comment block as well; only one comment block is necessary for a group of overloaded functions.


/*-----------------------------------------------------------------------------�Microsoft Sterling��Microsoft Confidential�Copyright 19924 - 19935 Microsoft Corporation. All Rights Reserved.��File:	<filename>�Area:	<area used (e.g., Shell>�Contents:   <brief description of the routines and/or classes contained>�-----------------------------------------------------------------------------*/��// Includes -------------------------------------------------------------------�	. . .��// Types and Constants --------------------------------------------------------�	. . .� �// Globals --------------------------------------------------------------------�	. . .� �// Prototypes -----------------------------------------------------------------�	. . .��///////////////////////////////////////////////////////////////////////////////�//�//	CFoo�//�///////////////////////////////////////////////////////////////////////////////��/*-----------------------------------------------------------------------------�Name: CFoo::CFoo��Description:�Construct a CFoo object��Thread-Safety: <Level of thread safety>�-----------------------------------------------------------------------------*/�PUBLIC CFoo::CFoo()�	{�	//$ CONSIDER: Is this routine really necessary?�	. . .�	}��PUBLIC CFoo::CFoo�(�int	j�)�	{�	. . .�	}��///////////////////////////////////////////////////////////////////////////////�//�//	CBar�//�///////////////////////////////////////////////////////////////////////////////��/*-----------------------------------------------------------------------------�Name: CBar::CBar��Description:�Construct a CBar object��Thread-Safety: <Level of thread safety>�-----------------------------------------------------------------------------*/ �PUBLIC CFoo::CFoo()�	{�	//$ UNDONE: This routine isn’t finished�	. . .�	}


Function Definitions


Function definitions start with a function header (see above). The function return type and name come on one line and, if it takes no arguments, the parentheses are included as well. If it takes arguments, each one is listed on a line by itself (with an explanatory comment); the parentheses precede and follow this group, one on a line by itself. For class constructors which use initializer lists, include the initializers just after the constructor arguments, one per line.


Unreferenced arguments are indicated in C++ by including the argument type without an argument name. Include the name in the adjoining comment so it may be easily added later and so others know what the missing argument is.


Tag functions with their intended scope: PUBLIC or PRIVATE. APIs exposed by a .DLL should use CUL_EXPORT. As already mentioned, OLE interface methods use the standard OLE macros.


/*-----------------------------------------------------------------------------�Name: CFoo::CFoo��Description:�Construct a CFoo object��Thread-Safety: <Level of thread safety>�-----------------------------------------------------------------------------*/�PUBLIC CFoo::CFoo�(�int	cUser,		// Number of users�int	cOtherUsers,	// Number of other users�int	,		// cUnknownUsers - Number of unknown users�) :�m_cUser(cUser)�	{�	...�	return;�	}


Statements


Sterling will follow the same brace/indentation pattern as used in Access, Excel, and most other WPG products.   While the following is not an absolute requirement, each programmer should at least follow the style of the developer who created the file (that is, don’t change styles within a file).   Below is a small sample that demonstrates the recommended indentation and brace placement:


PUBLIC void FunctionName�(�int	iArg,	// Argument description�)�    {��    CFoo::Bar(x, y, z);�    Foo(x, y, z);��    iArg = (expr�                ? stmt1�                : stmt2);�    �    if (expr)�        stmt;��    if (expr)�        {�        stmt1;�        stmt2;�        }�    else�        {�        stmt3;�        stmt4;�        }��    switch (expr)�        {�    default:�        stmt;�        break;��    case 1:�        stmt;�        break;�   �    case 2:�        stmt;�        break;�        }��    return expr; -or- return (expr);�    }


Commenting


Our general guidelines for commenting are similar to that of other groups. As a rule, it’s really difficult to put in too many comments.


Use comments to describe intent and behavior rather than the obvious


Prefer block comments to end-of-line comments


Comment the purpose/behavior of each function


Provide enough comments to someone unfamiliar with your code can follow what it does


Mark undone, international, and consider blocks with the appropriate //$ comment


The following table lists the standard macros Sterling defines for use in #ifdef statements.


Macro�
Description�
�
_WIN32�
Win32 API available (always TRUE)�
�
_WINDOWS, _WIN�
Windows API available (always TRUE)�
�
_X86, _ALPHA, _MIPS, _PPC�
Platform identifier�
�
_DEBUG, _BETA, _DBSHIP, _SHIP, _CODECOV�
Type of build�
�
_UNICODE�
Using Unicode (always TRUE)�
�
_UNDONE�
This is never actually defined but it used to bracket code which is incomplete or should possibly be removed (use this instead of LATER or NEVER)�
�



Special comments should mark work in progress, international issues, items marked for future consideration, and compiler bugs. Each comment should begin with //$ followed by the appropriate modifier (see table below). (Marking all special comments with //$ will allows us to scan the entire code base easily without having to look for each keyword individually.)Work in progress or temporarily left out should be flagged with a comment whose first word is UNDONE.  Optional work should be preceeded by a similar type of comment which starts with CONSIDER instead.  The work remaining or suggestion should be described in either comment.   For example:


//$ UNDONE 4.5:   Null out the back pointer after removing the node�DeleteNode(pList, iNode);


Modifier�
Description�
�
UNDONE <MM>�
Comment describes incomplete code and the milestone number during which the UNDONE was entered (e.g., //$ UNDONE 4.5)�
�
COMPILER�
Comment describes a compiler issue or bug (try to include the expected date or version in which is to include the fix)�
�
CONSIDER�
Comment describes something that is legal to ship, but might need further examination�
�
INTL�
Comment flags an un-handled international issue�
�



Standard Hungarian


Sterling uses a modified hungarian only for variables, parameters, and arguments. It is not used in function names. The following tables list the standard hungarian prefixes, base types, and qualifiers Sterling employs.� INCLUDETEXT "D:\\sd\\docs\\stdhung.doc" �


Prefix�
Comments�
�
b�
Offset/Size (in bytes) (e.g., cbName)�
�
c�
Count (of items)�
�
d�
Difference (e.g., dx, dy)�
�
g_xxxx�
Global variable�
�
grf�
Group of flags (used for bit flags which may be OR’d together)�
�
h�
Handle (e.g., hwnd)�
�
I�
Index (into an array)�
�
m_xxxx�
Member variable�
�
mp�
Map (an associative array)�
�
p�
Pointer (e.g., pch, punk,)�
�
rg�
Array�
�



Base Type�
Comments�
�
bstr�
OLE BSTR�
�
ch�
WCHAR (16-bit wide character), our default character type�
�
Cmdt�
CCmdTarget derivative�
�
Cmdui�
CCmdUI derivative�
�
crp�
Smart-COM reference (CCUCRef)�
�
cstr�
CString derivative�
�
cua�
CCUArray object�
�
cue�
CCUError object�
�
cuex�
CCUException object�
�
cul�
CCUList object�
�
cump�
CCUMap object�
�
Dlg�
CDialog derivative�
�
Doc�
CDocument derivative�
�
dw�
DWORD (32-bit unsigned value, may be used for a flag word)�
�
f�
BOOL flag (entire variable is a flag, as opposed to a group)�
�
fn�
Function�
�
Frame�
CFrameWnd derivative�
�
hbmp�
Bitmap handle�
�
hbr�
Brush handle�
�
hcur�
Cursor handle�
�
hdc�
DC handle�
�
hfont�
Font handle�
�
hicon�
Icon handle�
�
hpen�
Pen handle�
�
hr�
HRESULT�
�
hrgn�
Region handle�
�
hwnd�
Window handle�
�
id�
Identifier (e.g., idMsg)�
�
n�
Number (e.g., nStyle)�
�
ostr�
OString derivative�
�
pos�
POSition object (used with CCULists, Enumerators, etc.)�
�
PStg�
IPersistStorage�
�
PStm�
IPersistStream�
�
pt�
POINT�
�
rc�
RECT�
�
sbstr�
Smart-BSTR (CCUSBstr)�
�
smp�
Smart-IMalloc Pointer (managed with IMalloc) (CCUSMalloc)�
�
sp�
Smart-Pointer (managed with new and delete) (CCUSPtr)�
�
srg, ssz�
Smart-Array (CCUSArray)�
�
srp�
Smart-Reference Pointer (CCUSRef)�
�
sstr�
Smart-OLE String (CCUSOleStrPtr)�
�
Stg�
IStorage�
�
Stm�
IStream�
�
svar�
Smart-Variant�
�
sz�
WCHAR* (16-bit wide characters)�
�
sza�
char* (8-bit characters)�
�
szw�
WCHAR* (16-bit characters, used with sza)�
�
Tmpl�
CDocTemplate derivative�
�
Unk�
IUnknown�
�
UnkOuter�
Controlling IUnknown�
�
UnkPriv�
Private IUnknown�
�
v�
void (almost always used with the “p” prefix, e.g., pvBuf)�
�
View�
CView derivative�
�
w�
WORD (16-bit unsigned value)�
�
Wnd�
CWnd derivative (use only when View or Frame do not apply)�
�
Wproc�
WNDPROC�
�



Qualifier�
Comments�
�
Cur�
Current�
�
Dest�
Destination�
�
First�
First item in an array, list, etc.�
�
Last�
Last item in an array, list, etc.�
�
Max�
Maximum number of items (for all i, i<Max)�
�
Min�
Minimum number of items (for all i, i>Min)�
�
Next�
Next item in an array, list, etc.�
�
Nil�
Sentinel for empty/invalid value�
�
Null�
Empty pointer (all zeros)�
�
Prev�
Previous item in an array, list, etc.�
�
Src�
Source�
�



�


Attaining Zero-Defects


Design and Code Reviews


While adhering to the spirit, and at times the methods, of Microsoft’s zero-defect methodology, we will selectively implement those zero-defect guidelines which have proven successful in other groups. All code developed within the Sterling team will take a three-pronged attack to ensure robustness and stability:


Write self-debugging code�Through liberal usage of Asserts and _DEBUG only code (for example, validating internal structures), every line of code we write should strive to root out its own bugs. This is not a replacement for testing or reviews (see below), but it is very effective for finding bugs and drastically reduces the time required to locate the bug when they do occur.


All code must pass a code-review before it is checked into the project�Every line of code checked into Sterling is code-reviewed by an assigned team member. The code-review is part design-review and part code-review. While you should always seek design advice as necessary, the reviewer may make suggestions to improve the implementation or discuss your design to ensure it’s solid. They also check for compliance with the Sterling coding standards and look for possible bugs.


Fix bugs sooner rather than later�Sterling has frequent milestone goals and each milestone has a bug goals (both team and individual). At the very least, all priority 1 and 2 bugs must be fixed before exiting the milestone. Developers must also keep their individual bug counts below the targets established.


All major work should be design reviewed.  Code reviews should be performed for complex implementations and bug fixes.  Towards significant target dates, even simple bug fixes should be code reviewed to prevent regressions.


Asserts, Debug code, and Work in Progress


Each function should use the Assert macro to verify its assumptions and validate internal state.   Liberal use of Assert and Verify at other times is equally beneficial.  When entire block or set of statements are appropriate only for debug, they should be bracketed with an


#ifdef _DEBUG�. . .�#endif


sequence (notice the debug constant begins with an underscore).   There is no such thing as too much debug code (well, almost no such thing).


Generally, always assert the validity of input arguments. If the routine is never directly called by code outside the .EXE or .DLL which contains it, an assertion alone is sufficient. However, for routines which may be called by code outside the .EXE or .DLL which contains it (for example, public interfaces within a .DLL), return an error is also necessary.


if (!pvArg1)	// Ensure input argument is not NULL�	{�	Assert(fFALSE);		// Always assert�	return E_INVALIDARG;	// Return�	}


As with most products, our Assert-family of macros generate nothing in _SHIP builds. Make certain what you Assert does not affect the code path. If you want to check a condition and keep the code in a _SHIP build, use the Verify macro instead of Assert.


Steve Maguire’s book on MS-Press, Writing Solid Code, contains many excellent suggestions for writing self-debugging code.


Resource Failure Simulation (RFS) Testing


To be completed…





�PAGE  �








�PAGE  �10�














�PAGE  �15�


Microsoft Confidential











