Denali Template Compilation and Execution

This doc covers the architecture for compilation and execution in Denali. See AndrewS’s “Denali Architecture Overview” for the 50,000-foot view of all of Denali.

Summary

The Denali compiler processes a single template (.asp file) into a compiled template (.aso file). The Denali template executor (TE) processes a single compiled template into HTML which can be sent to the browser.

���

�

�

�����

These two processes will happen sequentially at runtime if no compiled version of the template exists. More typically, a compiled version of the template exists, so only the second process happens at runtime.

Template Executor

The template executor will:

Instantiate server controls (OA objects).

Instantiate scripts by calling Script Manager.

Run a template, i.e. produce the HTML for a browser page by doing one or more of the following:

- write out static HTML

- run script procedures

- invoke server controls

ISSUE: Should template executor handle control flow, e.g. if blocks and loops, or should we leave this to the script language? Handling this outside the script language will add some complexity to template executor and a lot of complexity to compiler. I think we should leave control flow to the script language.

Compiled Template Format

The compiled template format will be optimized to make the TE run as fast as possible. Its persistent form, the .aso file, will be as close as possible to the in-memory version. If necessary, we will take some performance hit at compile time in order to have faster template execution.

The compiled template may contain three sections, the first two of which may be empty: object information, script text and page template. Object information will contain information required to instantiate objects declared in the template. Script text will contain the text which gets passed to the script engine. Page template will contain the text which gets processed at runtime by the executor to generate the HTML page that is sent to the browser.

Object Information

The object information section contains the information required to instantiate objects declared in the template, probably some or all of the following: CLSID, ProgID, threading behavior, possibly type info.

Script Text

The script text section contains script text exactly as it will be passed to the script engine for instantiation. Note that script execution will be controlled from the page template section.

Page Template

The page template will be opcode-based, with elements laid out like this:

OpCode�
Argument Length�
Argument�
�
�
�
�
�

The opcodes will probably be single-byte (TBD), since we should need far fewer than 256 of them. The argument length is a dword containing the count of bytes in the argument. The argument is of arbitrary length.

OpCodes

The set of valid opcodes in a page template is:

OpCode�
Description�
TE action�
�
HTML�
‘Plain-text’ HTML�
Write directly to browser output buffer�
�
EXEC�
Execute script procedure�
Call script engine to invoke procedure�
�
RQVAR�
Request variable�
Write value to browser output buffer�
�
RQPARM�
Request parameter�
Write value to browser output buffer�
�

Here are examples of opcodes. Note that the argument length for HTML or a script execution may count cr-lf characters.

OpCode�
Argument Length�
Argument�
�
HTML�
15�
�
�
EXEC�
13�
PrintRow(i)�
�
RQVAR�
10�
USER_AGENT�
�
Persistent Form of Compiled Template

The compiled template will be stored as an .aso file, which will probably be laid out something like this:

offset of Script Text�
offset of Page Template�
�
Object Info�
�
Script Text�
�
Page Template�
�

The first two items in the file are dwords that give the offsets of the script text and page template sections in the file. The other items are the binary representations of the compiled template sections, so they can be loaded directly into memory
