Encrypted Active Server Pages

Contact:

dmitryr (Dmitry Robsman)

File:

easp.doc
Revision:

2.301

Last Change:

01/29/97 10:30 AM
Summary

ASPs are both HTML pages and application modules. Distributing ASPs as they are is like distributing software by giving out its source code. From the IIS user’s standpoint, encrypted pages are analogous to compiled software – they work just like regular ASPs, but the IIS users are prevented from viewing and modifying of the pages source code. The two basic scenarios include:

1) Protecting the intellectual property of someone's ideas in the script code of an ASP. Encrypted ASPs will eliminate the necessity of giving out the source code when distributing ASPs.

2) Preventing people from modifying an ASP. It is highly desirable to prevent IIS users from modifying some sensitive ASPs. This includes ASPs shipped with IIS that implement admin functionality. Making these pages encrypted prevents the IIS users from ever trying to mangle them.

Details

ASPs can be encrypted into EASPs – Encrypted Active Server Pages. Encrypted pages still have the .asp extension. They can be distinguished from regular unencrypted ASPs by magic header. A set of tools is provided to convert ASPs to EASPs and back.

1) When Denali reads a .asp file it checks for the magic header to see if it really is an ESP, and decrypts it in memory if it is.

2) The same applies to included .asp files.

3) Global.asa can also be encrypted.

4) When an encrypted ASP file is corrupt, the HTTP 404 error is issued.

While changing Denali to support EASPs might cause some performance hit, once a page is read, it is kept in the internal cache.

Encrypted File Format

· An encrypted file contains the following information:

· ‘Magic’ prefix (“EASP”) to distinguish encrypted ASPs from regular files.

· Encryption version number.

· A human readable string (which can be localized) so that the users would not confuse an encrypted ASP with a trashed file when trying to view it.

· Check sum information.

· The encrypted bytes of the original ASP. Currently, a fast lightweight proprietary encryption is used.

Availability of Decryption

The EASP users will require the decryption tool. Sooner or later somebody will lose unencrypted ASPs and would want to restore them from EASPs. On the other hand, we cannot let a decryption tool out that is able to decrypt any EASP created by any user. The solution is to use the password protection. In the tools given out, the password is required to encrypt an ASP, and the EASP can only be decrypted back with the password given during encryption (if an invalid password was given, the decryption fails). Denali ignores the password and decrypts any page regardless of it.

Encryption/Decryption Tools

1) A command line application for in-place conversion:

· easp [–e | -d | -t] [-r] [-v] –p password file1 …

Options: -e encrypt, -d decrypt, -t test; -r recursive; -v verbose

Options can be combined like in:

easp –evp password file1 …

· This application accepts wildcards in filenames and multiple files.

· Test mode intelligently reports on unencrypted files and invalid passwords.

· Decrypt would not decrypt already decrypted files.

2) A server component:

<%

 Set EASP = Server.CreateObject("IIS.ASPEncryption")

Succeeded = EASP.EncryptInplace("pwd", "page.asp")

Succeeded = EASP.EncryptCopy("pwd", "from.asp", "to.asp")

IsValidEncryptedPage = EASP.TestEncrypted("pwd", "page.asp")

IsEncryptedPage = EASP.IsEncrypted("page.asp")
IsValidPassword = EASP.VerifyPassword("pwd", "page.asp")
Succeeded = EASP.DecryptInplace("pwd", "page.asp")

Succeeded = EASP.DecryptCopy("pwd", "from.asp", "to.asp")

%>

· The first parameter is the password
· Works with both physical and virtual file names. (Only when used through ASP, when calling from outside of the ASP environment, a physical path must be used).

· All methods return True when on success and False on failure

 [[Relatively] Near] Future Issues

· Debugger, when available will not allow to debug encrypted pages

· Encrypting compiled ASPs

· Use a different (CryptoAPI) encryption

