�

Microsoft(

Internet�Information Server(

Web Server for Windows NT Server

�

Server Side Include Design Documentation

Bilal Alam

� SAVEDATE \@ "MMMM d, yyyy" * MERGEFORMAT �May 16, 1996�

Version 0.1

�
Legal Notice

The information contained in this document is strictly MICROSOFT CONFIDENTIAL.

The information contained in this document represents the current view of Microsoft Corporation on the issues discussed as of the date of publication. Because Microsoft must respond to changing market conditions, it should not be interpreted to be a commitment on the part of Microsoft, and Microsoft cannot guarantee the accuracy of any information presented after the date of publication.

This document is for information purposes only. MICROSOFT MAKES NO WARRANTIES, EXPRESS OR IMPLIED, IN THIS DOCUMENT.

Microsoft, Win32, Windows NT, and Windows are registered trademarks and BackOffice, and the BackOffice logo are trademarks of Microsoft Corporation.

0396 Part No. 098-xxxxx

Printed in the United States of America.

Last saved by � LASTSAVEDBY * MERGEFORMAT �Lester Waters� at � SAVEDATE \@ "MM/dd/yy h:mm AM/PM" * MERGEFORMAT �05/09/96 2:13 PM�

Revision History

DATE�
REVISION�
AUTHOR(s)�
REMARKS�
�
16-May-96�
0.1�
BilalA�
Document Created�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
Table of Contents�
� TOC \o "1-3" �1. Overview	� GOTOBUTTON _Toc356885218 � PAGEREF _Toc356885218 �1��

2. SSI Based Mainly on HTTPd	� GOTOBUTTON _Toc356885219 � PAGEREF _Toc356885219 �2��

2.1 Common Directive Format	� GOTOBUTTON _Toc356885220 � PAGEREF _Toc356885220 �2��

2.2 #INCLUDE <VIRTUAL / FILE> = “filename”	� GOTOBUTTON _Toc356885221 � PAGEREF _Toc356885221 �2��

2.3 #FSIZE <VIRTUAL / FILE> = “filename”	� GOTOBUTTON _Toc356885222 � PAGEREF _Toc356885222 �2��

2.4 #FLASTMOD <VIRTUAL / FILE> = “filename”	� GOTOBUTTON _Toc356885223 � PAGEREF _Toc356885223 �2��

2.5 #ECHO <VAR> = “variable”	� GOTOBUTTON _Toc356885224 � PAGEREF _Toc356885224 �2��

2.6 #EXEC <CMD / CGI / ISA> = ”command”	� GOTOBUTTON _Toc356885225 � PAGEREF _Toc356885225 �3��

2.7 #CONFIG <OPTION> = “string”	� GOTOBUTTON _Toc356885226 � PAGEREF _Toc356885226 �4��

3. Major SSI+ Extensions	� GOTOBUTTON _Toc356885227 � PAGEREF _Toc356885227 �6��

3.1 &&<SUBTOKEN>&&	� GOTOBUTTON _Toc356885228 � PAGEREF _Toc356885228 �6��

3.2 #BREAK	� GOTOBUTTON _Toc356885229 � PAGEREF _Toc356885229 �6��

3.3 #GOTO = “label”	� GOTOBUTTON _Toc356885230 � PAGEREF _Toc356885230 �6��

3.4 #LABEL= “label name”	� GOTOBUTTON _Toc356885231 � PAGEREF _Toc356885231 �6��

3.5 #IF “operand1” <OPERATOR> “operand2” <OPERATION>	� GOTOBUTTON _Toc356885232 � PAGEREF _Toc356885232 �6��

4. Features From SSI+ NOT BEING IMPLEMENTED	� GOTOBUTTON _Toc356885233 � PAGEREF _Toc356885233 �8��

5. Major Changes to Current Implementation of SSI	� GOTOBUTTON _Toc356885234 � PAGEREF _Toc356885234 �9��

6. Error Handling and Performance Issues	� GOTOBUTTON _Toc356885235 � PAGEREF _Toc356885235 �10��

6.1 Error Handling	� GOTOBUTTON _Toc356885236 � PAGEREF _Toc356885236 �10��

6.2 Performance Issues	� GOTOBUTTON _Toc356885237 � PAGEREF _Toc356885237 �10��

6.2.1 Caching the “output” of the parser	� GOTOBUTTON _Toc356885238 � PAGEREF _Toc356885238 �10��

6.2.2 Implementation of a Suitable Cache	� GOTOBUTTON _Toc356885239 � PAGEREF _Toc356885239 �10��

7. Improvements to HTTPd/SSI+ Specification	� GOTOBUTTON _Toc356885240 � PAGEREF _Toc356885240 �11��

7.1 Extension of the VIRTUAL path name	� GOTOBUTTON _Toc356885241 � PAGEREF _Toc356885241 �11��

7.2 Allow for Parameter Passing to CGI Scripts	� GOTOBUTTON _Toc356885242 � PAGEREF _Toc356885242 �11��

8. Recommendations	� GOTOBUTTON _Toc356885243 � PAGEREF _Toc356885243 �12��

8.1 Configuration Extensions	� GOTOBUTTON _Toc356885244 � PAGEREF _Toc356885244 �12��

8.2 #GOTO dangers	� GOTOBUTTON _Toc356885245 � PAGEREF _Toc356885245 �12��

8.3 Conditional Support	� GOTOBUTTON _Toc356885246 � PAGEREF _Toc356885246 �12��

8.4 #EXEC Extensions	� GOTOBUTTON _Toc356885247 � PAGEREF _Toc356885247 �12��

8.5 Conclusion	� GOTOBUTTON _Toc356885248 � PAGEREF _Toc356885248 �12��

��

Overview

Server Side Includes (SSI) allow for the preprocessing of HTML documents before they are sent to the client (i.e. browser). To support SSI, the web server must parse the HTML document and handle any preprocessing directives before sending the final HTML to the client.

There is no strict specification of the processing directives (i.e. dialect of SSI) that a server must support. SSI is currently supported by Internet Information Server (IIS) 2.0, but the support is limited when compared to that of NCSA’s HTTPd, and lags well behind the new SSI+ specification of the feature which is implemented in WebQuest by Questar Microsystems.

The intention of this document is to outline a complete flavor of SSI support to be considered for a future version of IIS. This specification is based on the version of SSI supported by HTTPd (http:/ /hoohoo.ncsa.uiuc.edu/docs/tutorials/includes.html, the first link below) and a new specification called SSI+ (http://msw/getstart/html.hlp, the second link below). The SSI+ standard simply extends the HTTPd version with new directives, and augmented configuration/echoing functionality. The design specification is split into two parts, one discussing the general HTTPd based SSI (along with any minor extensions by SSI+), and the second discussing major additions made by the SSI+ standard.

� EMBED Package ���� EMBED Package ���

SSI Based Mainly on HTTPd

Common Directive Format

SSI is supported in any web server by the addition of special preprocessing directives embedded in HTML documents. These directives are parsed by the server and processed. For our purposes, all directives are contained in HTML comment tokens, and have the following general form. Note that <%…%> can also be used for delimiting the directives.

<[!-- OR %]#<PREPROCESSING_DIRECTIVE>[-- OR %]>

The following is a synopsis of the SSI directives based on HTTPd implementation.

Note: (represents an extension not supported by HTTPd.

	All keywords are case-insensitive.

#INCLUDE <VIRTUAL / FILE> = “filename”

Includes the contents of the given file into the HTML stream. This directive allows #INCLUDE files to #INCLUDE other files.

If the VIRTUAL tag is specified, the filename represents a path which is relative to the base directory of the server.

If the FILE tag is specified, the filename is relative to the directory of the current document, and cannot start with “..\” or “\”.

Examples: 	#include virtual=”\winnt\file.html”

#include file=”subdir\file.html”

#FSIZE <VIRTUAL / FILE> = “filename”

Includes the size of the given file into the HTML stream. The specification of the filename follows the same conventions as #INCLUDE directive. The format of the size is given by the last invocation (or default) of the #CONFIG SIZEFMT directive.

Example:	#fsize virtual=”\winnt\file.html”

#FLASTMOD <VIRTUAL / FILE> = “filename”

Includes the date in which the given file was last modified in to the HTML stream. The specification of the filename follows the same conventions as #INCLUDE directive. The format of the date is given by the last invocation (or default) of the #CONFIG TIMEFMT directive.

Example:	#flastmod file=”subdir\file.html”

#ECHO <VAR> = “variable”

Echoes the value of a CGI type variable (, a posted variable (, or one of the following predefined variables:

DOCUMENT_NAME - The current filename.

DOCUMENT_URI - The virtual path to this document.

QUERY_STRING_UNESCAPED - The unescaped version of the search string.

DATE_LOCAL - The current date in the local time zone.

DATE_GMT - Same as date local but in GMT.

LAST_MODIFIED - The last modification date of the current document.

REMOTE_ADDR (- This variable is the IP address of the remote client browser.

QUERY_STRING (- This variable is the raw query string sent from the remote browser.

SERVER_SOFTWARE (- This variable is the name of the HTTP server software.

SERVER_NAME (- This variable is the local computer name of the HTTP server.

GATEWAY_INTERFACE (- This variable is the name/version of the Common Gateway Interface served on this HTTP server.

SERVER_PROTOCOL (- This variable is the name/version of HTTP served on this HTTP server.

SERVER_PORT (- This variable is the IP port the HTTP server is answering on.

REQUEST_METHOD (- This variable is the method by which the current document was requested.

PATH_INFO (- This variable is the extra path info that is sent. This information is regarded as virtual (the path is relative to the base directory of the HTTP server).

PATH_TRANSLATED (- This variable is the 'PATH_INFO' variable translated from virtual to local (physical) disk location.

SCRIPT_NAME (- This variable is the virtual path of the script being executed.

REMOTE_HOST (- This variable is the host name of the remote client.

AUTH_TYPE (- This variable is the authentication method used to validate the remote client.

REMOTE_USER (- This variable is the user name used to validate authentication from the remote client.

REMOTE_IDENT (- This variable is the remote user name if supporting RFC931 identification.

CONTENT_TYPE (- This variable is the content type of the attached information in the case of a POST or PUT.

CONTENT_LENGTH (- This variable is the length of the attached information in the case of a POST or PUT.

HTTP_ACCEPT (- This variable is a comma separated list of mime types that are accepted by the remote browser.

HTTP_USER_AGENT (- This variable is the name of the remote client browser software.

REFERER (- This variable is the URL of the HTML document which referred the remote client to this document.

FROM (- This variable is the name (most likely the-mail address) of the remote client user.

FORWARDED (- This variable is the name of the proxy server through which this document is being processed.

ACCEPT_LANGUAGE (- This variable lists the human languages that are acceptable to the remote client.

HTTP_COOKIE (- This variable contains the cookie sent by the remote client.

Note that dates are printed in the format indicated by the currently configured #CONFIG TIMEFMT.

Examples:	#echo var=”DOCUMENT_NAME”

		

#EXEC <CMD / CGI / ISA> = ”command”

Executes the given command and sends the standout output of the command to the HTML stream.

If the CMD tag is specified, the command represents a regular NT program (.EXE, .COM, .BAT, .CMD, etc.) on the server machine that will be executed. The command string can also contain any command line arguments for the program. The path of the program can be specified, though it is UNCLEAR (in both the HTTPd and SSI+ specification) whether the path is relative to the base or the current directory. However, if no path is specified before the program name, the system path is checked.

If the CGI tag is specified, the command represents a virtual path to a CGI script to execute (i.e. relative to base directory of server). The standard does not discuss how to pass parameters to the CGI script.

If ISA is specified, the command represents an ISAPI DLL to call. Following the name of the DLL, the user may specify parameters for the DLL using a question mark (?) followed by the parameters.

In all cases, no error checking is performed on the output of the command and the output is simply sent to the client as is.

Examples:	#exec cmd=”ls -al”

		#exec cgi=”winnt\foo.cgi”

		#exec isa=”foo.dll?param1+param2”

#CONFIG <OPTION> = “string”

Sets certain options with regards to format of output for various directives and situations. The following options are available:

ERRMSG controls the message that is sent back to the client upon an error occurring in the parsing of the SSI.

TIMEFMT specifies the format in which dates should sent to the client and takes the format specification the same way as the ANSI strftime() function in C. With the strftime() functionality, individual portions of the date (i.e. the day of the week, month of the year) can be extracted.

The format string follows the conventions of the ANSI printf() statement, with the following control sequences representing components of a date.

(Taken from the VC 4.1 Online Book, topic strftime())

%a 		Abbreviated weekday name

%A 	Full weekday name

%b 	Abbreviated month name

%B		Full month name

%c		Date and time representation appropriate for locale

%d 	Day of month as decimal number (01 – 31)

%H 	Hour in 24-hour format (00 – 23)

%I 		Hour in 12-hour format (01 – 12)

%j 		Day of year as decimal number (001 – 366)

%m 	Month as decimal number (01 – 12)

%M 	Minute as decimal number (00 – 59)

%p 	Current locale’s A.M./P.M. indicator for 12-hour clock

%S 	Second as decimal number (00 – 59)

%U 	Week of year as decimal, with Sunday as first day of week (00 – 51)

%w 	Weekday as decimal number (0 – 6; Sunday is 0)

%W 	Week of year as decimal, with Monday as first day of week (00 – 51)

%x 		Date representation for current locale

%X 	Time representation for current locale

%y 		Year without century, as decimal number (00 – 99)

%Y 	Year with century, as decimal number

%z, %Z 	Time-zone name or abbreviation; no characters if time zone is unknown

%% 	Percent sign

SIZEFMT can be BYTES, where any file sizes are displayed as a count of bytes (1,234,567), or ABBREV, where the sizes are displayed as a count of kilobytes or megabytes.

CMDECHO (can be set to ON or OFF. If ON, any command executed by #EXEC will have its output piped to the client (default). If OFF, the command will be executed without any output being sent to client.

CMDPREFIX (specifies a string which will prefix any line of output being sent to the client during an #EXEC call. This string can contain HTML format tags. This option is only useful (active) when the CMDECHO option is set to ON.

CMDPOSTFIX (is similar to CMDPREFIX but specifies a string to be sent to client following each line of output from an #EXEC call.

Examples:	#config errmsg=”Error!!!”

		#config timefmt=”%A, %B %d”		// format like Friday, September 25

		#config sizefmt=”BYTES”		// format like 123,456 Bytes

		#config cmdecho=”ON” (

		#config cmdprefix=”Prefix to line of output” (

Major SSI+ Extensions

&&<SUBTOKEN>&&

Within any of the string tokens used in any of the SSI directives, a subtoken may be inserted which will be evaluated before the directive is evaluated. The subtoken must be enclosed in &&’s (&& is a dedicated sequence for this purpose; it is UNCLEAR how to actually include && in actual text). This token can be any variable that the #ECHO directive can take.

Example:	&&DOCUMENT_NAME&&

#BREAK

This directive causes the server to stop the HTML transmission to the client.

Example: 	#break

#GOTO = “label”

This directive causes a jump to the label specified. The label must appear after the specific #GOTO statement (i.e. no jumping back).

Example:	#goto=”jump_to_here”		// jump to the label below

#LABEL= “label name”

This directive specifies a label for use by a previously defined #GOTO. The label name is a string without spaces and limited to a length of 51 characters. The label does not produce any output for the client. It is simply a place holder.

Example:	#label=”jump_to_here”		

#IF “operand1” <OPERATOR> “operand2” <OPERATION>

This directive allows for conditional preprocessing. The operator is applied to the two operands and if the result is TRUE, then the operation is performed.

The operands can be strings, numbers (integer and floating). They can embed subtokens to get the value of a variable. If the both operands represent numbers, than a value comparison is performed. Otherwise, an alphabetic (i.e. strcmp() like) comparison is performed.

The operator can be any of the following:

'==' - The equalto operator evaluates to TRUE if the operands are equal to each other.

'!=' - The notequalto operator evaluates to TRUE if the operands are not equal to each other.

'<' - The lessthan operator evaluates to TRUE if operand1 is less than operand2.

'>' - The greaterthan operator evaluates to TRUE if operand1 is greater than operand2.

'!<' - The notlessthan operator evaluates to TRUE if operand1 is not less than operand2.

'!>' - The notgreaterthan operator evaluates to TRUE if operand1 is not greater than operand2.

'hasstring' - The hasstring operator returns TRUE is the text string in operand2 is found in the operand1 string.

The operation may be any of the following:

GOTO <label> causes a jump to the label.

PRINT <text> causes text to be printed to the client.

ERROR prints the message specified by #CONFIG ERRMSG to the client.

BREAK causes the termination of the HTML transmission to client.

ERRORBREAK causes ERROR and then BREAK

PRINTBREAK “text” causes PRINT and then BREAK.

Examples:	#if “variable1” == “variable2” goto label_name

		#if “variable1” != “variable2” break

		#if “variable1” > “variable2” printbreak “Error occurred!”

Features From SSI+ NOT BEING IMPLEMENTED

Several features in described in the SSI+ specification will not be implemented (as the present) in IIS and they include:

The #ODBC directive provides a facility to query and update an ODBC database through the commands DEBUG, CONNECT, STATEMENT, and FORMAT.

The #EMAIL directive allows e-mail to be sent whenever an HTML document is accessed. It provides RFC 733 (?) variables that set the specifics of the mail message (i.e. address, subject, destination host).

The #CONFIG ONERR option determines the action to be taken if the server fails while preprocessing the HTML file. The action can be a #PRINT, #GOTO, or #BREAK statement.

Major Changes to Current Implementation of SSI

Support for Server Side Includes in IIS is currently limited to the #INCLUDE directive. Furthermore, the support is located within the IIS itself. In addition to adding a fuller implementation of SSI as outlined above, the mechanism for processing SSI will be moved into an ISAPI DLL. When the IIS encounters an HTML file to preprocess (for example, FOO.STM), it will invoke the ISAPI DLL which will use ISAPI functionality to read the HTML from the server, perform the necessary preprocessing, and then send the processed HTML to the client.

Error Handling and Performance Issues

Error Handling

Several errors can occur when attempting to process Server Side Includes. In the case of most errors, the error message will be sent into the HTML stream back to the client. Preprocessing will resume after the point of the error. Such non-fatal errors are:

File specified in directive cannot be opened.

Variable specified in #ECHO does not exist.

Label specified by #GOTO does not exist or precedes #GOTO.

Performance Issues

Caching the “output” of the parser

Since parsing HTML files can have a negative impact on performance, several steps should be taken to help minimize this effect. While parsing the HTML document, a list containing the actions to perform on the file is generated. After parsing, this list is traversed and at this point, the actions (such as including a file, executing a script, echoing a variable etc.) are performed. The pointer to this list will be stored in a cache, with an association made to the filename of the HTML document parsed. Subsequent requests on this document will first check the cache for the list structure and use it if available.

Implementation of a Suitable Cache

In the current version of IIS, the caching of the action list is done using the TS* caching routines. Since the parsing will now be moved to the ISAPI DLL (from the IIS service itself), the caching mechanism may change (?).

Improvements to HTTPd/SSI+ Specification

Extension of the VIRTUAL path name

As it stands, a virtual path name is relative to the base directory of the server. This functionality could be extended to support files on different machines by allowing the virtual path to specify a URL. With this improvement, users could include the contents of another remote HTML document into their own page.

Allow for Parameter Passing to CGI Scripts

Support could be added to allow parameters to passed to the CGI script (by CGI means) to be executed by #EXEC. The parameters can be specified after the name of the script following a question mark (?).

Example:	#EXEC CGI=”foo.cgi?param1+param2”

Recommendations

The minimum goal should be to gain full SSI compatibility with the HTTPd server. Thus all of the base features relating to HTTPd should be implemented. The only question is which SSI+ extensions and further improvements should be done.

Configuration Extensions

The additional configuration options #CMDECHO, #CMDPREFIX, and #CMDPOSTFIX are extremely useful since they allow an easy way to pipe the formatted output of an executed command to the client (not just a stream of raw text). To omit these directives would make such tasks impossible, thus they should be implemented.

#GOTO dangers

The implementation of #GOTO is straight forward since it is restricted to forward jumping. The behavior of an erroneous #GOTO label is essentially the same as a #BREAK, since the HTML document will be skipped until the non-existent label is found. Despite this, the #GOTO directive is quite powerful and should be implemented.

Conditional Support

Since Denali will add significant functionality to the server side (through IBASIC), the limited conditional control described by this specification should be considered at a low priority.

#EXEC Extensions

The extension to support ISAPI DLLs is very important since Microsoft is trying to push ISAPI as a viable alternative to CGI; thus this support should be added. In addition, the HTTPd/SSI+ specification’s lack of support for passing parameters to the CGI/ISAPI program is severe and should be improved as described in Section 7.2.

�PAGE �ii�

Microsoft Confidential		Page �PAGE �iii�

Microsoft Confidential 		Page �PAGE �v�

Microsoft Confidential 		Page �PAGE �12�

Microsoft Confidential		Page � PAGE �58�

