[image: image1.wmf]
Windows NT

Content Index
Content Index Framework Reference

cifrmref.doc

Windows NT Query Design Team—Srikanth Shoroff, Kyle Peltonen, Sitaram Raju
Version 1.0

March 25, 1997
Distribution: Microsoft Internal Distribution

© Copyright Microsoft Corporation, 1997. All Rights Reserved

Microsoft Confidential

Printed on 1/23/98 at 6:36 PM
Note: This documentation is an early release of the final product documentation. It is meant to accompany software that is still in development. Some of the information in this documentation may be inaccurate or may not be an accurate representation of the functionality of the final retail product. Microsoft assumes no responsibility for any damages that might occur either directly or indirectly from these inaccuracies.

Contents

iContents

Relevant Documents
1
Framework COM Objects
1
Naming Convention
1
Objects provided by the Client
1
CiCFilterClient
1
CiCDocName
2
CiCOpenedDoc
2
CiCDocStore
2
CiCQuerySession
3
CiCPropRetriever
3
CiCDeferredPropRetriever
3
CiCScopeEnumerator - Optional
4
CiCIndexNotificationStatus
4
Objects Provided By Content Index
4
CiFilterControl
4
CiControl
4
CiManager
5
CiQueryPropertyMapper
5
CiIndexNotificationEntry
5
CiRcovStorage
6
TextFilter
6
PropertyMapper
6
Framework Interface Definitions
7
ICiCDocName Interface – Optional
7
ICiCDocName::Init
7
ICiCDocName::Set
8
ICiCDocName::IsValid
8
ICiCDocName::Clear
8
ICiCDocName::Duplicate
9
ICiCDocName::GetBufSizeNeeded
9
ICiCDocName::Get
9
ICiCDocName::GetNameBuffer
10
ICiCFilterClient Interface
11
CI_FILTER_CONFIG_INFO
12
Characterization
12
ICiCFilterClient::Init
12
ICiCFilterClient::GetOpenedDoc
13
ICiCFilterClient::GetConfigInfo
13
ICiCLangRes Interface
13
ICiCLangRes::GetNoiseWordList
14
ICiCLangRes::GetWordBreaker
14
ICiCLangRes::GetStemmer
15
ICiCOpenedDoc Interface – Optional
15
ICiCOpenedDoc::Open
16
ICiCOpenedDoc::Close
17
ICiCOpenedDoc::GetDocumentName
17
ICiCOpenedDoc::GetStatPropertyEnum
17
ICiCOpenedDoc::GetPropertySetEnum
18
ICiCOpenedDoc::GetPropertyEnum
19
ICiCOpenedDoc::GetIFilter
19
ICiCOpenedDoc::GetSecurity - Optional
20
ICiCOpenedDoc::IsInUseByAnotherProcess – Optional
20
ICiCDocStore Interface
21
CI_CLIENT_STATUS
22
USN_FLUSH_INFO
22
ICiCDocStore::GetStatus
23
ICiCDocStore::GetContentIndex
23
ICiCDocStore::ProcessCiDaemonTermination
23
ICiCDocStore::CheckpointChangesFlushed
24
ICiCDocStore::EnableUpdates
25
ICiCDocStore::DisableUpdates
25
ICiCDocStore::MarkDocUnReachable
26
ICiCDocStore::GetQuerySession
26
ICiCDocStore::GetPropertyMapper
27
ICiCDocStore::StoreSecurity
27
ICiCDocNameToWorkidTranslator Interface
28
ICiCDocNameToWorkidTranslator::QueryDocName
28
ICiCDocNameToWorkidTranslator::WorkIdToDocName
29
ICiCDocNameToWorkidTranslator::DocNameToWorkId
29
ICiCPropertyStorage Interface
30
ICiCPropertyStorage::IsPropertyCached
30
ICiCPropertyStorage::StoreProperty
31
ICiCPropertyStorage::FetchValueByPid
31
ICiCPropertyStorage::FetchVariantByPid
32
ICiCPropertyStorage::FetchValueByPropSpec
32
ICiCPropertyStorage::FetchVariantByPropSpec
32
ICiCDeferredPropRetriever Interface
33
ICiCDeferredPropRetriever::RetrieveDeferredValueByPid
33
ICiCDeferredPropRetriever::RetrieveDeferredValueByPropSpec
33
ICiCAdviseStatus Interface
34
CI_PERF_COUNTER_NAME
34
ICiCAdviseStatus::SetPerfCounterValue
35
ICiCAdviseStatus::GetPerfCounterValue
36
ICiCAdviseStatus::IncrementPerfCounterValue
36
ICiCAdviseStatus::NotifyEvent
37
CI_NOTIFY_STATUS_VALUE
38
ICiCAdviseStatus::NotifyStatus
39
ICiCQuerySession Interface
40
ICiCQuerySession::Init
40
CI_ENUM_OPTIONS
41
ICiCQuerySession::GetEnumOption
42
ICiCQuerySession::CreatePropRetriever
42
ICiCQuerySession::CreateDeferredPropRetriever
43
ICiCQuerySession::CreateEnumerator
43
ICiCPropRetriever Interface
44
ICiCPropRetriever::BeginPropertyRetrieval
44
ICiCPropRetriever::RetrieveValueByPid
45
ICiCPropRetriever::RetrieveValueByPropSpec
45
ICiCPropRetriever::FetchSDID
46
ICiCPropRetriever::CheckSecurity
46
ICiCPropRetriever::IsInScope
46
ICiCPropRetriever::EndPropertyRetrieval
47
ICiCScopeEnumerator Interface- Optional
47
ICiCScopeEnumerator::Begin
48
ICiCScopeEnumerator::CurrentDocument
48
ICiCScopeEnumerator::NextDocument
48
ICiCScopeEnumerator::RatioFinished
49
ICiCScopeEnumerator::End
49
ICiCIndexNotificationStatus Interface
50
ICiCIndexNotificationStatus::Commit
50
ICiCIndexNotificationStatus::Abort
50
Interfaces Provided By Content Index
51
ICiControl Interface
51
ICiControl::CreateContentIndex
51
ICiStartup Interface
52
CI_STARTUP_FLAGS
52
CI_STARTUP_INFO
54
ICiStartup::StartupContentIndex
55
ICiAdminParams Interface
55
CI_ADMIN_PARAMS
56
CI_CONFIG_TYPE
56
ICiAdminParams::SetValue
57
ICiAdminParams::SetParamValue
57
ICiAdminParams::GetValue
57
ICiAdminParams::GetParamValue
57
ICiAdminParams::SetConfigType
57
ICiAdminParams::GetConfigType
57
ICiManager Interface
58
CI_UPDATE_TYPE
58
CI_DOCUMENT_UPDATE_INFO
58
CIF_STATE_FLAGS
59
CIF_STATE
59
ICiManager::GetStatus
60
ICiManager::Empty
60
ICiManager::Shutdown
61
ICiManager::UpdateDocument
61
ICiManager::StartFiltering
61
ICiManager::FlushUpdates
62
ICiManager::QueryRcovStorage
62
ICiManager::ForceMerge
62
ICiManager::AbortMerge()
63
ICiManager::IsQuiesced(pfState)
63
ICiManager::GetPropertyMapper()
64
ICiQueryPropertyMapper Interface
64
ICiQueryPropertyMapper::PropertyToPropid
64
ICiQueryPropertyMapper::PropidToProperty
65
ICiPersistIncrFile Interface
65
ICiPersistIncrFile::Load
66
ICiPersistIncrFile::Save
66
ICiPersistIncrFile::SaveCompleted
67
IPropertyMapper Interface
68
IPropertyMapper::PropertyToPropid
68
IPropertyMapper::PropidToProperty
69
ICiIndexNotification Interface - Optional
69
ICiIndexNotification::AddNotification
69
ICiIndexNotification::ModifyNotification
70
ICiIndexNotification::DeleteNotification
70
ICiIndexNotificationEntry Interface
71
ICiIndexNotificationEntry::AddText
71
ICiIndexNotificationEntry::AddProperty
72
ICiIndexNotificationEntry::AddCompleted
72
Content Index Startup and Shutdown Issues
73
Content Index Shutdown
73
Implementation Notes
73
Appendixes
73
Appendix A – Event Log Messages
73
Appendix B – Configuration Parameters
73

0if <> 0 "Chapter 0: " ""
Content Index Framework Reference

This document describes the COM objects and interfaces in the Content Index Framework Reference. A supporting document Content Index Framework Architecture describes the architecture.
Relevant Documents

1. Windows NT Content Index Framework Architecture by Srikanth Shoroff, Kyle Peltonen and Sitaram Raju

2. Microsoft Site Server Search Interface Specification by Sankrant Sanu

3. IFilter Specification by Kyle Peltonen

4. OLE-DB Programmer’s Reference
Framework COM Objects

This section describes the Framework COM objects. A client has to provide a full set of the client objects – there is no intention to mix and match objects provided by different clients. Some clients may choose to provide a simple dummy implementation for some of the interface methods if they do not need support from Content Index for certain features. Behavior expected from such interface methods will be stated in the document.

Details of the interfaces and interface methods are in the section titled “Framework Interface Definitions”.

Most of the objects need not be registered with OLE. They are created by interface methods. Those objects that must be registered with OLE are identifed as such in the implementation notes.

Some of the objects are required in the Pull Filtering Model only and some in the Push Filtering Model only. That information is provided in the implementation notes.

Naming Convention

All objects provided by client start with CiC and interfaces start with ICiC. For example, CiCDocStore object and ICiCDocStore interface

All objects provided by Content Index start with Ci and interfaces start with ICi. For example, CiControl Object and ICiControl.

Objects provided by the Client

CiCFilterClient

The CiCFilterClient object is the main client component that deals with filtering in the Pull Filtering Model.

CoType CiCFilterClient

{

[mandatory] interface ICiCFilterClient;

[mandatory] interface ICiCLangRes;

[mandatory] interface ICiCAdviseStatus;

};

Implementation Notes:

1. Required in the Pull Filtering Model only.

2. The client provides the CLASSID of this object to Content Index at the time of starting up Content Index.

3. This object must be registered as an InProc server supporting “Free Threaded” or “Both” threading models.

4. Content Index will use CoCreateInstance() to create this object.

CiCDocName

CiCDocName represents a document name. For example, in a File System CiCDocName is a file name.

CoType CiCDocName

{

[mandatory] interface ICiCDocName;

};

Implementation Notes:

1. This object is used in an “apartment threaded” model.

2. This object is required in the Pull Filtering Model only.

CiCOpenedDoc

This object is used to open documents and extract the text and properties from the documents. It is used by the Filtering component of Content Index.

CoType CiCOpenedDoc

{

[mandatory] interface ICiCOpenedDoc;

};

Implementation Notes:

1. Required in the Pull Filtering Model only.

2. This object is used in an “apartment threaded” model.

CiCDocStore

The CiCDocStore object implements the main interfaces used by the indexing component and the query component of Content Index. This is the “main” object in the client side.

CoType CiCDocStore

{

[mandatory] interface ICiCDocStore;

[mandatory] interface ICiCPropertyStorage;

[mandatory] interface ICiCAdviseStatus;

[mandatory] interface ICiCLangRes;

[optional] interface ICiCDocNameToWorkidTranslator;

};

Implementation Notes:

1. Required in both the Pull Filtering Model and the Push Filtering Model.

2. This must be implemented for free threaded access. The implementation must be very efficient, as this is the nerve center of interfacing with the client.

CiCQuerySession

The CiCQuerySession object maintains query wide state for the life of a query. It is responsible for creation of the CiCPropRetriever and CiCScopeEnumerator objects.

CoType CiCQuerySession

{

[mandatory] interface ICiCQuerySession;

};

Implementation Notes:

1. Required in both the Pull Filtering Model and the Push Filtering Model.

2. A dummy implementation is sufficient if the client does not use Content Index for sorting or retrieval of properties.

CiCPropRetriever

CiCPropRetriever allows retrieval of properties and security information on a per workid (document) basis. The CiCQuerySession object during query resolution creates CiCPropRetriever.

During query resolution, Content Index query component has to retrieve all the properties that are specified in the “project list”, “sort list” and “group by list” of the Query Command Tree. Content Index retrieves one property at a time for a workid. Keeping state between the property retrieval calls allows efficient property retrieval by caching any open records.

CoType CiCPropRetriever

{

[mandatory] interface ICiCPropRetriever;

};

Implementation Notes:

1. Required in both the Pull Filtering Model and the Push Filtering Model.

2. A dummy implementation is sufficient if the client does not use Content Index for retrieval of properties or sorting.

CiCDeferredPropRetriever

CiCDeferredPropRetriever allows retrieval of deferred property values. The CiCQuerySession object during query resolution creates CiCPropRetriever. Deferred values are those columns in the query result set that are very large. Hence as an optimization the deferred property values are retrieved on an as-needed basis only.

CoType CiCDeferredPropRetriever

{

[mandatory] interface ICiCDeferredPropRetriever;

};

Implementation Notes:

1. Required in both the Pull Filtering Model and the Push Filtering Model.

2. A dummy implementation is sufficient if the client does not use Content Index for retrieval of properties.

CiCScopeEnumerator - Optional

Enumerates a given scope or set of scopes. It is created by the CiCQuerySession object and can have access to the query wide state in the CiCQuerySession object.

CoType CiCScopeEnumerator

{

[mandatory] interface ICiCScopeEnumerator;
[mandatory] interface ICiCPropRetriever;

};

Implementation Notes:

1. If the client does not use scope enumeration queries, a dummy implementation is sufficient.

2. Certain types of queries which are not obviously scope enumeration queries require a scope enumerator. These types include but are not limited to: regular expression queries with complete or nearly complete wildcard terms (ex: LIKE % or LIKE X%) and property restrictions (ex: SIZE > 50) when the index is out-of-date.

CiCIndexNotificationStatus

Provided by the client in the Push Filtering Model. This object is used by Content Index to give feedback about the success or failure of adding the text and properties of a document into Content Index.

CoType CiCIndexNotificationStatus

{

[mandatory] interface ICiCIndexNotificationStatus;

};

Implementation Notes:

1. Required in the Push Filtering Model only.

Objects Provided By Content Index

CiFilterControl

The object provided by Content Index to control the behavior of filtering.

CoType CiFilterControl

{

[mandatory] interface ICiFilterControl;

[mandatory] interface ICiAdminParams;

};

Implementation Notes:

1. Relevant to the client in the Pull Filtering Model only.

CiControl

CiControl Object deals with the startup of the main Content Index object, the CiManager. Content Index clients can create an instance of the CiControl object using OLE CoCreateInstance().

// 47C67B50-70B5-11D0-A808-00A0C906241A

CLSID CLSID_CiControl = { 0x47c67b50,0x70b5,0x11d0,{0xa8, 0x08, 0x00, 0xa0, 0xc9, 0x06, 0x24, 0x1a};

CoType CiControl

{

[mandatory] ICiControl;

};

Implementation Notes:

1. This object is registered with OLE as FreeThreaded, InProcess server. This can be created using the CLASSID CLSID_CiControl.

CiManager

A CiManager object represents a running instance of Content Index. CiManager object will be provided by the Content Index and used by clients to control Content Index behavior and to notify Content Index about documents to be filtered.

CoType CiManager

{

[mandatory] interface ICiStartup;

[mandatory] interface ICiAdmin;

[mandatory] interface ICiManager;

[mandatory] interface IPersistStorageIncrement;

[mandatory] interface ICiFrameworkQuery;

[mandatory] interface ICiPersistIncrFile;

[mandatory] interface ICiIndexNotification;

};

Implementation Notes:

1. This object is implemented for “Free Threaded” access.

2. Provided in both the Pull Filtering Model and the Push Filtering Model.
CiQueryPropertyMapper

CiQueryPropertyMapper converts FULLPROPSPEC’s to PROPID’s and vice-versa. This interface differs from IPropertyMapper because it is used at Query time only and it converts properties that are of interest to that particular query only. The CiCPropRetriever and CiCDeferredPropRetriever objects (see above) use this interface to convert PROPIDs to FULLPROPSPECs and vice-versa.
CoType CiQueryPropertyMapper

{

[mandatory] interface ICiQueryPropertyMapper;

};

Implementation Notes:

1. Certain properties must be mapped to specific PROPIDs. See Appendix C – Well-Known PROPIDs for more information.
2. Required in both the Pull Filtering Model and the Push Filtering Model.

CiIndexNotificationEntry

This object is provided in the Push Filtering Model to allow clients to push text and properties into Content Index. Content Index stores the indexed data in its internal indexes.

CoType CiIndexNotificationEntry

{

[mandatory] interface ICiIndexNotificationEntry;

};

Implementation Notes:

1. This object is implemented for “Free Threaded” access.

2. Provided in the Push Filtering Model only.

CiRcovStorage

CiRcovStorage Object provides atomic update capability for certain kind of operations on persistent data. CiRcovStorage Object can be used by clients to transact updates to meta data, configuration information and other small amounts of data (about 1MB or lesser). CiRcovStorage Object is an efficient storage mechanism for large persistent FIFO queues also. However, it does not provide general-purpose transaction mechanism.

The details and the interfaces supported will be described in a separate document.

Not yet documented or exposed

TextFilter

The Content Index provides a default TextFilter with the CLASSID CLSID_TextIFilter. The text filter is registered as in INPROC Server supporting “Both” threading models. The clients can use it as the default filter if there is no filter associated with a document.

CLSID_TextIFilter = C1243CA0-BF96-11CD-B579-08002B30BFEB;

CoType CTextIFilter

{

[mandatory] interface IFilter;

};

PropertyMapper

Propertymapper maps a FULLPROPSPEC to a 32bit number called a PROPID and vice versa. Content Index provides an implementation of the PropertyMapper object but the client can override that with its own implementation. A client may choose to provide its own implementation because it may be able to provide a more efficient or fast implemenetation of property mapper by using domain knowledge that is specific to the client. Also, a client may already have a property map implementation and in that case there is no need to duplicate the property mapping storage in both client and content index.

CoType PropertyMapper

{

[mandatory] interface IPropertyMapper;

};

Implementation Notes:

1. This object is implemented for “Free Threaded” access.

2. Certain properties must be mapped to specific PROPIDs. See Appendix C – Well-Known PROPIDs for more information.

3. Provided in both the Pull Filtering Model and the Push Filtering Model.
Framework Interface Definitions

The following sections describe the COM interfaces relevant to the Content Index Framework. All the clients must support all the interfaces listed below, unless explicitly stated as optional. Also, there are no plans to mix and match different objects from different clients. The separation of interfaces is only to make it easy to understand and logically separate the intended use of the interfaces.

ICiCDocName Interface – Optional

This interface is required in the Pull Filtering Model only. It is not needed in Push Filtering Model.
ICiCDocName interface encapsulates a generic document name that a client can use to identify a document.

interface ICiCDocName : IUnknown

{

SCODE Init(BYTE const * pbName, ULONG cbName);

SCODE Set(ICiCDocName const * pICiCDocName);

SCODE Clear();

SCODE IsValid() const;

SCODE Duplicate(ICiCDocName ** ppICiCDocName) const;

SCODE GetBufSizeNeeded(ULONG * pcbBuffer) const;

SCODE Get(BYTE * pbName, ULONG * pcbName) const;

SCODE GetNameBuffer(BYTE const ** ppName, ULONG * pcbName);

};

ICiCDocName::Init

SCODE ICiCDocName::Init(pbName, cbName)

BYTE const * pbName

ULONG cbName

Initializes the document name object with the buffer of data passed in. Content Index does not interpret the contents of the buffer.

Parameters
pbName [in]

Pointer to the buffer containing the name of the document.

cbName [in]
Number of valid bytes in the pbName buffer

Return Values
Value
Meaning

S_OK
The operation was successful.

CI_E_ALREADY_INITIALIZED
There is a valid document name in the object.

Other OLE error codes.

Comments

ICiCDocName::Set

SCODE ICiCDocName::Set(pICiCDocName)

ICiCDocName * pICiCDocName

This method initializes the document name object with the given document name.

Parameters
pICiCDocName [in]

Pointer to the source document name object.

Return Values
Value
Meaning

S_OK
The operation was successful.

CI_E_ALREADY_INITIALIZED
There is a valid document name in the object.

Other OLE error codes.

Comments

ICiCDocName::IsValid

SCODE ICiCDocName::IsValid()

This method checks if the document name object is valid or not.

Parameters
none

Return Values
Value
Meaning

S_OK
The object contains a valid document name.

E_INVALID
There is no valid document name in the object.

Other OLE error codes.

Comments

ICiCDocName::Clear

SCODE ICiCDocName::Clear()

Clears the document name information from the object and enters the Invalid state. A document name object without a valid document name is considered invalid.

Parameters
none

Return Values
Value
Meaning

S_OK
The operation was successful.

Comments

ICiCDocName::Duplicate

SCODE ICiCDocName::Duplicate(ICiCDocName ** ppICiCDocName)

ICiCDocName ** ppICiCDocName

Makes a copy of the document name and returns a pointer to a new document name object. If the state of this document name is invalid, the duplicated document name object will also be in an invalid state.

Parameters
ppICiCDocName [out]

If successful, on output, a pointer to the duplicated document name object.

Return Values
Value
Meaning

S_OK
The operation was successful.

Other OLE error code

Comments

ICiCDocName::GetBufSizeNeeded

SCODE ICiCDocName::GetBufSizeNeeded(pcbBuffer)

ULONG * pcbBuffer

Computes the size of a buffer needed to hold the document name.

Parameters
pcbBuffer [out]

If the return code is S_OK, the output value will be set to the length in bytes of the buffer needed to copy the serialized form(in memory) of the document name.

Return Values
Value
Meaning

S_OK
The operation was successful.

CI_E_NOT_INITIALIZED
The document name is not initialzed.

Other OLE error code

Comments

ICiCDocName::Get

SCODE ICiCDocName::Get(pbName, pcbName)

BYTE * pbName

ULONG * pcbName

Retrieves the document name in the given buffer.

Parameters
pbName [in/out]

If the return code is S_OK, the document name is serialized into this buffer.

pcbName [in/out]
On input, the maximum number of bytes that can be serialized into pbName. On output, the actual number of bytes that are serialized into pbName. If the return status code is CI_E_BUFFERTOOSMALL, this parameter will contain the number of bytes needed for serializing the document name into a memory buffer.

Return Values
Value
Meaning

S_OK
The operation was successful.

CI_E_NOT_INITIALIZED
The document name is not initialzed.

CI_E_BUFFERTOOSMALL
The given buffer is not big enough to hold the document name

Other OLE error code

Comments

ICiCDocName::GetNameBuffer

SCODE ICiCDocName::GetNameBuffer(ppName, pcbName)

BYTE const * * ppName

ULONG * pcbName

Returns a pointer to its internal buffer holding the name in a serialized form.

Parameters
ppName [out]

A variable to hold the internal pointer to the serialized form of the document name.

pcbName [out]
Number of valid bytes in the name buffer.

Return Values
Value
Meaning

S_OK
The operation was successful.

CI_E_NOT_INITIALIZED
The document name is not initialzed.

Other OLE error code

Comments
1. This method is an optimization to avoid an extra memory copy. The caller must be careful not to do anything to change the state of the object between this call and uses of the buffer returned.

2. The buffer is owned by the interface and not by the caller. The caller must not write anything into the buffer returned.

ICiCFilterClient Interface

ICiCFilterClient allows the filtering component in the Content Index to initialize the client filtering component, retrieve configuration information, wordbreakers, stemmers and noise word lists from the client component.

interface ICiCFilterClient : IUnknown

{

SCODE Init(BYTE const * pbData, ULONG cbData,

 ICiAdminParams * pICiAdminParams);

SCODE GetOpenedDoc(ICiCOpenedDoc ** ppICiCOpenedDoc);

SCODE GetConfigInfo(CI_FILTER_CONFIG_INFO * pConfigInfo);

};

Implementation Notes:

1. This interface is required in the Pull Filtering Model only.

CI_FILTER_CONFIG_INFO

This structure has the configuration information that the client must supply to the Content Index filtering component.

typedef struct tagCI_FILTER_CONFIG_INFO

{

BOOL

fGenerateCharacterization;

BOOL
fSupportsOpLocks;

BOOL

fSupportsSecurity;

} CI_FILTER_CLIENT_CONFIG_INFO;

The fields of the structure and their meaning are described below.

Fields
fGenerateCharacterization
Flag specifying if Content Index should generate characterization for the files.

fSupportsOpLocks [in]
Flag indicating if client supports oplocks or not.

fSupportsSecurity
Specifies whether client wants to use Content Index Filtering component to pass security data to the client’s indexing component. If this is set to TRUE, Content Index will call GetSecurity() method on the ICiCOpenedDoc interface..

Characterization

Content Index using a prioritization scheme if the client sets fGenerateCharacterization to TRUE automatically generates characterization or abstract. If the client wants to override the prioritization scheme of Content Index, the client should generate a property with the FULLPROPSPEC of GUID_HTMLMetaTag\”Description”. The property value specified for this property will be used as Characterization for the document.

ICiCFilterClient::Init

SCODE ICiCFilterClient::Init(pbData, cbData, pICiAdminParams)

BYTE const * pbData

ULONG cbData
ICiAdminParams * pICiAdminParams

Initializes the client-filtering component. This is the first method called on the interface. ICiCFilterClient::Init will be called once and only once during the lifetime of the CiCFilterClient object. After this call returns, the client must be fully initialized and in ready state.

Parameters
pbData [in]

Pointer to the blob of startup data that was given by the client to the ICiManager::.StartFiltering method. Content Index passes through this data to the client.

cbData [in]
Number of bytes in pbData.

pICiAdminParams [in]
Interface that can be used by the client to set the administrative parameters of Content Index filtering component

Return Values
Value
Meaning

S_OK
The operation was successful.

Other OLE error code

Comments
1. The thread calling Init will be in the security context in which the client started up Content Index.

ICiCFilterClient::GetOpenedDoc

SCODE ICiCFilterClient::GetOpenedDoc(ppICiCOpenedDoc)

ICiCDocName ** ppICiCOpenedDoc
Creates a CiCOpenedDoc object and returns its ICiCOpenedDoc interface.

Parameters
ppICiCOpenedDoc [out]

Pointer to the ICiCOpenedDoc interface on an CiCOpenedDoc object.

Return Values
Value
Meaning

S_OK
The operation was successful.

Other OLE error code

Comments

ICiCFilterClient::GetConfigInfo

SCODE ICiCFilterClient::GetConfigInfo(pConfigInfo)

CI_FILTER_CONFIG_INFO * pConfigInfo

Gets the client filtering configuration information.

Parameters
pConfigInfo [out]

Pointer to a CI_FILTER_CONFIG_INFO structure. On input, the structure is zero filled. On output, the structure will be filled in with appropriate values. If memory is allocated for any fields in the structure, the caller will free that memory.

Return Values
Value
Meaning

S_OK
The operation was successful.

Other OLE error code

Comments

ICiCLangRes Interface

Implements the support to provide language objects like word breakers, stemmers, etc.

interface ICiCLangRes : IUnknown

{

SCODE GetNoiseWordList(LCID locale,

 PROPID pid,

 IStream ** ppNoiseWordList);

SCODE GetWordBreaker(LCID locale,

PROPID pid,

 IWordBreaker ** ppWordBreaker);

SCODE GetStemmer(LCID locale,

 PROPID pid,

 IStemmer ** ppStemmer);

};

Implementation Notes:

1. Specification of the PROPID in each of the above methods allows the client to provide language resources on a per property basis. However, most of the properties will not have a property specific language resource. In that case, the client must return CI_E_USE_DEFAULT_PID as the return value.

2. CI_DEFAULT_PID (value 0) must be treated as special pid and language resources that are not property dependant must be returned. This allows efficient caching by Content Index.

ICiCLangRes::GetNoiseWordList

SCODE ICiCLangRes::GetNoiseWordList(locale, pid, ppNoiseWordList)

LCID locale

PROPID pid

IStream ** ppNoiseWordList

Returns the noise word list for the given property and locale.

Parameters
locale [in]

Locale of the requested noise word list.

pid [in]
Property id of the property for which the noise word is being requested. Will be set to CI_DEFAULT_PID if the caller wants the default property noise word list

ppNoiseWordList [out]
Pointer to the list of noise words in an IStream

Return Values
Value
Meaning

S_OK
The operation was successful.

CI_E_USE_DEFAULT_PID
The caller should specify CI_DEFAULT_PID instead of the given property.

Other OLE error code

Comments

ICiCLangRes::GetWordBreaker

SCODE ICiCLangRes::GetWordBreaker(locale, pid, ppWordBreaker)

LCID locale

PROPID pid

IStream ** ppWordBreaker

Returns the wordbreaker for the given property and locale.

Parameters
locale [in]

Locale of the text for which a word breaker is needed.

pid [in]
Property for which the word breaker is needed. If CI_DEFAULT_PID is specified, the word breaker for the default property must be returned

ppWordBreaker [out]
Pointer to the word breaker

Return Values
Value
Meaning

S_OK
The operation was successful.

CI_E_USE_DEFAULT_PID
The caller should specify CI_DEFAULT_PID instead of the given property.

Other OLE error code

Comments

ICiCLangRes::GetStemmer

SCODE ICiCLangRes::GetStemmer(locale, pid, ppIStemmer)

LCID locale

PROPID pid

IStream ** ppIStemmer

Returns the stemmer for the given property and locale.

Parameters
locale [in]

Locale of the text for which a stemmer is needed.

pid [in]
Property for which the stemmer is needed. If CI_DEFAULT_PID is specified, the stemmer for the default property must be returned

ppIStemmer [out]
Pointer to the stemmer

Return Values
Value
Meaning

S_OK
The operation was successful.

CI_E_USE_DEFAULT_PID
The caller should specify CI_DEFAULT_PID instead of the given property.

Other OLE error code

Comments

ICiCOpenedDoc Interface – Optional

Required in the Pull Filtering Model only.
This interface encapsulates access to an opened document that can be used to retrieve properties, enumerate property sets and get an IFilter interface.

interface ICiCOpenedDoc : IUnknown

{

SCODE Open(BYTE const * pbDocName, ULONG cbDocName);

SCODE Close();

SCODE GetDocumentName(ICiCDocName ** ppIDocName);

SCODE GetStatPropertyEnum(IPropertyStorage ** ppIStatPropEnum);

SCODE GetPropertySetEnum(IPropertySetStorage ** ppIPropSetEnum);

SCODE GetPropertyEnum(GUID const & refGuidPropSet,

 IPropertyStorage ** ppIPropEnum);

SCODE GetIFilter(IFilter ** ppIFilter);

SCODE GetSecurity(BYTE * pbData, ULONG * pcbData);

SCODE IsInUseByAnotherProcess(BOOL * pfInUse);

};

ICiCOpenedDoc::Open

SCODE ICiCOpenedDoc::Open(pbDocName, cbDocName)

BYTE const * pbDocName

ULONG cbDocName

This method opens the given document. If the client supports Oplocks, an oplock will be taken on the document opened. If the current document has not been closed, an error code must be returned. All other methods are valid on the interface only if Open succeeds.

Parameters
pbDocName [in]

Pointer to the buffer containing .

pid [in]
Property for which the stemmer is needed. If CI_DEFAULT_PID is specified, the stemmer for the default property must be returned

ppIStemmer [out]
Pointer to the stemmer

Return Values
Value
Meaning

S_OK
The operation was successful.

FILTER_E_ALREADY_OPEN
There is an opened document already.

FILTER_E_UNREACHABLE
The document is on a disconnected network now. This document will be considered unreachable and Content Index will inform the client in the main process about this by invoking ICiCDocStore::MarkDocUnReachable

FILTER_E_IN_USE
The document is in use by another process

Other error code

Comments
1. Transient network failures sometimes cause a document to become temporarily available. If this case is not handled correctly by the client, the document may be considered to be a deleted document. Client must return FILTER_E_UNREACHABLE as the return code for such documents.

ICiCOpenedDoc::Close

SCODE ICiCOpenedDoc::Close()

Closes an open document.

Parameters
none

Return Values
Value
Meaning

S_OK
The operation was successful.

FILTER_E_NOT_OPEN
There is no open document.

Other error code

Comments

ICiCOpenedDoc::GetDocumentName

SCODE ICiCOpenedDoc::GetDocumentName(ppICiCDocName)

ICiCDocName ** ppICiCDocName

Creates a CiCDocName object and returns its ICiCDocName interface. The CiCDocName object will have the currently initialized document’s name and must be in a valid state.

Parameters
ppICiCDocName [out]

Variable to hold the ICiCDocName interface pointer.

Return Values
Value
Meaning

S_OK
The operation was successful.

FILTER_E_NOT_OPEN
There is no open document.

Other error code

Comments

ICiCOpenedDoc::GetStatPropertyEnum

SCODE ICiCOpenedDoc::GetStatPropertyEnum(ppIPropertyStorage)

IPropertyStorage ** ppIPropertyStorage
Fetches an enumerator for enumerating over the STAT properties. STAT properties are file system properties like last write time, create time, attributes , size and security information.

The storage properties belong to the storage property set with the GUID PSGUID_STORAGE. The list of properties in the storage property set is given below. It is left to the client to return what ever properties are appropriate to the particular client.

#define PSGUID_STORAGE { 0xb725f130, \

 0x47ef, 0x101a, \

 { 0xa5, 0xf1, 0x02, 0x60, 0x8c, 0x9e, 0xeb, 0xac } }

//#define PID_STG_DICTIONARY ((PROPID) 0x00000000) //reserved

//#define PID_STG_CODEPAGE ((PROPID) 0x00000001) //reserved

// unused #define PID_STG_ ((PROPID) 0x00000002)

#define PID_STG_CLASSID ((PROPID) 0x00000003)

#define PID_STG_STORAGETYPE ((PROPID) 0x00000004)

// unused #define PID_STG_ ((PROPID) 0x00000005)

// unused #define PID_STG_ ((PROPID) 0x00000006)

// unused #define PID_STG_ ((PROPID) 0x00000007)

#define PID_STG_FILEINDEX ((PROPID) 0x00000008)

#define PID_STG_LASTCHANGEUSN ((PROPID) 0x00000009)

#define PID_STG_NAME ((PROPID) 0x0000000a)

#define PID_STG_PATH ((PROPID) 0x0000000b)

#define PID_STG_SIZE ((PROPID) 0x0000000c)

#define PID_STG_ATTRIBUTES ((PROPID) 0x0000000d)

#define PID_STG_WRITETIME ((PROPID) 0x0000000e)

#define PID_STG_CREATETIME ((PROPID) 0x0000000f)

#define PID_STG_ACCESSTIME ((PROPID) 0x00000010)

// unused #define PID_STG_ ((PROPID) 0x00000011)

#define PID_STG_ALLOCSIZE ((PROPID) 0x00000012)

#define PID_STG_CONTENTS ((PROPID) 0x00000013)

#define PID_STG_SHORTNAME ((PROPID) 0x00000014)

#define PID_STG_MAX PID_STG_SHORTNAME

#define CSTORAGEPROPERTY 0x15

Parameters
ppICiCDocName [out]

Variable to hold the IPropertyStorage
 interface pointer.

Return Values
Value
Meaning

S_OK
The operation was successful.

FILTER_E_NOT_OPEN
There is no open document.

Other error code

Comments
1. A dummy implementation of the IPropertyStorage can return no properties but one must be provided.

ICiCOpenedDoc::GetPropertySetEnum

SCODE ICiCOpenedDoc::GetPropertySetEnum(ppIPropertySetEnum)

IPropertySetStorage ** ppIPropertySetEnum
Fetches a property set enumerator. Content Index will call this method only if the IFilter interface on this document sets the IFILTER_FLAGS_OLE_PROPERTIES flag in the Init() call.

Parameters
ppIPropertySetStorage [out]

Variable to hold the IPropertyStorage
 interface pointer.

Return Values
Value
Meaning

S_OK
The operation was successful.

FILTER_S_NO_PROPSETS
There are no property sets on the document.

FILTER_E_NOT_OPEN
There is no open document

E_NOTIMPL.
The client does not support property set enumeration.

Other error code.

Comments
1. This method can return E_NOTIMPL if the client does not want to support enumeration of property sets

ICiCOpenedDoc::GetPropertyEnum

SCODE ICiCOpenedDoc::GetPropertyEnum(refGuidPropSet, ppIPropEnum)

GUID const & refGuidPropSet,

 IPropertyStorage ** ppIPropEnum

Fetches a property enumerator for a specific property set.

Parameters
refGuidPropSet [in]

GUID of the property set whose property enumerator is being requested.

ppIPropEnum [out]
On output, this will be set to an IPropertyStorage interface. If the call fails, the pointer will be set to NULL. The interface returned is already refcounted for use by the caller

Return Values
Value
Meaning

S_OK
The operation was successful.

FILTER_E_NO_SUCH_PROPERTY
There is no such property set on the document.

FILTER_E_NOT_OPEN
There is no open document

E_NOTIMPL.
The client does not support property enumeration.

Other error code.

Comments
1. This method can return E_NOTIMPL if the client does not want to support enumeration of properties.

ICiCOpenedDoc::GetIFilter

SCODE ICiCOpenedDoc::GetIFilter(ppIFilter)

IFilter ** ppIFilter

Fetches an IFilter interface to the document.

Parameters
ppIFilter [out]

Variable to store the IFilter interface pointer.

Return Values
Value
Meaning

S_OK
The operation was successful.

FILTER_E_NOT_OPEN
There is no open document

E_NOTIMPL.
The client does not support property enumeration.

Other error code.

Comments
The Content Index provides a default TextFilter with the CLSID of CLSID_TextIFilter. The text filter is registered as in INPROC Server supporting “Both” threading models. The clients can use it as the default filter is there is no filter associated with a document

ICiCOpenedDoc::GetSecurity - Optional
SCODE ICiCOpenedDoc::GetSecurity(pbData, pcbData)

BYTE * pbData

ULONG * pcbData

Fetches the security data for the file. Content Index invokes this method only if the fSupportsSecurity flag was set to TRUE in the CI_FILTER_CONFIG data obtained at startup time.

Parameters
pbData [in/out]

Pointer to the buffer to hold security data. The method should fill the security data in this buffer.

pcbData [in/out]
On input, specifies the maximum number of bytes that can be copied into pbData. On output, it will specify the number of bytes actually copied. If the return code is CI_E_BUFFERTOOSMALL, this will specify the number of bytes needed in pbData.

Return Values
Value
Meaning

S_OK
The operation was successful.

FILTER_E_NOT_OPEN
There is no open document

CI_E_BUFFERTOOSMALL.
The buffer provided is not big enough to hold the data.

Other error code.

Comments
1. Content Index does not interpret the data in the security buffer. It is given back to the client via the ICiCDocStore::StoreSecurity() method.

ICiCOpenedDoc::IsInUseByAnotherProcess – Optional

SCODE ICiCOpenedDoc::IsInUseByAnotherProcess(pfInUse)

BOOL * pfInUse
This method tests if another process is trying to access the opened document in a conflicting manner. If a client does not support oplocks, the pfInUse parameter can always be set to FALSE. If the value is TRUE, then the filtering component will close the document immediately and schedule it for filtering later.

Content Index will call this method only if the client set the fSupportsOpLocks in the CI_FILTER_CONFIG data obtained through the ICiCFilterClient::GetConfigInfo() call.

Parameters
pfInUse [out]

On output, TRUE imples that the document is in use by another process in a conflicting mannger. FALSE means it is not in use.

Return Values
Value
Meaning

S_OK
The operation was successful.

FILTER_E_NOT_OPEN
There is no open document

Other error code.

Comments
1. The client can return S_OK with pfInUse to FALSE if oplocks are not supported by the client

ICiCDocStore Interface

The ICiCDocStore interface is the main interface on the CiCDocStore Object providing support for indexing and querying.

interface ICiCDocStore : IUnknown

{

SCODE GetClientStatus(CI_CLIENT_STATUS * pStatus);

SCODE GetContentIndex(ICiManager ** ppICiManager);

SCODE EnableUpdates();

SCODE DisableUpdates(BOOL fIncremental,

 CI_DISABLE_UPDATE_REASON dwReason);

SCODE ProcessCiDaemonTermination(DWORD dwTerminationCode);

SCODE CheckpointChangesFlushed(FILETIME ftFlushTime,

 ULONG cEntries,

 USN_FLUSH_INFO const * aUsnEntries);

SCODE MarkDocUnReachable(WORKID wid);

SCODE GetQuerySession(ICiCQuerySession ** ppICiCQuerySession);

SCODE GetPropertyMapper(IPropertyMapper * ppIPropertyMapper);

SCODE StoreSecurity(WORKID wid, BYTE const * pbSecurity, ULONG cbSecurity);

};

CI_CLIENT_STATUS

A structure listing the client status fields.

typedef struct tagCI_CLIENT_STATUS

{

ULONG
cDocuments;

} CI_CLIENT_STATUS;

The fields of the structure and their meaning is described below.

Fields
cDocuments
Total number of documents in the corpus that the client knows.

USN_FLUSH_INFO

This structure contains the volume-id and the highest USN flushed for that volume-id.

typedef struct tagUSN_FLUSH_INFO

{

VOLUMEID
volumeId;

USN

usnHighest;

} USN_FLUSH_INFO;

The fields of the structure and their meaning are described below.

Fields
volumeId
Identifes the volume-id of the document source. It is used in conjunction with a USN based recovery algorithm, where the USN numbers from different volume-ids are independent. Valid values are 1-255

usnHighest
The highest USN written persistently in this flush

ICiCDocStore::GetStatus

SCODE ICiCDocStore::GetStatus(pStatus)

CI_CLIENT_STATUS * pStatus;

Returns status information in the pStatus parameter.

Parameters
pStatus [out]

On output, the structure will be filled in with the status information.

Return Values
Value
Meaning

S_OK
The operation was successful.

Other OLE error codes.

Comments

ICiCDocStore::GetContentIndex

SCODE ICiCDocStore::GetContentIndex

ICiManager ** ppICiManager;
Obtains the ICiManager interface of the CiManager object associated with this DocStore.

Parameters
ppICiManager [out]

Pointer to the variable where ICiManager interface is to be returned. The interface will be ref-counted for the caller.

Return Values
Value
Meaning

S_OK
The operation was successful.

CI_E_NOT_INITIALIZED
Content Index is not yet started.

CI_E_SHUTDOWN
Content Index has been shutdown

Other OLE error codes.

Comments

ICiCDocStore::ProcessCiDaemonTermination

SCODE ICiCDocStore::ProcessCiDaemonTermination(dwTerminationCode)

DWORD dwTerminationCode
The Content Index engine calls this method when Content Index notices abnormal termination of the CiDaemon process. This method can get called only if the client chose out-of-process filtering at the time of starting Content Index.

The client must cleanup the private communication channel with the terminated CiDaemon process and any associated data. After the cleanup, the client must call ICiManager::StartupCiDaemon method to restart the CiDaemon process.

Parameters
dwStatus [in]

Exit code of the CiDaemon process that died.

Return Values
Value
Meaning

S_OK
The operation was successful.

Other OLE error codes.

Comments
This method is not called in the Push Filtering Model.

For each termination event of the CiDaemon process, this method will be called by the Content Index until S_OK is returned. The client is allowed to call ICiManager::StartFiltering only after successfully processing the termination notification.

The client must not call into Content Index in the context of the calling thread. This is to avoid deadlocking with Content Index. A different thread must invoke ICiManager::StartFiltering or other methods on the CiManager object.

ICiCDocStore::CheckpointChangesFlushed

SCODE ICiCDocStore::CheckpointChangesFlushed(ftFlushTime, cEntries, aUsnEntries)

FILETIME ftFlushTime
ULONG cEntries
USN_FLUSH_INFO * aUsnEntries
This method is called by Content Index to signal the client when document updates are persistently recorded. The parameters of this method give information about the updates that got flushed.

The document changes given to Content Index via the ICiManager::UpdateDocument or ICiManager::UpdateDocuments methods are not flushed to the disk immediately. Instead, the update notifications are buffered in memory for a while to avoid doing an I/O for every change notification. When sufficient change notifications are buffered, the buffered data is flushed to the disk. The Content Index will then notify the client via the CheckpointChangesFlushed method that changes were flushed to the disk up to the given USNs.

In this call, the client can cleanup the state pertaining to the document update notifications up to the indicated flushtime or the indicated USNs.

Parameters
ftFlushTime [in]

SYSTEM-TIME when the flush succeeded.

cEntries [in]
Number of elements in the aUsnEntries array.

aUsnEntries [in]
Array of entries containing information about the highest USN flushed for each volume-id. It must be noted that for each volume-id, the usnHighest field gives the highest USN written persistently in this flush. If there are no records written for a particular volume-id, the usnHighest value will be set to 0

Return Values
Value
Meaning

S_OK
The operation was successful.

Other OLE error codes.

Comments
1. If a client does not use USNs, then ftFlushTime can be used to perform recovery and scanning.

2. The client must not call into Content Index in the calling threads’ context

3. See the CI Framework Architecture document for a description of recovery using corpus scans and recovery using USNs.

ICiCDocStore::EnableUpdates

SCODE ICiCDocStore::EnableUpdates()

Called by Content Index to signal the client that Content Index is ready to accept updates. Until this method is called, the client is not allowed to give any updates to Content Index. Even on startup, the client must start notifying about document updates only after EnableUpdates is called.

Parameters
None

Return Values
Value
Meaning

S_OK
The operation was successful.

CI_E_SHUTDOWN
Content Index has been shut down.

Comments
See ICiCDocStore::DisableUpdates, which specifies when EnableUpdates is an incremental update or not.

ICiCDocStore::DisableUpdates

SCODE ICiCDocStore::DisableUpdates(fIncremental, dwReason)

BOOL fIncremental
DWORD dwReason

This method is called to signal the client that there is some low resource situation or error condition inside Content Index. The dwReason field indicates the reason for disabling updates. Client must stop giving updates until Content Index calls EnableUpdates.

Parameters
fIncremental [in]
When set to TRUE, it means that a transient error prevented Content Index from recording certain updates but all updates acknowledged through the CheckPointChangesFlushed call are persistenly saved by Content Index. Only the updates since the last successful call to CheckPointChangesFlushed() method need be notified by the client later when updates are enabled.

The value is set to FALSE if a catastrophic error occurred and Content Index has lost important data. The client has to reissue Update notifications for all the documents in the corpus when updates are enabled (including notifications for those documents that the Content Index had persistently saved) .

dwReason [in]
Specifies the reason for disabling updates.

Possible values and their meaning:

CI_LOST_UPDATE: Content Index could not record one or more of the update notifications. In this case, fIncremental will be set to TRUE.

CI_CORRUPT_INDEX: Content Index detected corruption in its persistent data. The client must empty Content Index by calling ICiManager::Empty()

CI_DISK_FULL: Content Index detected a disk full situation and cannot accept any more updates until more disk space is freed up. fIncremental will be set to TRUE.

Return Values
Value
Meaning

S_OK
The operation was successful.

CI_E_SHUTDOWN
Content Index has been shut down.

Comments
1. If the client continues to give Update notifications after DisableUpdates is called, the updates will be rejected.

2. This method will be called only if indexing is enabled at the time of Content Index startup.

3. No Content Index methods must be invoked in the calling thread’s context.

ICiCDocStore::MarkDocUnReachable

SCODE ICiCDocStore::MarkDocUnReachable(wid)

WORKID wid

Sometimes a document on a remote machine cannot be accessed by the Filtering component because of temporary network glitches. Such documents must be filtered at a later time when the network is available. When ICiCOpenedDoc::Open returns FILTER_E_UNREACHABLE for a document, Content Index invokes ICiCDocStore::MarkDocUnReachable on that document.

The client must record this error and reissue the notification at a later time.

Parameters
wid [in]
Workid of the document that could not be reached.

Return Values
Value
Meaning

S_OK
The operation was successful.

Other OLE error code.

Comments
1. Will not be called in the Push Filtering Model.

ICiCDocStore::GetQuerySession

SCODE ICiCDocStore::GetQuerySession(ppICiCQuerySession)

ICiCQuerySession ** ppICiCQuerySession

Creates a CiCQuerySession object and returns its ICiCQuerySession interface pointer. The CiCQuerySession object will be used by Content Index to cache the necessary state information for resolving a particular query.

Parameters
ppICiCQuerySession [in]
Workid of the document that could not be reached.

Return Values
Value
Meaning

S_OK
The operation was successful.

CI_E_SHUTDOWN.
Content Index has been shutdown

Other OLE error code.

Comments

ICiCDocStore::GetPropertyMapper

SCODE ICiCDocStore::GetPropertyMapper(ppIPropertyMapper)

IPropertyMapper ** ppIPropertyMapper

Gets the IPropertyMapper interface of the PropertyMapper object. If client is providing the implementation of the PropertyMapper, then the interface returned must be on the client provided object. If Content Index is providing the implementation of the Property Mapper, the interface returned must be the one provided by Content Index through the ICiManager::GetPropertyMapper interface.

The parameters to ICiStartup::StartupContentIndex specify who is providing the Property Mapper. It is important that the client and the Content Index use the same property mapper.

Parameters
ppIPropertyMapper [in]
Variable for storing the IPropertyMapper interface.

Return Values
Value
Meaning

S_OK
The operation was successful.

Other OLE error code.

Comments
1. It is extremely important that Content Index and the client use the same property store.

ICiCDocStore::StoreSecurity

SCODE ICiCDocStore::StoreSecurity(wid, pbData, cbData)

WORID wid

BYTE const * pbData
ULONG cbData

Stores security information for the given workid. The security information is provided by the client to the Content Index through the ICiCOpenedDoc::GetSecurity method.

Parameters
wid [in]
Workid of the document whose security is being stored.

pbData [in]
Poiinter to the buffer of security data obtained during filtering from the client. Can be NULL. If NULL, implies that there was no security information on the document.

cbData [in]
Number of bytes in pbData.

Return Values
Value
Meaning

S_OK
The operation was successful.

CI_S_NO_SECURITY_SUPPORT
The client does not support security.

Other OLE error code.

Comments
1. Content Index passes through the security data. It is not interpreted.

ICiCDocNameToWorkidTranslator Interface
The ICiCDocNameToWorkidTranslator interface supports translating a WorkId to a document name and vice versa.

interface ICiCDocNameToWorkidTranslator : IUnknown

{

SCODE QueryDocName(ICiCDocName ** ppICiCDocName);

SCODE WorkIdToDocName(WORKID workId, ICiCDocName * pIDocName);

SCODE DocNameToWorkId(ICiCDocName const* pICiCDocName, WORKID * pWorkId);

};

Comments
1. This interface is required in the Pull Filtering Model.

2. DocNameToWorkId is not used in the current version of Content Index.

3. This interface is not needed in Push Filtering Model.

ICiCDocNameToWorkidTranslator::QueryDocName

SCODE ICiCDocNameToWorkidTranslator::QueryDocName(ppICiCDocName)

ICiCDocName ** ppICiCDocName;

Creates a CiCDocName object and returns its ICiCDocName interface. The returned CiCDocName object is in an invalid state.

Parameters
ppICiCDocName [out]
Variable to store the pointer of the ICiCDocName interface. An un-initialized CiCDocName object must be created and its ICiCDocName interface stored here.

Return Values
Value
Meaning

S_OK
The operation was successful.

Other OLE error code.

Comments

ICiCDocNameToWorkidTranslator::WorkIdToDocName

SCODE ICiCDocNameToWorkidTranslator::WorkIdToDocName(workid, pICiCDocName)

WORKID workid

ICiCDocName * pICiCDocName

Converts the given workid to a document name.

Parameters
workid [in]
WorkId of the document whose name is being requested.

pICiCDocName [out]
Pointer to the ICiCDocName interface in which the document name associated with the workid must be filled.

Return Values
Value
Meaning

S_OK
The operation was successful.

CI_S_WORKID_DELETED.
The workid is deleted.

Other OLE error code as appropriate

Comments

ICiCDocNameToWorkidTranslator::DocNameToWorkId

SCODE ICiCDocNameToWorkidTranslator::DocNameToWorkId(pICiCDocName, pWorkId)

ICiCDocName * pICiCDocName

WORKID * pWorkId

Converts a document name to a WorkId. If the Document Name is being seen for the first time, a new WorkId must be created and associated with the document name.

Parameters
pICiCDocName [in]
Document name whose workid is being retrieved.

pWorkId [out]
Pointer to the variable where the workid must be filled in.

Return Values
Value
Meaning

S_OK
The operation was successful.

Other OLE error code as appropriate

Comments

ICiCPropertyStorage Interface

The ICiCPropertyStorage interface supports storage and retrieval of system properties, properties generated during filtering (like characterization, title, etc.), OLE properties and OLE property sets.

If the client intends to cache certain frequently accessed properties, Content Index will store the properties during filtering. Properties are retrieved during query resolution.

If a property cache is used by a client to store certain properties, opening a property cache record once for retrieving all the properties of a document is better than opening once per property.

interface ICiCPropertyStorage : IUnknown

{

SCODE IsPropertyCached(FULLPROPSPEC const * pPropSpec, BOOL * pfValue);

SCODE StoreProperty(WORKID wid, FULLPROPSPEC const * pPropSpec,

 PROPVARIANT const *pVarValue);

//

// NOTE: The following methods are not necessary.

// They are for future use only. Use IciCPropRetriever::Retreive*

// functions instead.

//

SCODE FetchValueByPid(WORKID wid, PROPID pid,

 PROPVARIANT * pbData, unsigned * pcb);

SCODE FetchVariantByPid(WORKID wid, PROPID pid,

PROPVARIANT ** ppVariant);

SCODE FetchValueByPropSpec(WORKID wid, FULLPROPSPEC const * pPropSpec,

 PROPVARIANT * pVariant, unsigned * pcb);

BOOL FetchVariantByPropspec(WORKID wid, FULLPROPSPEC const * pPropSpec,

 PROPVARIANT ** ppVariant);

};

ICiCPropertyStorage::IsPropertyCached

SCODE ICiCPropertyStorage::IsPropertyCached(pPropSpec, pfValue)

FULLPROPSPEC const * pPropSpec

BOOL * pfValue

Tests if the given property is cached in client’s property store. If the property is cached, the property will be stored at filtering time using the ICiCPropertyStorage::StoreProperty method.

Parameters
pPropSpec [in]
FULLPROPSPEC of the property which is being tested

pWorkId [out]
On output, set to TRUE if the given property is cached in the property store. FALSE, if not cached. It the client has no notion of a property store, FALSE must be returned.

Return Values
Value
Meaning

S_OK
The operation was successful.

Other OLE error code as appropriate

Comments

ICiCPropertyStorage::StoreProperty

SCODE ICiCPropertyStorage::StoreProperty(wid, pPropSpec, pVarValue)

WORKID wid

FULLPROPSPEC const * pPropSpec

PROPVARIANT * pVarValue

Stores the given property in the property cache.

Parameters
wid [in]
Workid of the document whose property is to be stored.

pPropSpec [in]
Pointer to the FULLPROPSPEC of the property being stored.

pVarValue [in]
Pointer to the value to be stored.

Return Values
Value
Meaning

S_OK
The operation was successful.

CI_S_PROPERTY_NOT_CACHED
The property is not cached and so is not stored

CI_E_WID_DELETED
The workid is deleted and the property cannot be stored.

CI_E_WID_INVALID
The given workid is invalid.

Other error code.

Comments

ICiCPropertyStorage::FetchValueByPid

Fetches the specified property.

Return Value:

S_OK if successfully fetched.

E_TYPE_BUFFERTOOSMALL if the given buffer is too small to hold the property value.

CI_E_INVALID_PROPERTY if the given PropId is invalid.

CI_E_WID_DELETED if the WorkId is deleted.

CI_E_INVALID_WORKID if the WorkId is an invalid one.

Other error code as appropriate.

Parameters:

wid[in]

WorkId of the document whose property must be fetched

pid[in]

PropId of the requested property

pbData[out]

Pointer to a PROPVARIANT. The value must be filled in this variant.

pcb[in/out]

On input, it is the length of the buffer pointed to by pbData, including the size of the PROPVARIANT. On output, it will be set to the number of bytes actually used in the buffer. If the return status code is E_TYPE_BUFFERTOOSMALL, this will be set to the minimum number of bytes needed to store the property value.

Comments
This method is not used in the current version of Content Index.

ICiCPropertyStorage::FetchVariantByPid

Fetches the specified property.

Return Value:

S_OK if successfully fetched.

CI_E_INVALID_PROPERTY if the given PropId is invalid.

CI_E_WID_DELETED if the WorkId is deleted.

CI_E_INVALID_WORKID if the WorkId is an invalid one.

Other error code as appropriate.

Parameters:

wid[in]

WorkId of the document whose property must be fetched

pid[in]

PropId of the requested property

ppVariant[out]

If successful, on output, will be set to a PROPVARIANT containing the value of the retrieved property.

Comments
This method is not used in the current version of Content Index.

ICiCPropertyStorage::FetchValueByPropSpec

Fetches the specified property. The property is specified using a FULLPROPSPEC instead of pid.

Same as #1 above.

Comments
This method is not used in the current version of Content Index.

ICiCPropertyStorage::FetchVariantByPropSpec

Fetches the specified property. The property is specified using a FULLPROPSPEC instead of pid.

Same as #2 above.

Comments
This method is not used in the current version of Content Index.

ICiCDeferredPropRetriever Interface

The ICiCDeferredPropRetriever allows retrieval of deferred property values. Deferred property values are those properties that the framework has decided not to retrieve through ICiCPropRetriever because those values are very large. Instead they are retrieved on demand through ICiCDeferredPropRetriever.

interface ICiCDeferredPropRetriever : IUnknown

{

SCODE RetrieveDeferredValueByPid(WORKID WID, PROPID pid, PROPVARIANT *pVar);

SCODE RetrieveDeferredValueByPropSpec(WORKID wid, FULLPROPSPEC const * pPropSpec,

 PROPVARIANT *pVar);

};

ICiCDeferredPropRetriever::RetrieveDeferredValueByPid

SCODE ICiCDeferredPropRetriever::RetrieveDeferredValueByPid(wid, pid, pVar)

WORKID wid

PROPID pid

PROPVARIANT * pVar

Retrieves the given property from the property cache for the given workid

Parameters
wid [in]
Workid of the document whose property is to be fetched.

pid [in]
Propid of property being fetched.

pVarValue [in]
Pointer to the value retrieved. The caller will free this variant by calling PropVariantClear.

Return Values
Value
Meaning

S_OK
The operation was successful.

CI_E_WID_INVALID
The given workid is invalid.

Comments

ICiCDeferredPropRetriever::RetrieveDeferredValueByPropSpec

SCODE ICiCDeferredPropRetriever::RetrieveDeferredValueByPropSpec(wid, pPropSpec, pVar)

WORKID wid

FULLPROPSPEC const * pPropSpec

PROPVARIANT * pVar

Retrieves the given property from the property cache for the given workid

Parameters
wid [in]
Workid of the document whose property is to be fetched.

pPropSpec [in]
Property spec of property being fetched.

pVarValue [in]
Pointer to the value retrieved. The caller will free this variant by calling PropVariantClear.

Return Values
Value
Meaning

S_OK
The operation was successful.

CI_E_WID_INVALID
The given workid is invalid.

Comments

ICiCAdviseStatus Interface

The ICiCAdviseStatus interface is used by Content Index to notify status information to the client. Perfmon counter values, event log messages and other events like disk full situation, corruption, etc. are notified using this interface.

interface ICiCAdviseStatus : IUnknown

{

SCODE SetPerfCounterValue(CI_PERF_COUNTER_NAME counterName, long value);

SCODE GetPerfCounterValue(CI_PERF_COUNTER_NAME counterName, long * pValue);

SCODE IncrementPerfCounterValue(CI_PERF_COUNTER_NAME counterName);

SCODE NotifyEvent(WORD fType,

 DWORD eventId,

 ULONG nParams,

 const PROPVARIANT *aParams,

 ULONG cbData,

 void* data);

SCODE NotifyStatus(CI_NOTIFY_STATUS_VALUE status,

 ULONG nParams,

 const PROPVARIANT *aParams);

};

CI_PERF_COUNTER_NAME

An enumerated value for the counters that are defined by Content Index.

typedef enum tagCI_PERF_COUNTER_NAME

{

 // Counters used in the main process

 CI_PERF_NUM_WORDLIST,

 CI_PERF_NUM_PERSISTENT_INDEXES,

 CI_PERF_INDEX_SIZE,

 CI_PERF_FILES_TO_BE_FILTERED,

 CI_PERF_NUM_UNIQUE_KEY,

 CI_PERF_RUNNING_QUERIES,

 CI_PERF_MERGE_PROGRESS,

 CI_PERF_DOCUMENTS_FILTERED,

 CI_PERF_NUM_DOCUMENTS,

 CI_PERF_TOTAL_QUERIES,

 // Counters used in the filter daemon process

 CI_PERF_FILTER_TIME_TOTAL,

 CI_PERF_FILTER_TIME,

 CI_PERF_BIND_TIME

} CI_PERF_COUNTER_NAME;

The different values and their meanings are given below.

Value
Meaning

CI_PERF_NUM_WORDLIST
Number of wordlists

CI_PERF_NUM_PERSISTENT_INDEXES
Number of persistent indexes

CI_PERF_INDEX_SIZE
Total size of the persistent indexes in mega bytes

CI_PERF_FILES_TO_BE_FILTERED
Number of files still to be filtered

CI_PERF_NUM_UNIQUE_KEY
Number of unique keys in the index.

CI_PERF_RUNNING_QUERIES
Number of active running queries inside Content Index

CI_PERF_MERGE_PROGRESS
Merge progress as a percentage. This value is meaningful if a shadow or master merge is going on.

CI_PERF_DOCUMENTS_FILTERED
Number of documents filtered by Content Index since starting Content Index. This value is NOT cumulative over restarts.

CI_PERF_NUM_DOCUMENTS
Total number of documents in the corpus. This value is actually obtained from the client using the ICiCDocStore::GetClientStatus method.

CI_PERF_FILTER_TIME_TOTAL
Total filtering time (??)

CI_PERF_FILTER_TIME
??

CI_PERF_BIND_TIME
Avg. time to bind to the filter dll

ICiCAdviseStatus::SetPerfCounterValue

SCODE ICiCAdviseStatus::SetPerfCounterValue(counterName, lValue)

CI_PERF_COUNTER_NAME counterName
LONG lValue

ICiCAdviseStatus::SetPerfCounterValue is called by the Content Index to set the value of a particular performance counter. It is recommended that the client set the value as an NT performance counter.

Parameters
counterName [in]
Name of the performance counter whose value is being set..

lValue [in]
Value of the performance counter

Return Values
Value
Meaning

S_OK
The operation was successful.

Other OLE error code

Comments

ICiCAdviseStatus::GetPerfCounterValue

SCODE ICiCAdviseStatus::GetPerfCounterValue(counterName, plValue)

CI_PERF_COUNTER_NAME counterName

LONG * plValue
Returns the performance counter value.

Parameters
counterName [in]
Name of the performance counter whose value is being requested..

plValue [out]
Value of the performance counter

Return Values
Value
Meaning

S_OK
The operation was successful.

E_NOTIMPL
This method is not implemented

Other OLE error codes.

Comments

ICiCAdviseStatus::IncrementPerfCounterValue

SCODE ICiCAdviseStatus::IncrementPerfCounterValue(counterName)

CI_PERF_COUNTER_NAME counterName
ICiCAdviseStatus::IncrementPerfCounterValue is called by the Content Index to increment the value of a particular performance counter. It is recommended that the client set the value as an NT performance counter.

Parameters
counterName [in]
Name of the performance counter whose value is being set..

Return Values
Value
Meaning

S_OK
The operation was successful.

Other OLE error code

Comments

ICiCAdviseStatus::NotifyEvent

SCODE ICiCAdviseStatus::NotifyEvent(fType, eventId, nParams, aParams, cbData, pbData)

WORD fType

DWORD eventId

ULONG nParams

const PROPVARIANT * aParams
ULONG cbData OPTIONAL

void * pbData OPTIONAL
The content index is notifying the client about an event. The data given is suitable for logging it as a Windows NT Event Log message.

Parameters
fType [in]
Type of the event. Possible values are WIN32 specified values for eventlog types. Please refer to WIN32 reference manual for their meaning.

EVENTLOG_SUCCESS

EVENTLOG_ERROR_TYPE

EVENTLOG_WARNING_TYPE

EVENTLOG_INFORMATION_TYPE

EVENTLOG_AUDIT_SUCCESS

EVENTLOG_AUDIT_FAILURE

eventId [in]
Id of the event. For a list of the event ids, please refer to Appendix A.

nParams [in]
Number of parameters specified in the aParams parameter.

aParams [in]
Array of parameters associated with the event. Exact type of each parameter depends upon the eventlog message template. The templates are specified in Appendix A and are exported out of query.dll

cbData [in] [optional]
Number of bytes in the pbData. If non-zero, specifies the number of bytes in the pbData that can logged as “binary data” for the event. Please refer the ReportEvent WIN32 API for details.

pbData [in] [optiona]
If cbData is non-zero, this will contain the data that can be logged as data in the ReportEvent WIN32 API.

Return Values
Value
Meaning

S_OK
The operation was successful.

Other OLE error codes.

Comments
1. The templates for the events are exported out of query.dll

2. The ICiCdviseStatus::NotifyEvent may be called with one or more internal Content Index synchronization locks held. The client must NEVER call into Content Index in the context of calling thread. Further, do not take any locks that may be requested in other paths that call into Content Index. Violation of this may lead to deadlocks.

CI_NOTIFY_STATUS_VALUE

An enumerated value for notifying status information about Content Index internal state.

typedef enum tagCI_NOTIFY_STATUS_VALUE

 {

 CI_NOTIFY_FILTERING_FAILURE,

 CI_NOTIFY_CORRUPT_INDEX,

 CI_NOTIFY_SET_DISK_FULL,

 CI_NOTIFY_CLEAR_DISK_FULL,

 CI_NOTIFY_FILTER_EMBEDDING_FAILURE,

 CI_NOTIFY_FILTER_TOO_MANY_BLOCKS

 } CI_NOTIFY_STATUS_VALUE;

The different values and their meaning are given below. The value of nParams and aParams in the ICiCAdviseStatus::NotifyStatus depends upon the value of status. This information will be specified in the function description.

Value
Meaning

CI_NOTIFY_FILTERING_FAILURE
Content Index failed to filter a document. The client can log it as an eventlog if needed. However, if there are a lot of documents for which filtering is failing, the eventlog can get flooded with these events. It is recommended that the setting of whether to log events for this event be controlled by the administrator.

CI_NOTIFY_FILTER_EMBEDDING_FAILURE
Content Index filtering component is notifying that one or more embeddings in a document could not be filtered.

CI_NOTIFY_FILTER_TOO_MANY_BLOCKS
Content Index filtering component is notifying that a filter produced too much data for a document. It is usually a sign of a runaway filter with some kind of infinte loop.

Comments
In the Pull Filtering Model, the ICiCAdviseStatus interface is obtained from the CiCDocStore object in the indexing component and from ICiCFilterClient in the filtering component.

The following status values are relevant to the ICiCAdviseStatus obtained from the CiCDocStore Only:

CI_NOTIFY_FILTERING_FAILURE,

The following status values are relevant to the ICiCAdviseStatus obtained from the CiCFilterClient object.

CI_NOTIFY_FILTER_EMBEDDING_FAILURE,

CI_NOTIFY_FILTER_TOO_MANY_BLOCKS

In the Push Filtering Model, the ICiCAdviseStatus interface is obtained from the CiCDocStore only and so all the status values must be handled.

ICiCAdviseStatus::NotifyStatus

SCODE ICiCAdviseStatus::NotifyStatus(status, nParams, aParams)

CI_NOTIFY_STATUS status
ULONG nParams
const PROPVARIANT * aParams
This method is used by Content Index to notify the client about the internal state of Content Index. Some of the status notifications may require external administrator intervention to correct the situation.

The number, order and type of parameters depends upon the status value. The table below gives the information.

Value
Number of Parameters
Parameter type and meaning

CI_NOTIFY_FILTERING_FAILURE
1
1. VT_I4 or VT_UI4; Workid of the document that could not be filtered

CI_NOTIFY_FILTER_EMBEDDING_FAILURE
1
1. VT_VECTOR | VT_UI1; The serialized form of the document name that was given by the client for the failed document

CI_NOTIFY_FILTER_TOO_MANY_BLOCKS
2
1. VT_VECTOR | VT_UI1; The serialized form of the document name that was given by the client for the failed document

2. VT_UI4; FileSizeMultiplier of the generated data. For example, if the filter generated filter data that is 3x times the size of the file, this will be set to 3.

Parameters
status [in]
Type of status being notified.

nParams [in]
Number of parameters being given for the status notification

aParams [in]
Array of parameters. Please see above for the number, type and meaning of the parameters for each status notification.

Return Values
Value
Meaning

S_OK
The operation was successful.

E_INVALIDARG
If the arguments number or type does not conform to the spec.

Other OLE error code

Comments
1. The ICiCdviseStatus::NotifyStatus may be called with one or more internal Content Index synchronization locks held. The client must NEVER call into Content Index in the context of calling thread Further, do not take any locks that may be requested in other paths that call into Content Index. Violation of this may lead to deadlocks.

ICiCQuerySession Interface

The ICiCQuerySession interface allows the client to do certain kind of pre-fetching of properties if possible. It also allows the client to cache any open records on the property store or keep a document opened for the duration of retrieval of properties for a single document. There can be a big performance improvement when a property store record or a document is opened once for a whole document rather than once per property.

interface ICiCQuerySession : IUnknown

{

SCODE Init(ULONG nProps,

 FULLPROPSPEC const * const * apPropSpec,

 IDBProperties *pDBProperties,

 ICiQueryPropertyMapper *pQueryPropertyMapper);

SCODE GetEnumOption(CI_ENUM_OPTIONS * pEnumOptions);

SCODE CreatePropRetriever(ICiCPropRetriever ** ppICiCPropRetriever);

SCODE CreateDeferredPropRetriever(

ICiCDeferredPropRetriever ** ppICiCDeferredPropRetriever);

SCODE CreateEnumerator(ICiCScopeEnumerator ** ppICiCScopeEnumerator);

};

ICiCQuerySession::Init

SCODE ICiCQuerySession::Init(nProps, apPropSpec, pDbProperties, pQueryPropertyMapper)

ULONG nProps
FULLPROPSPEC const * const * apPropSpec
IDBProperties * pDbProperties

ICiQueryPropertyMapper * pQueryPropertyMapper
Initializes the query state with the information provided. The query engine at the beginning of a query execution calls this method. The properties that may be retrieved during the query execution are listed. This allows the client to use certain heuristics for pre-fetching properties during document property retrieval.

Parameters
nProps [in]
Number of properties specified in apPropSpec.

apPropSpec [in]
Array of pointers to FULLPROPSPECs that may be retrieved during query execution for each row.

pDbProperties [in]
The properties specified on the Data Source Object (refer to OLE-DB Specification). These include the initialization property set properties as well as any client specified properties.

pQueryPropertyMapper [in]
Pointer to the CiQueryPropertyMapper object. This property mapper is valid only for the current query session. It is provided for clients who choose to rely on the framework to provide property mapping (e.g. set CI_CONFIG_PROVIDE_PROPERTY_MAPPER in call to ICiStartup:: StartupContentIndex). It maps FULLPROPSPECS used in the query to PROPIDs. The CiCPropRetriever and CiCDeferredPropRetriever objects created by this object may use the provided pQueryPropertyMapper to convert PROPIDs to FULLPROPSPECs and vice-versa. Clients who use this property mapper must AddRef it during ICiCQuerySession::Init and Release when the CiCQuerySession object is destroyed.

Clients who provide property mapping may safely ignore this parameter.

Return Values
Value
Meaning

S_OK
The operation was successful.

Other OLE error code

Comments
1. The pQueryPropertyMapper has no relationship to the IPropertyMapper.

2. For a dummy implementation – just return S_OK.

3. In the current version of Content Index, the first two parameters nProps and apPropsSpec are 0.

CI_ENUM_OPTIONS

Enumerated values for possible responses to the GetEnumOption() method.

typedef enum tagCI_ENUM_OPTIONS

 {

 CI_ENUM_MUST,

 CI_ENUM_NEVER,

 CI_ENUM_SMALL,

 CI_ENUM_BIG

 } CI_ENUM_OPTIONS;

The values and the meaning below.

Value
Meaning

CI_ENUM_MUST
The query must be satisfied using enumeration only. The Content Index engine will call CreateScopeEnumerator() and the client must create an appropriate scope enumerator and return to Content Index..

CI_ENUM_NEVER
Enumeration must not be used for this query.

CI_ENUM_SMALL
The enumeration is likely to be on a small set of documents. It is up to the Content Index to decide whether to use enumration or not.

CI_ENUM_BIG
The enumeration is likely to be on a very large set of documents. It is not advisable to enumerate if the query can be satisfied without enumeration.

ICiCQuerySession::GetEnumOption

SCODE ICiCQuerySession::GetEnumOption(pEnumOption)

CI_ENUM_OPTIONS * pEnumOption

Certain queries like meta queries (eg. #vpath *) can be satisfied using enumeration only and the rows are enumerated by the client. For example, list of properties, list of virtual roots indexed or list of physcial scopes indexed is determined by the client without using Content Index. These kinds of queries are identified by using a special value for the “scope”. For these queries, the value returned is CI_ENUM_MUST.

For certain queries, enumeration may be appropriate even if Content Index can resolve the query. For example, property queries on a shallow scope. For these, CI_ENUM_SMALL must be returned.

For certain queries, enumeration may be expensive. For example, if the scope is deep. For these, CI_ENUM_BIG must be returned.

If the client does not support enumeration at all, CI_ENUM_NEVER must be returned.

Parameters
pEnumOptions [out]
Pointer to the variable to hold the output enum option value.

Return Values
Value
Meaning

S_OK
The operation was successful.

Comments
1. For a dummy implementation, just return CI_ENUM_NEVER as the value in pEnumOptions.

ICiCQuerySession::CreatePropRetriever

SCODE ICiCQuerySession::CreatePropRetriever(ppICiCPropRetriever)

ICiCPropRetriever ** ppPropRetriever
Creates the CiCPropRetriever and returns its ICiCPropRetriever interface in ppICiCPropRetriever parameter. The CiCPropRetriever object must use the ICiQueryPropertyMapper for translating the PROPIDs to FULLPROPSPECs and vice-versa.

Parameters
ppICiCPropRetriever [out]
Pointer to the variable to store the ICiCPropRetriever interface.

Return Values
Value
Meaning

S_OK
The operation was successful.

Other error code.

Comments
1. The client even in a dummy implementation must provide an ICiCPropRetriever interface. If the client has not bound to any output or sort columns, Content Index will not ask for any properties but the client must still provide a dummy implementation.

ICiCQuerySession::CreateDeferredPropRetriever

SCODE ICiCQuerySession::CreateDeferredPropRetriever(ppDeferredPropRetriever)

ICiCDeferredPropRetriever ** ppDeferredPropRetriever
Returns an ICiCDeferredPropRetriever interface that can be used by Content Index to retrieve properties on any document. The ICiCPropRetriever interface allows Content Index to retrieve properties on the “current” document. However, some of the output columns may be bound for “deferred retrieval” in which case Content Index needs to retrieve the properties at a later time. This interface allows Content Index to specify the WorkId of the document whose property is being retrieved explicitly.

The interface returned must use the ICiQueryPropertyMapper provided in the Init() method for translation of PROPIDs to FULLPROPSPECs and vice-versa.

Parameters
ppICiCDeferredPropRetriever [out]
Pointer to the variable to store the ICiCDeferredPropRetriever interface.

Return Values
Value
Meaning

S_OK
The operation was successful.

Other error code.

Comments
1. The client even in a dummy implementation must provide an ICiCDeferredPropRetriever interface. If the client has not bound to any output or sort columns, Content Index will not ask for any properties but the client must still provide a dummy implementation.

ICiCQuerySession::CreateEnumerator

SCODE ICiCQuerySession::CreateEnumerator(ppICiCScopeEnumerator)

ICiCScopeEnumerator ** ppICiCScopeEnumerator

Creates an ICiCScopeEnumerator interface for the current query specified in the Init() method. If the client returned CI_ENUM_MUST in the GetEnumOption() method, Content Index will call this method to create an enumerator.. If the value returned was CI_ENUM_SMALL or CI_ENUM_BIG, Content Index may optionally call this method.

If the client has no notion of enumeration, E_NOTIMPL can be returned as the return code.

Parameters
ppICiCScopeEnumerator [out]
Pointer to the variable to store the ICiCScopeEnumerator interface.

Return Values
Value
Meaning

S_OK
The operation was successful.

CI_E_NOT_ENUMERATED_
The query cannot be enumerated

E_NOTIMPL
Enumeration is not supported by client.

Other error code.

Comments
1. For a dummy implementation, return E_NOTIMPL

ICiCPropRetriever Interface

Supports retrieval of properties on the current document. Since this interface is provided by the CiCQuerySession object, the CiCQuerySession object can provide access to the query-wide state information.

The ICiCPropRetriever interface must be associated with the current query only. This allows the implementor of this interface to cache open property store records or object handles during property retrieval.

interface ICiCPropRetriever : IUnknown

{

SCODE BeginPropertyRetrieval(WORKID workid);

 SCODE RetrieveValueByPid (PROPID pid,

 PROPVARIANT * pbData,

 unsigned * pcb);

SCODE RetrieveValueByPropSpec(

 FULLPROPSPEC const * pFullPropSpec,

 PROPVARIANT * pbData,

 unsigned * pcb);

 SCODE FetchSDID([out] SDID * pSDID);

SCODE CheckSecurity(ACCESS_MASK am,

 BOOL * pfGranted);

virtual SCOEE IsInScope(BOOL * pfInScope);

virtual SCODE EndPropertyRetrieval();

};

ICiCPropRetriever::BeginPropertyRetrieval

SCODE ICiCPropRetriever::BeginPropertyRetrieval(workId)

WORKID workId

This is a hint to the client to open a document or a property store record corresponding to the document.

Parameters
workid [in]
WorkId of the document whose properties will be retrieved.

Return Values
Value
Meaning

S_OK
The operation was successful.

CI_E_WID_INVALID
Not a valid document WorkId

CI_E_WID_DELETED
The document got deleted.

Other error code.

Comments
1. For a dummy implementation, just return S_OK. For a dummy implementation to be valid, the only columns that can be specified in project or sort columns are WorkId and Rank.

ICiCPropRetriever::RetrieveValueByPid

SCODE ICiCPropRetriever::RetrieveValueByPid(pid, pbData, pcb)

PROPID pid

PROPVARIANT * pbData

unsigned * pcb

Retrieves a property on the document specified in the BeginPropertyRetrieval method.

Parameters
pid [in]
PROPID of the property to be retrieved. The ICiQueryPropertyMapper interface specified in the ICiCQuerySession::Init() method must be used to do the PROPID to FULLPROPSPEC conversion.

pbData [in]
Pointer to a variant in which the property value must be filled in.

pcb [in/out]
On input, specified the number of bytes in the pbData buffer, including the size of the PROPVARIANT. On output, if the return value is S_OK, the actual number of bytes used in the pbData buffer. If the returne value is CI_E_BUFFERTOOSMALL, the number of bytes needed to copy the property.

Return Values
Value
Meaning

S_OK
The operation was successful.

CI_E_WID_INVALID
BeginPropertyRetrieval() was not called.

CI_E_INVALID_PROPID
If the pid value is not a valid one.

CI_E_NOT_FOUND
If the property is valid, but the property does not exist for the document.

CI_E_BUFFERTOOSMALL.
The given buffer is not big enough to hold the value. *pcb will have the required buffer size.

Comments
1. For a dummy implementation, return E_NOTIMPL

ICiCPropRetriever::RetrieveValueByPropSpec

SCODE ICiCPropRetriever::RetrieveValueByPropSpec(pFullPropSpec, pbData, pcb)

FULLPROPSPEC const * pFullPropSpec
PROPVARIANT * pbData

unsigned * pcb

Retrieves a property on the document specified in the BeginPropertyRetrieval method. The property is specified using a FULLPROPSPEC. The function signature is almost like the one above with the exception that a FULLPROPSPEC is used to specify the property instead of a PropId.

ICiCPropRetriever::FetchSDID

SCODE ICiCPropRetriever::FetchSDID(pSDID)

SDID * pSDID
This method is not used in the current version of the Content Index. A client can return E_NOTIMPL for this method.

ICiCPropRetriever::CheckSecurity

SCODE ICiCPropRetriever::CheckSecurity(am, pfGranted)

ACCESS_MASK am

BOOL * pfGranted
Checks the security of the caller against the document. If the client does not implement security checking, return S_OK and set *pfGranted to TRUE always.

Parameters
am [in]
Access being requested. Same as the values specified in WIN32 SDK.

pfGranted [out]
Pointer to store the result.

TRUE if access is granted.

FALSE if access is not granted.

.

Return Values
Value
Meaning

S_OK
The operation was successful.

CI_E_WORKID_NOT_VALID
BeginPropertyRetrieval() was not called.

Other error code

Comments
1. For a dummy implementation, return S_OK and set *pfGranted to TRUE

ICiCPropRetriever::IsInScope

SCODE ICiCPropRetriever::IsInScope(pfInScope)

BOOL * pfInScope
Checks if the current document is in the query scope.

Parameters
pfInScope [out]
Pointer to store the result.

TRUE if the document is in scope.

FALSE if not.

Return Values
Value
Meaning

S_OK
The operation was successful.

CI_E_WORKID_NOT_VALID
BeginPropertyRetrieval() was not called.

Other error code

Comments
1. For a dummy implementation, return S_OK and set *pfInScope to TRUE

ICiCPropRetriever::EndPropertyRetrieval

SCODE ICiCPropRetriever::EndPropertyRetrieval(void)

Closes the handle returned by the BeginPropertyRetrieval method. Content Index signals the client that property retrieval on the document has ended.

Return Values
Value
Meaning

S_OK
The operation was successful.

CI_E_WORKID_NOT_VALID
BeginPropertyRetrieval() was not called.

Other error code

ICiCScopeEnumerator Interface- Optional

If a client wants to support enumeration, this interface is required. It allows Content Index to let the client to feed the documents that match an enumeration query. An enumeration query is not resolved by Content Index. Instead it is left to the client to interpret the query and give documents that match the query criterion one document at a time.

If the client uses Content Index for fetching, sorting and grouping on properties, that support is available on enumeration queries. Content Index supports OLE-DB Rowsets on enumeration query results if client supports the full ICiCQuerySession, ICiCPropertyRetriever interfaces in addition to the ICiCScopeEnumerator interfaces.

It is recommended that the scope enumerator support a way to determine the progress made so far, especially if the enumeration is likely to take a long time. This feedback will allow Content Index to convey the progress information to the user via OLE-DB. If it is not possible to track the progress, return 50% until completed and 100% after completion.

interface ICiCScopeEnumerator : IUnknown

{

SCODE Begin();

SCODE CurrentDocument(WORKID * pWorkId);

SCODE NextDocument(WORKID * pWorkId);

SCODE RatioFinished(ULONG *pulDenominator, ULONG *pulNumerator);

SCODE End();

};

ICiCScopeEnumerator::Begin

SCODE ICiCScopeEnumerator::Begin(void)

Begins an enumeration of the specified scopes. Begin positions itself on the first document. Hence, a CurrentDocument called right after Begin will return the first document (if there is one).

Parameters
none.

Return Values
Value
Meaning

S_OK
The operation was successful.

E_INVALIDARG
If the scopes specified as pDbProperties to the CiCQuerySession object are not valid..

CI_E_ENUMERATION_STARTED
Enumeration has alrady started for this scope, ie, Begin() was already called.

Comments

ICiCScopeEnumerator::CurrentDocument

SCODE ICiCScopeEnumerator::CurrentDocument(pWorkId)

WORKID * pWorkId
Gets the WorkId of the current document. The enumeration context is NOT advanced.

Parameters
pWorkId [out]
Pointer to store the current document’s workid.

Return Values
Value
Meaning

S_OK
The operation was successful.

CI_S_END_OF_ENUMERATION
There are no more documents. There is no document to return.

CI_E_NO_ENUMERATION
There is no enumeration context (Begin was not called).

Comments

ICiCScopeEnumerator::NextDocument

SCODE ICiCScopeEnumerator::NextDocument(pWorkId)

WORKID * pWorkId

Moves the enumerator to the next document and returns the next document’s WorkId. The WorkId returned must be the same one returned if CurrentDocument() were called after the call to NextDocument().

Parameters
pWorkId [out]
Pointer to store the current document workid (after advancing the enumeration context).

Return Values
Value
Meaning

S_OK
The operation was successful.

CI_S_END_OF_ENUMERATION
There are no more documents. There is no document to return.

CI_E_NO_ENUMERATION
There is no enumeration context (Begin was not called).

Comments

ICiCScopeEnumerator::RatioFinished

SCODE ICiCScopeEnumerator::RatioFinished(pulDenominator, pulNumerator)

ULONG * pulNumerator

ULONG * pulDenominator
Returns the progress made in the enumeration so far as a ratio.

Parameters
pulNumerator [out]
Pointer to the variable to store the numerator of the progress ratio.

pulDenominator [out]
Pointer to the variable to store the denominator of the progress ratio. MUST NEVER BE 0.

Return Values
Value
Meaning

S_OK
The operation was successful.

Comments

ICiCScopeEnumerator::End

SCODE ICiCScopeEnumerator::End(void)

Closes the enumration started in the Begin call.

Parameters
none.

Return Values
Value
Meaning

S_OK
The operation was successful.

CI_E_NO_ENUMERATION
There is no enumration context

Comments

ICiCIndexNotificationStatus Interface
This interface is required in the Push Filtering Model Only. It is not needed in Pull Filtering Model.

An interface used by the push-filtering model to notify completion status to client.

ICiCIndexNotificationStatus::Commit

SCODE ICiCIndexNotificationStatus::Commit()

Called by Content Index to notify the client that the document on which this interface was originally given was successfully added to Content Index.

Parameters
none.

Return Values
Value
Meaning

S_OK
The operation was successful.

Comments
1. This operation cannot fail. Content Index assumes that the client can take appropriate action when Commit() is called.

ICiCIndexNotificationStatus::Abort

SCODE ICiCIndexNotificationStatus::Abort()

Called by Content Index to notify the client that the document on which this interface was originally given could not be added to Content Index successfully. The client must requeue the document for filtering at a later time.

This method is usually called when there is a failure due to resource shortage (low memory or disk) inside Content Index.

Parameters
none.

Return Values
Value
Meaning

S_OK
The operation was successful.

Comments
1. This operation cannot fail. Content Index assumes that the client can take appropriate action when Abort() is called. Even if the function returns a failure code, Content Index will not take any action to record the failure.

2. The client must be careful while requeing a delete. If not carefully done, a document can be considered as deleted even when it got recreated.
Consider the following sequence of actions:
Document1 Delete, … , Document1 Create.
If the delete is requeued blindly after the Create, Document1 will be considered as deleted even though it got recreated.

Interfaces Provided By Content Index

This section describes the interfaces provided by Content Index.

ICiControl Interface

The ICiControl interface is the highest level provided by Content Index to the clients. It is an interface implemented on the CiControl object. The CiControl object can be created using COM (CoCreateInstance()). CLSID_CiControl is the classid of the CiControl object.

ICiControl is a bootstrap interface to start Content Index. The ICiControl interface can be obtained by doing a CoCreateInstance() of the CLSID_CiControl object and requesting

interface ICiControl : IUnknown

{

SCODE CreateContentIndex(ICiCDocStore * pICiCDocStore,

 ICiManager ** ppICiManager);

};

ICiControl::CreateContentIndex

SCODE ICiControl::CreateContentIndex(pICiCDocStore, ppICiManager)

ICiCDocStore * pICiCDocStore
ICiManager ** ppICiManager

Creates a CiManager object and returns its ICiManager interface. This method must be called only once per CiCDocStore Object - there is a strict one-one association between a CiCDocStore Object and CiManager Object.

Parameters
pICiCDocStore [in]
Pointer to ICiCDocStore interface that must be associated with the CiManager object.

ppICiManager [out]
Pointer to the variable where the ICiCManager interface of the CiManager object must be returned..

Return Values
Value
Meaning

S_OK
The operation was successful.

Other error codes

Comments

ICiStartup Interface

ICiStartup is the interface that starts Content Index. This interface is queriable on the CiManager object. Before initiating any other activity in the Content Index, it must be started up using this interface.

Content Index can be started in one of the following modes:

1. Indexing and Querying - In this mode Content Index will index the documents that are given by the client and also provides querying capability. The Content Index meta data will be opened in read-write mode.

2. Indexing Only - In this mode, Content Index will support only indexing of the documents given by the client. Content Index will not provide an ability to query against the Content Index data. This mode is useful for clients like Microsoft Site Server Search. Microsoft Site Server Search supports indexing and querying on separate compuers. This mode will be usee on the indexing computer.

This mode is also useful for CD-ROM indexing when producing the Content Index data to be put on a CD.

3. Querying Only - In this mode, Content Index disables its indexing support and enables query support only. This mode is useful for the read-only index on a CD-ROM. It will also be used on the querying machine in a Microsoft Site Server Search system.

interface ICiStartup : IUnknown

{

SCODE StartupContentIndex(WCHAR const * pwszCiDirectory,

 CI__STARTUP_INFO const * pStartUpInfo) = 0;

};

It is exteremely important that the thread calling any of the startup methods be running in the SYSTEM context or the Administrator Context. All other Content Index worker threads will be created with the same privileges of the thread calling the startup routine.

CI_STARTUP_FLAGS

Flags that specify the startup configuration of Content Index.

typedef ULONG CI_STARTUP_FLAGS;

#define CI_CONFIG_ENABLE_INDEXING 0x1

#define CI_CONFIG_ENABLE_QUERYING 0x2

#define CI_CONFIG_ENABLE_INDEXING 0x1

#define CI_CONFIG_ENABLE_QUERYING 0x2

#define CI_CONFIG_READONLY 0x4

#define CI_CONFIG_INPROCESS_FILTERING 0x8

#define CI_CONFIG_ENABLE_BULK_SECURITY 0x10

#define CI_CONFIG_ENABLE_INDEX_MIGRATION 0x20

#define CI_CONFIG_PROVIDE_PROPERTY_MAPPER 0x40

#define CI_CONFIG_EMPTY_DATA 0x100

#define CI_CONFIG_PUSH_FILTERING 0x200

#define CI_CONFIG_LOAD_FROM_FILES 0x400

The values and their meaning are given below.

Value
Meaning

CI_CONFIG_ENABLE_INDEXING
Enable indexing in the Content Index. The Content Index meta data must be on read write media.

Not compatible with the following flags:

CI_CONFIG_READONLY

CI_CONFIG_ENABLE_QUERYING
Enable querying in the Content Index.

Atleast one of CI_CONFIG_ENABLE_INDEXING and CI_CONFIG_ENABLE_QUERYING must be set.

CI_CONFIG_READONLY
Open Content Index meta data in a read only mode.

Not compatible with the following flags:

CI_CONFIG_ENABLE_FILTERING

CI_CONFIG_INPROCESS_FILTERING

CI_CONFIG_ENABLE_INDEX_MIGRATION

CI_CONFIG_EMPTY_IF_CORRUPT

CI_CONFIG_EMPTY_ALWAYS

CI_CONFIG_PUSH_FILTERING

CI_CONFIG_INPROCESS_FILTERING
Enable in-process filtering. Rather running the filtering in a separate daemon process, run the filtering in the main Content Index process. This flag must be turned on only if all the filters provided by the client are trusted.

This flag can be enabled only if CI_CONFIG_ENABLE_INDEXING is set to TRUE.

Not compatible with the following flags:

CI_CONFIG_READONLY

CI_CONFIG_ENABLE_BULK_SECURITY
Set if the client supports bulk security checking. Not used in the current version

CI_CONFIG_ENABLE_INDEX_MIGRATION
Content Index must enable migration of indexes from the indexing machine to the querying machine.

This flag cannot be set to TRUE if both indexing and querying are enabled.

Not compatible with the following flags:

CI_CONFIG_READONLY

CI_CONFIG_PROVIDE_PROPERTY_MAPPER
Content Index must provide the PropertyMapper object. If this flag is set to FALSE, the CiCDocStore object must provide the property mapper.

CI_CONFIG_EMPTY_DATA
Empty the Content Index persistent data before starting up.

Not compatible with the following flags:

CI_CONFIG_READONLY

CI_CONFIG_PUSH_FILTERING
Enable the “push filtering model”.

The CI_CONFIG_INPROCESS_FILTERING flag must be set.

Not compatible with the following flags:

CI_CONFIG_READONLY

CI_CONFIG_LOAD_FROM_FILES
Load Content Index data from a saved version. Usually this is a result of transferring data from an indexing machine to a querying machine. If this is set to TRUE, the “pFileList” in the CI_STARTUP_INFO must point to a valid file enumerator.

CI_CONFIG_ENABLE_INDEX_MIGRATION must be set to TRUE.

CI_CONFIG_ENABLE_QUERYING must be set to TRUE.

Not compatible with the following flags.

CI_CONFIG_READONLY

CI_STARTUP_INFO

This structure has the startup information for Content Index when it is run in an Indexing and Querying mode.

typedef tagCI_STARTUP_INFO

{

CI_STARTUP_FLAGS startupFlags;

CLSID clsidDaemonClientMgr;

 BOOL fFull;

 BOOL fCallerOwnsFiles;

 IEnumString * pFileList;

} CI_STARTUP_INFO;

Struct Fields
startupFlags
Flags specifying the startup options. The various values and valid combinations are listed above.

clsidDaemonClientMgr [in]
CLSID of the CiCFilterClient object. Client must register this CLSID with OLE and must support creation of this COM object as an INPROC server for free threaded access.
This is valid in the Pull Filering Model only

fFull
Indicates whether the files being loaded are from a FULL save or an INCREMETNAL save.
This field is valid only if CI_CONFIG_LOAD_FROM_FILES flag is turned on.

fCallerOwnsFiles
Indicates whether the files are owned by the caller. If set to TRUE, the callee can just read the files. If set to FALSE, the caller should delete the files after loading the data.
This field is valid only if CI_CONFIG_LOAD_FROM_FILES flag is turned on.

pFileList
An enumerator giving the list of files to be loaded.
This field is valid only if CI_CONFIG_LOAD_FROM_FILES flag is turned on. It MUST be specified if CI_CONFIG_LOAD_FROM_FILES is set to TRUE.

Comments
1. Appropriate security must be set on all the files that have to be loaded. They should have the same security as the files in the Content Index directory.

2. At load time, the current implementation requires all the Content Index files to be in the same directory. Otherwise, the move or copy may fail. Consitency checks are done before copying the new files which requires all the files to be in ond directory. The directory from which to load the files MUST be different from the one specified for Content Index startup.

ICiStartup::StartupContentIndex

SCODE ICiStartup::StartupContentIndex(pwszStartupDirectory, pStartupInfo)

CI_STARTUP_INFO const * pStartupInfo

This method starts up the Content Index based upon the startup information provided.

Parameters
pwszStartupDirectory [in]
The directory in which Content Index persistent data must be created. It must be on a local drive.

pStartupInfo [in]
Pointer to the structure containing the startup configuration.

Return Values
Value
Meaning

S_OK
The operation was successful.

CI_E_ALREADY_STARTED
Content Index is already started.

CI_E_INVALID_SEC_CONTEXT
The security context is not valid. The call must be made in the default process context.

CI_E_INVALID_STATE
Content Index is not a valid state for startup.

CI_CORRUPT_DATABASE
Content Index is corrupt.

Other error code.

Comments
1. Appropriate security must be set on the directory specified in pwszStartupDirectory variable. Since Content Index will be storing all the indexed data in this directory, only privileged accounts must have access to the data in this directory.

2. The security context in which this method is called must have the necessary privileges to access the pwszStartupDirectory. (Read only or Read/Write depending upon the startup flags).

3. All other Content Index worker threads will be created using the default process context.

4. If CI_CORRUPT_DATABASE is the return code, the client must take the necessary administrative actions like taking a backup of the corrupt data or logging an event to the event log and then call with the CI_CONFIG_EMPTY_ALWAYS flag set to TRUE.

ICiAdminParams Interface

This interface allows the control of Content Index administartion parameters. The ICiManager and ICiFilterControl interfaces expose ICiAdminParams.

interface ICiAdminParams : IUnknown

{

SCODE SetValue(CI_ADMIN_PARAMS param, DWORD dwValue);

 SCODE SetParamValue(CI_ADMIN_PARAMS param, PROPVARIANT const * pVarValue);

 SCODE SetValues(ULONG nParams,

 const PROPVARIANT * aParamVals,

 const CI_ADMIN_PARAMS * aParamNames);

 SCODE GetValue(CI_ADMIN_PARAMS param, DWORD * pdwValue);

 SCODE GetInt64Value(CI_ADMIN_PARAMS param, __int64 * pValue);

 SCODE GetParamValue(CI_ADMIN_PARAMS param, PROPVARIANT ** ppVarValue);

 SCODE IsSame(CI_ADMIN_PARAMS param,

 PROPVARIANT const * pVarValue,

 BOOL * pfSame);

 SCODE SetConfigType(CI_CONFIG_TYPE configType);

 SCODE GetConfigType(CI_CONFIG_TYPE * pConfigType);

}

CI_ADMIN_PARAMS

An enumerated type for all the Content Index administration parameters that can be controlled. Content Index will use the default values for any parameter that is not explicitly set. Some of the parameters have a range of valid values. The parameters, range of default values and their meaning can be found in Appendix-B.

CI_CONFIG_TYPE

An enumerated type for the high-level description of the configuration. Rather than setting individual administration parameters, this allows to classify the Content Index using certain high level concepts like a dedicated server, multi-purpose computer, etc.

Value
Meaning

CI_CONFIG_DEFAULT
Use the default values for administrative and configuration control parameters.

CI_CONFIG_OPTIMIZE_FOR_SPEED
Optimize the parameters for speed. Use resources for maximum performance. When this is set, the system must have adequate memory and free disk space.

CI_CONFIG_OPTIMIZE_FOR_SIZE
Optimize for efficient resource usage. Performance is not the goal. Minimum recommended memory and disk are sufficient.

CI_CONFIG_OPTIMIZE_FOR_DEDICATED_INDEXING
Optimize for dedicated indexing.

CI_CONFIG_OPTIMIZE_FOR_DEDICATED_QUERYING
Optimize for dedicated querying.

CI_CONFIG_OPTIMIZE_FOR_DEDICATED_INDEX_QUERY
Optimize for query speed and performance rather than for file server performance.

CI_CONFIG_OPTIMIZE_FOR_MULTIPURPOSE_SERVER
The computer is a multi-purpose server running as a file server and appliation server with other applications. Content Index must tune itself for good overall performance.

ICiAdminParams::SetValue

Function Defintion To be written

Sets the value of the specified parameter. This call is useful for the majority of the parameters which have a DWORD type value.

ICiAdminParams::SetParamValue

Sets the value of the specified parameter. The value is specified as a variant and is using for setting parameters that are not DWORD type.

ICiAdminParams::GetValue

Retrieves the value of the given parameter as a DWORD.

ICiAdminParams::GetParamValue

Retrieves the value of the given parameters as a variant.

ICiAdminParams::SetConfigType

Sets the high level configuration of Content Index.

Need more explanation about which flags can be enabled together.
ICiAdminParams::GetConfigType

Retrieves the high level configuration of Content Index.

ICiManager Interface

This is the primary interface provided by Content Index. The CiManager object provides the interface. CiManager object can be created using the ICiControl::CreateContentIndex() method.

interface ICiManager : IUnknown

{

SCODE GetStatus(CIF_STATE * pCiState);

 SCODE Empty(void);

 SCODE Shutdown(void);

SCODE UpdateDocument(CI_DOCUMENT_UPDATE_INFO const * pInfo);

SCODE StartFiltering(ULONG cbData,

 BYTE const * pbData);

 SCODE FlushUpdates(void);

 SCODE GetAdminParams(ICiAdminParams ** ppICiAdminParams);

 SCODE QueryRcovStorage(IUnknown ** ppIUnknown);

 SCODE ForceMerge(CI_MERGE_TYPE mt);

 SCODE AbortMerge(void);

 SCODE IsQuiesced(BOOL * pfState);

SCODE GetPropertyMapper(IPropertyMapper ** ppIPropertyMapper);

}

CI_UPDATE_TYPE

typedef enum tagCI_UPDATE_TYPE

{

 CI_UPDATE_ADD = 0x1, // Document add

 CI_UPDATE_DELETE = 0x2, // Document delete

 CI_UPDATE_MODIFY = 0x4, // Document modify

 CI_UPDATE_SCAN = 0x1000 // Scan flag. Set if the change is due to

 // to a corpus scan.

} CI_UPDATE_TYPE;

CI_DOCUMENT_UPDATE_INFO

This structure contains information about a single document update.

typedef struct tagCI_DOCUMENT_UPDATE_INFO

{

WORKID workId;

 VOLUMEID volumeId;

 USN usn;

 PARTITIONID partId;

 CI_UPDATE_TYPE change;

} CI_DOCUMENT_UPDATE_INFO;

Struct Fields
workId
Specifies the WorkId of the document.

volumeId

Identifies the document source of the update. Valid values are 1 to 255.

This field is useful for clients that may use a Content Index instance to store data from multiple document sources and each source has its own USN sequence. NTFS 5.0 based client needs this feature because a single Content Index may have data from multiple volumes and each volume has an independent USN sequence.

If a client does not support usns, use CI_VOLID_USN_NOT_ENABLED (0).

usn
UpdateSequenceNumber of the update.
If USNs are not supported by the client, set this to CI_DEFAULT_USN (0) always.

change
Specifies the type of change - Add, Modify, Delete

partId
PartitionId of the partition to which this document belongs. For this release, always set to CI_DEFAULT_PARTITION_ID (1).

CIF_STATE_FLAGS

Flags that indicate any long running activity going on in the Content Index.

typedef ULONG CIF_STATE_FLAGS;

#define CIF_STATE_SHADOW_MERGE 0x1

#define CIF_STATE_MASTER_MERGE 0x2

#define CIF_STATE_CONTENT_SCAN_REQUIRED 0x4

#define CIF_STATE_ANNEALING_MERGE 0x8

#define CIF_STATE_INDEX_MIGRATION_MERGE 0x10

CIF_STATE

A structure giving internal Content Index state information. The values returned in this structure can be used by the client to provide information on Content Index internal state.

typedef struct tagCIF_STATE

 {

 DWORD cbStruct; // size of the struct passed

 DWORD cWordList; // # of wordlists

 DWORD cPersistentIndex; // # of persistent indexes

 DWORD cQueries; // # of running queries

 DWORD cDocuments; // # of documents to filter

 DWORD cFreshTest; // # of entires in the fresh test

 DWORD dwMergeProgress; // % done in current merge

 CIF_STATE_FLAGS eState; // bit array of state information

 DWORD cFilteredDocuments; // # of documents filtered thus far

 DWORD dwIndexSize; // Total size (in MB) of index

 DWORD cUniqueKeys; // # of unique keys in index

 } CIF_STATE;

ICiManager::GetStatus

SCODE ICiManager::GetStatus(pCiState)

CIF_STATE * pCiState

Gets the status of Content Index. The status will contain information like the number of documents filtered, total number of unique words, number of wordlists, number of persistent indexes, etc.

Parameters
pCiState [out]
Pointer to the state information structure in which Content Index will return its internal state information..

Return Values
Value
Meaning

S_OK
The operation was successful.

CI_E_SHUTDOWN
Content Index is shut down.

CI_E_NOT_STARTED
Content Index has not been started.

CI_E_INVALID_STATE
Content Index is not a valid state for startup.

Other error code.

Comments

ICiManager::Empty

SCODE ICiManager::Empty()

Empties the entire contents of the Content Index and initializes to have no index data.

Parameters
none

Return Values
Value
Meaning

S_OK
The operation was successful.

CI_E_SHUTDOWN
Content Index is shut down.

CI_E_NOT_STARTED
Content Index has not been started.

CI_E_INVALID_STATE
Content Index is not a valid state for startup.

Other error code.

Comments
1. This operation is still not supported while the system is running.

ICiManager::Shutdown

SCODE ICiManager::Shutdown()

Shuts down the Content Index and queries will be rejected. All in-progress operations like index merges, etc. will be stopped. All requests after this point for Content Index cursors will be rejected.

Parameters
none

Return Values
Value
Meaning

S_OK
The operation was successful.

CI_E_SHUTDOWN
Content Index is shut down.

CI_E_NOT_STARTED
Content Index has not been started.

CI_E_INVALID_STATE
Content Index is not a valid state for startup.

Other error code.

Comments

ICiManager::UpdateDocument

SCODE ICiManager::UpdateDocument(pUpdateInfo)

CI_DOCUMENT_UPDATE_INFO * pUpdateInfo

Applies to Pull Filtering Model Only

Content Index will queue the specified document for filtering. If the change type indicates that it is a deletion, data for the document will be deleted in the Content Index.

Parameters
pUpdateInfo
Specifies all the information about the update being notified.

Return Values
Value
Meaning

S_OK
The operation was successful.

Other error code.

Comments
1. This method can be invoked in the Pull Filtering Model only.

ICiManager::StartFiltering

SCODE ICiManager::StartFiltering(pbClientData, cbClientData)

BYTE const * pbClientData
ULONG cbClientData

Applies to both Push and Pull Filtering Model
Starts up the CiDaemon that will filter documents. The data specified is given to client filtering component. Content Index does not interpret the given data.

Parameters
pbClientData
Poiner to the client pass through data.

cbClientData
Number of bytes in pbClientData.

Return Values
Value
Meaning

S_OK
The operation was successful.

CI_E_DATA_TOO_LARGE
The pass through data given is very large.

CI_E_INVALID_MODE
Content Index was started in an incompatible mode. If Filtering was disabled at startup, this method should not be called.

Comments

ICiManager::FlushUpdates

SCODE ICiManager::FlushUpdates()

Applies in Pull Filtering Model Only
Flushes all the queued in-memory update notifications and writes them to disk persistently.

Parameters
none

Return Values
Value
Meaning

S_OK
The operation was successful.

Other error code as appropriate

Comments
1. This method is relevant to the client in the Pull Filtering Model only.

ICiManager::QueryRcovStorage

Creates a recoverable storage object and returns its interface pointer.

More information about the usage and the interface specification needs to be added in a separate document.

This method is not implemented for Version 1.0

ICiManager::ForceMerge

SCODE ICiManager::ForceMerge(CI_MERGE_TYPE mt)

Forces a merge on the Content Index data. This is a no-wait call. It just starts a Master Merge and returns immediately. Client has to use the GetState() call to determine the progress of the merge.

Parameters
mt [in]
Merge Type. The merge type can be any of master, shadow, annealing or any. The last is a wildcard which can be used to wake up the merge thread but let the system decide if and what type of merge is necessary.

Return Values
Value
Meaning

S_OK
The operation was successful.

Other error code as appropriate

Comments

ICiManager::AbortMerge()

SCODE ICiManager::AbortMerge()

Aborts any in progress merge. The call will not wait until the abort is complete. It triggers an abort and returns immediately.

Parameters
none

Return Values
Value
Meaning

S_OK
The operation was successful.

Other error code as appropriate

Comments

ICiManager::IsQuiesced(pfState)

SCODE ICiManager::IsQuiesced(pfState)

BOOL * pfState
Tests if Content Index is quisced. Content Index is considered to be quiesced if there are no outstanding documents to be filtered and there is no merge going on.

Parameters
pfState [out]
Set to TRUE if CI is quiesced. FALSE otherwise.

Return Values
Value
Meaning

S_OK
The operation was successful.

Other error code as appropriate

Comments

ICiManager::GetPropertyMapper()

SCODE ICiManager::GetPropertyMapper(ppIPropertyMapper)

IPropertyMapper ** ppIPropertyMapper
Fetches the IPropertyMapper interface of the CPropertyMapper object.

Parameters
 ppIPropertyMapper [out]
Variable to store the IPropertyMapper interface. The interface will be refcounted for use by the caller.

Return Values
Value
Meaning

S_OK
The operation was successful.

Other error code as appropriate

Comments

ICiQueryPropertyMapper Interface

The interface is used for mapping properties in a query from FULLPROPSPECs to 32 bit PROPIDs and vice versa. The Content Index provides this for use at query time only. The ICiCPropRetriever and ICiCDeferredPropRetriever interfaces use this interface to convert PROPIDs to FULLPROPSPECs and vice-versa.
interface ICiQueryPropertyMapper: IUnknown

{

SCODE PropertyToPropid(FULLPROPSPEC const * pPropSpec,

 PROPID * pPropId);

SCODE PropidToProperty(PROPID propId, FULLPROPSPEC const ** ppPropSpec);

};

ICiQueryPropertyMapper::PropertyToPropid

SCODE ICiQueryPropertyMapper::PropertyToPropid(pPropSpec, pPropId)

FULLPROPSPEC const * pPropSpec

PROPID * pPropId

Maps a FULLPROPSPEC query property to a 32bit number called the PropId.

Parameters
pPropSpec [in]
Pointer to the FULLPROPSPEC to map.

pPropId [out]
If successful, on output, will be set to the PropId corresponding to the FULLPROPSPEC given in pPropSpec.

Return Values
Value
Meaning

S_OK
The operation was successful.

CI_E_NOT_FOUND
The specified property has no.

Other error code as appropriate

Comments
1. Certain properties must be mapped to specific PROPIDs. See Appendix C – Well-Known PROPIDs for more information.

ICiQueryPropertyMapper::PropidToProperty

SCODE ICiQueryPropertyMapper::PropidToProperty(propId, ppPropSpec)

PROPID propId

FULLPROPSPEC ** ppPropSpec

Maps a PropId query property to its FULLPROPSPEC.

Parameters
propId [in]
PropId to lookup.

ppPropSpec [out]
If successful, on output, this will be set to the FULLPROPSPEC corresponding to the propId given.

Return Values
Value
Meaning

S_OK
The operation was successful.

CI_E_NOT_FOUND
The specified property has no mapping.

Other error code as appropriate

Comments
ppPropSpec is owned by the Content Index and the client does not have to free anything.

ICiPersistIncrFile Interface

This interface implements Loading and Saving Content Index persistent data. It supports incremental as well as full save. The CiManager object implements this interface.

interface ICiPersistIncrFile : IUnknown

{

 SCODE Load(BOOL fFull,

 BOOL fCanMoveFiles,

 IEnumString * pFileList,

 IProgressNotify * pIProgressNotify,

 BOOL * pfAbort);

 SCODE Save(WCHAR const * pwszSaveDirectory,

 BOOL fFull,

 IProgressNotify * pIProgressNotify,

 BOOL * pfAbort,

 ICiEnumWorkids ** ppWorkidList,

 IEnumString ** ppFileList,

 BOOL * pfFull,

 BOOL * pfCallerOwnsFiles

);

 SCODE SaveCompleted();

}

ICiPersistIncrFile::Load

SCODE ICiPersistIncrFile::Load(fFull, fCallerOwnsFiles, pFileList, pIProgressNotify, pfAbort)

BOOL fFull

BOOL fCallerOwnsFiles

IEnumString * pFileList

IProgressNotify * pIProgressNotify

BOOL * pfAbort
Loads the given new data into Content Index and integrates it with the existing data. This method can be called even when Content Index is running and serving queries.

Parameters
fFull [in]
Set to TRUE if the data being provided is the result of a FULL save on the indexing machine.

fCanMoveFiles [in]
Set to TRUE if the caller owns the files to be loaded. The callee can only read from the files. If set to FALSE, it is the responsibility of the callee to delete the files are loading them.

pFileList [in]

Return Values
Value
Meaning

S_OK
The operation was successful.

Other error code as appropriate

Comments
1. This method can be called only on a machine in which querying is enabled. Also, incremental indexing must be enabled at startup time.

ICiPersistIncrFile::Save

SCODE ICiPersistIncrFile::Save(pwszSaveDirectory, fFull, pIProgressNotify, pfAbort, ppWorkidList, ppFileList, pfFull, pfCallerOwnsFiles)

WCHAR const * pwszSaveDirectory

BOOL fFull

IProgressNotify * pIProgressNotify

BOOL * pfAbort

ICiEnumWorkids ** ppWorkidList

IEnumString ** ppFileList

BOOL * pfFull

BOOL * pfCallerOwnsFiles
Makes a copy of the Content Index persistent data. This method is capable of a full save as well as an incremental save. The data is saved as discrete files in the provided directory. The list of files provided as output can be transferred by the caller to a querying computer where it can be loaded either at the startup time or using the ICiPersistIncrFile::Load method.

Parameters
pwszSaveDirectory [in]
Directory in which the Content Index must save the data. The directory must be empty when called. Content Index may decide to empty the directory before saving the current persistent data.

The directory must be on a LOCAL drive. If a remote drive is specified, the operation may fail in unexpected ways.

Appropriate security must be set on this directory. It is recommended that it have the same security as the Content Index directory.

fFull [in]
Set to TRUE if Content Index must make a full save. If set to FALSE, Content Index will make an incremental save since the last FULL save. When called for the very first time, Content Index will make a full save no matter what this parameter says.

pIProgressNotify [in/out]
Interface pointer that must be used by Content Index to notify about the progress being made in the save. Since this can be a very long operation, feed back will be provided by Content Index about the progress being made.

pfAbort [in]
A flag used by the caller to signal an abnormal termination of the operation. If the caller wants to terminate the save operation before it is completed, this flag must be set to TRUE by the caller.

When this flag is set to TRUE, Content Index will abort the save at the earliest possible opportunity. However, there are no guarantees on the exact time when it will be aborted.

ppWorkidList [out]
If successful, this variable will hold the interface pointer of the ICiEnumWorkids interface. For an incremental save, this interface can be used to enumerate the WorkIds that have changed since the last full save. For a full save, the enumerator will be empty.
The caller can use this list of WorkIds to transfer any additional information to the query machine.

ppFileList [out]
On output, will be set the IEnumString interface. The enumerator can be used to get the list of files saved by Content Index. The enumerator will return FULL paths of the files saved.
The caller MUST transfer ALL the files given by the enumerator. Failing to do so will produce unexpected results when an attempt is made to load the files on the querying machine.

pfFull [out]
Poiner to the save type. Content Index will set the variable to TRUE if a full save is performed. Set to FALSE if an incremental save is performed.

pfCallerOwnsFiles [out]
Pointer to the output variable indicating the ownership of the saved files. If set to TRUE, it is the responsibility of the caller to free up the files after they are copied over. If set to FALSE, the callee is responsible for cleanup of files. The files will be cleaned when ICiPersistIncrFile::SaveCompleted() is called.

Return Values
Value
Meaning

S_OK
The operation was successful.

CI_E_INVALID_STATE
Content Index is not a state to do the specified save. Usually indicates an incompatible startup configuration.

Other error code as appropriate

Comments
1. The calling thread must be a privileged thread having read access to the Content Index directory and write access to the destination directory. The thread must not be impersonated.

ICiPersistIncrFile::SaveCompleted

SCODE ICiPersistIncrFile::SaveCompleted()

SaveCompleted() cleans up the files created during the last successful Save() operation. This method is valid only if the pfCallerOwnsFiles is set to TRUE in the Save() method.

Parameters
none [in]

Return Values
Value
Meaning

S_OK
The operation was successful.

CI_E_INVALID_STATE
This call is not valid.

Other error code as appropriate

Comments
1. The calling thread must be a privileged thread having write access to the destination directory specified in the Save() method.. The thread must not be impersonated.

IPropertyMapper Interface

Maps FULLPROPSPECs to 32 bit PROPIDs and vice versa. This can be provided either by the client or by Content Index. The startup parameters indicate if the client is providing the property mapper or if Content Index must provide the PropertyMapper.

interface IPropertyMapper: IUnknown

{

SCODE PropertyToPropid(FULLPROPSPEC const * pPropSpec,

 BOOL fCreate,

 PROPID * pPropId);

SCODE PropidToProperty(PROPID propId, FULLPROPSPEC ** ppPropSpec);

};

IPropertyMapper::PropertyToPropid

SCODE IPropertyMapper::PropertyToPropid(pPropSpec, fCreate, pPropId)

FULLPROPSPEC const * pPropSpec

BOOL fCreate

PROPID * pPropId

Maps a FULLPROPSPEC to a 32bit number called the PropId and returns in. If the fCreate flag is set to FALSE, then this method works as a look up function. If fCreate flag is set to TRUE, a new PropId will be created if there is no existing mapping for the given FULLPROPSPEC.

Parameters
pPropSpec [in]
Pointer to the FULLPROPSPEC to map.

fCreate [in]
This flag controls what this method does if the given FULLPROPSPEC has no mapping already. If this is set to TRUE and the FULLPROPSPEC has no mapping already, a new mapping will be created. If this is set to FALSE and the FULLPROPSPEC has no mapping already, a new mapping will not be created.

pPropId [out]
If successful, on output, will be set to the PropId corresponding to the FULLPROPSPEC given in pPropSpec.

Return Values
Value
Meaning

S_OK
The operation was successful.

CI_E_NOT_FOUND
The specified property has no mapping and fCreate flag was set to FALSE.

Other error code as appropriate

Comments
1. If the calling thread is impersonated when this method is called, doing a RevertToSelf() must provide privileged access to the Content Index directory.
2. Certain properties must be mapped to specific PROPIDs. See Appendix C – Well-Known PROPIDs for more information.

IPropertyMapper::PropidToProperty

SCODE IPropertyMapper::PropidToProperty(propId, ppPropSpec)

PROPID propId

FULLPROPSPEC ** ppPropSpec

Maps a PropId to its FULLPROPSPEC.

Parameters
propId [in]
PropId to lookup.

ppPropSpec [out]
If successful, on output, this will be set to the FULLPROPSPEC corresponding to the propId given.

Return Values
Value
Meaning

S_OK
The operation was successful.

CI_E_NOT_FOUND
The specified property has no mapping.

Other error code as appropriate

Comments
1. If the calling thread is impersonated when this method is called, doing a RevertToSelf() must provide privileged access to the Content Index directory.

2. The implementor of this interface owns the ppPropSpec. In the case of ppPropSpec containing an LPOLESTR value, the string can be copied to a preallocated buffer owned by the class that implements this interface. Hence the user of this method does not have to free any memory.

ICiIndexNotification Interface - Optional

This interface is used in the Push Filtering Model only.

An interface provided by Content Index in the Push Filtering Model to let the client provide document change notifications.

interface ICiIndexNotification : IUnknown

{

SCODE AddNotification(WORKID wid, ICiCIndexNotificationStatus * pStatus,

 ICiIndexNotification ** ppICiIndexNotification);

SCODE ModifyNotification(WORKID wid, ICiCIndexNotificationStatus * pStatus,

ICiIndexNotification ** ppICiIndexNotifiation);

SCODE DeleteNotification(WORKID wid, ICiCIndexNotificationStatus * pStatus);

};

ICiIndexNotification::AddNotification

SCODE ICiIndexNotification::AddNotification(wid, pStatus, ppICiIndexNotificationEntry)

WORKID wid

ICiCIndexNotificationStatus * pStatus

ICiIndexNotificationEntry ** ppICiIndexNotification

Method that lets the client add a document to the Content Index.

Parameters
wid [in]
WorkId of the document that must be added.

pStatus [in]
Pointer to the ICiCIndexNotificationStatus. Content Index will use this interface to notify the client about the success or failure of this operation. The Add operation will not be completed in the context of the callee. When the operation is completed later, this interface pointer will be used to notify the status..

ppICiIndexNotificationEntry [out]
A variable to store the interface pointer of ICiIndexNotification. The caller can use the interface returned in this variable to add text and properties for the document.

Return Values
Value
Meaning

S_OK
The operation was successful.

Other error code as appropriate

Comments

ICiIndexNotification::ModifyNotification

SCODE ICiIndexNotification::ModifyNotification(wid, pStatus, ppICiIndexNotification)

WORKID wid

ICiCIndexNotificationStatus * pStatus

ICiIndexNotification ** ppICiIndexNotification

Method that lets the client give a modification notification to Content Index. The client can call this method when an existing document gets modified.

Internally, Content Index does not treat modification any differently from an addition of a document. The behavior and parameters are exactly same as AddNotification() method.

ICiIndexNotification::DeleteNotification

SCODE ICiIndexNotification::DeleteNotification(wid, pStatus)

WORKID wid

ICiCIndexNotificationStatus * pStatus

Method that lets the client notify the Content Index that a document got deleted.

Parameters
wid [in]
WorkId of the document that got deleted..

pStatus [in]
Pointer to the ICiCIndexNotificationStatus. Content Index will use this interface to notify the client about the success or failure of this operation. The deletion will not be completed in the context of the callee. When the operation is completed later, this interface pointer will be used to notify the status..

Return Values
Value
Meaning

S_OK
The operation was successful.

Other error code as appropriate

Comments

ICiIndexNotificationEntry Interface
This interface is needed in the Push Filtering Model only..
An interface returned by ICiIndexNotification::AddNotification() and ICiIndexNotification::ModifyNotification() methods that will allow the client to give text and properties of a document. The text and properties will be indexed by Content Index and available for queries later.

interface ICiIndexNotificationEntry : IUnknown

{

SCODE AddText(STAT_CHUNK const * pStatChunk,

 WCHAR const * pwszText);

 SCODE AddProperty(STAT_CHUNK const * pStatChunk,

 PROPVARIANT const * pPropVariant);

 SCODE AddCompleted(ULONG fAbort);

};

ICiIndexNotificationEntry::AddText

SCODE ICiIndexNotificationEntry::AddText(pStatChunk, pwszText)

STAT_CHUNK const * pStatChunk

WCHAR const * pwszText

A method to add text of a document to Content Index. AddText() can be called multiple times, providing a chunk of data each time. This allows the client to split up a large document into multiple chunks and give a chunk at a time. The data provided is broken up into words and added to the Content Index indexes.

For exact semantics of the pStatChunk parameter, please refer to the IFilter specification.

Parameters
pStatChunk [in]
Pointer to the STAT_CHUNK describing the data in the pwszText. For more details about the STAT_CHUNK structure description, please refere to IFilter specification..

pwszText [in]
Pointer to UNICODE text in the current chunk.

Return Values
Value
Meaning

S_OK
The operation was successful.

Other error code as appropriate

Comments

ICiIndexNotificationEntry::AddProperty

SCODE ICiIndexNotificationEntry::AddProperty(pStatChunk, pPropVariant)

STAT_CHUNK const * pStatChunk

PROPVARIANT const * pPropVariant

A method to add properties of a document to Content Index.

Parameters
pStatChunk [in]
Pointer to the STAT_CHUNK describing the data in the pPropVariant. For more details about the STAT_CHUNK structure description, please refere to IFilter specification..

pPropVariant [in]
Pointer to property given as a PROPVARIANT..

Return Values
Value
Meaning

S_OK
The operation was successful.

Other error code as appropriate

Comments

ICiIndexNotificationEntry::AddCompleted

SCODE ICiIndexNotificationEntry::AddCompleted(fAbort)

BOOL fAbort

This method is used by the client to signal to Content Index that all the data for the current document has been given. Once AddCompleted() is called, AddText() or AddProperty() cannot be called for this document.

Parameters
fAbort [in]
If set to FALSE, Content Index should assume that all the data for the current document has been successfully added. Content Index can now migrate the data to its persistent indexes.

If set to TRUE, Content Index should throw out the data for the current document .

Return Values
Value
Meaning

S_OK
The operation was successful.

Other error code as appropriate

Comments

Content Index Startup and Shutdown Issues

Content Index is started and shutdown by the client. If querying is enabled, Content Index must be started when the client is in a state to process queries.

During shutdown, client activity that produces update notifications, etc. must be stopped before stopping Content Index.

Content Index Shutdown

The ICiManager::Shutdown method must be called on the CiManager. Once Shutdown is called, all future calls to CiManager will fail.

The caller of ICiManager::Shutdown will be blocked until the shutdown operation is complete. As part of shutdown processing, Content Index will abort active queries. New queries will not be allowed to start.

After ICiManager::Shutdown returns, the ICiManager interface must be released.

Implementation Notes

· The client should never call into Content Index from the call back functions invoked by Content Index.

· Content Index will never call into the client from within a method invoked by the client, except the ICiCAdviseStatus::NotifyEvent() and ICiCAdviseStatus::NotifyStatus() methods.

· All threads must be created in the default process context. In otherwords, when RevertToSelf() is called at any time, the thread must have full privileges to read and write the content index data.

· The security context of the filtering thread is allowed to freely float by the Content Index. If the client impersonates the thread to some context, perform an operation and return to Content Index in the impersonated context, Content Index will not interfere with the impersonation. The client can assume that subsequent calls into the client are in the last impersonated context.

Appendixes

Appendix A – Event Log Messages

The eventlog message ids are listed here.

· Specify that the templates for the eventlog messages are exported out of query.dll and the clients can register this as the event source.

To be Written – All the event log messages that are generated and their template text.

Appendix B – Configuration Parameters

The various administrative control parameters, their meaning, defaults and range are given below.

Name (CI_AP_…)
Description
Units
Default
Min
Max

CLUSTERINGTIME
Unused

-
-
-

DAEMON_RESPONSE_

TIMEOUT
Time to wait for a response from the CI daemon on a query status call.
minutes
5
1
120

EVTLOG_FLAGS
Flags controlling event reporting
-
Report Failed Embeddings
-
-

FILTER_BUFFER_SIZE
Memory buffer size used for CI filter to communicate between server and kernel space.
KBytes
128
64
1024

FILTER_DELAY_

INTERVAL
Time to delay when fewer than CI_AP_FILTER_REMAINING_THRESHOLD documents remain to be filtered.
seconds
20
0
600

FILTER_REMAINING_

THRESHOLD
If the number of un-filtered documents is below this threshold then a filtering delay will be introduced.

32
0
320

FILTER_RETRIES
Number of attempts to filter a document.

4
1
10

FILTER_RETRY_

INTERVAL
Time between attempts to filter document after filtering failure due to sharing violation.
minutes
30
2
240

GENERATE_RELEVANT_

WORDS
Unused
-
-
-
-

LOW_RESOURCE_SLEEP
Time to wait after low resource conditions before retrying operation.
seconds
30
5
180

MASTER_MERGE_

CHECKPOINT_INTERVAL
Amount of index data to process before checkpointing during master merge.
KBytes
2048
256
4096

MASTER_MERGE_TIME
Time at which master merge will occur.
minutes after midnight
0
0
1439

MAX_

CHARACTERIZATION
Maximum size of auto-generated characterization.
characters
160
0
500

MAX_ACTIVE_QUERY_

THREADS
Maximum number of query threads. This caps the number of concurrently processed asynchronous queries.

2
1
1000

MAX_FILESIZE_

MULTIPLIER
Maximum amount of index data which can be gernated from a single file.
multiple of document size
8
4
0xFFFFFFFF

MAX_FRESH_COUNT
Fresh list entries required to force master merge.

5000
1000
40000

MAX_FRESH_DELETES
Maximum number of delete entries in fresh list before a delete merge is forced.

320
10
0xFFFFFFFF

MAX_IDEAL_INDEXES
Maximum number of indices considered acceptable in a well-tuned system. When the number of indices climbs above this number and the system is idle then an 'annealing' merge will take place to bring the total count of indices under this number.

5
2
100

MAX_INDEXES
Maximum number of indexes. Normally a shadow merge will merge all existing wordlists into a new shadow index. When the total number of indexes climbs beyond this count existing shadow indexes will participate in a shadow merge.

50
10
150

MAX_PENDING_

DOCUMENTS
Maximum number of documents pending filtering before considering CI out-of-date for property queries.

32
1
50000

MAX_QUERY_

EXECUTION_TIME
Maximum execution time of a query. If a query takes more than this amount of CPU time, processing of it will be stopped and an error status indicated.

A special value of 0 means no timeout or timeout specified by the client
mSec of CPU time
10000
0
0xFFFFFFFF

MAX_QUERY_TIMESLICE
Maximum amount of time to execute a query in a single time-slice. If more asynchronous queries are active than allowed query threads, then a query is put back on the pending queue after this time interval. Timeslicing is done only after a matching row is found, so the time spent in a timeslice may overrun this and a considerable number of rows may be examined in the time slice.
mSec of CPU time
50
1
1000

MAX_QUEUE_CHUNKS
Number of chunks allowed in the in-memory copy of the change list.
chunks
20
10
30

MAX_RESTRICTION_

NODES
Maximum number of expanded restriction nodes in a single query. Roughly a measure of query complexity.

5000
1
0xFFFFFFFF

MAX_SHADOW_FREE_

FORCE_MERGE
Max disk free space consumed by shadow indexes before a master merge is forced.
% free disk space
20
5
0xFFFFFFFF

MAX_SHADOW_INDEX_

SIZE
Max combined size of shadow indexes before a master merge is forced.
% disk space
15
5
25

MAX_UPDATES
Maximum number of updates passed by the catalog update to content index in a single batch.

110
50
200

MAX_WORDLIST_

MEMORY_LOAD
Maximum memory load for wordlist creation. Currently unused
???
95
80
95

MAX_WORDLIST_IO
More than this amount of I/O temporarily stops wordlist creation.
KBytes/sec
410
100
0xFFFFFFFF

MAX_WORDLIST_SIZE
Maximum size of wordlist at which new documents can still be added to wordlist.
Chunks
20
10
30

MAX_WORDLISTS
Maximum number of word lists that can exists at one time.

20
10
30

MERGE_INTERVAL
Sleep time between merges
minutes
10
1
60

MIN_DISK_FREE_FORCE_

MERGE
Min disk space available before a master merge is forced.
% disk space
15
5
25

MIN_IDLE_QUERY_

THREADS
Minimum number of idle threads kept alive to process incoming queries.

1
0
1000

MIN_MERGE_IDLE_TIME
If average system idle time for the last merge check period is greater than this value then an annealing merge may take place.
% CPU time
90
10
100

MIN_SIZE_MERGE_

WORDLISTS
Minimum combined size of wordlists which will force shadow merge.
KBytes
1024
1024
10240

MIN_WORDLIST_

MEMORY
Minimum free virtual memory for wordlist creation.
MBytes
5
1
100

MISC_FLAGS
Miscellaneous Flags
-
none
-
-

STARTUP_DELAY
Time after startup before filtering commences.
mSec
480000
0
0xFFFFFFFF

THREAD_CLASS_FILTER
Priority class of the filter thread.
-
Idle
-
-

THREAD_PRIORITY_

MERGE
Priority of merge threadl
-
Minimum
-
-

THREAD_PRIORITY_

FILTER
Priority of filter thread.
-
Above Normal
-
-

WORDLIST_RESOURCE_

CHECK_INTERVAL
Wordlist I/O and low memory resource threshold check performed at most this often.
seconds
60
5
0xFFFFFFFF

Appendix C – Well-Known PROPIDs

For performance reasons, the mapping from FULLPROPSPEC to PROPID is fixed for certain well known properties. Although there are currently only a small handful of well-known properties, PROPID values below 0x1000 are reserved for framework use. The properties listed in the table below should be mapped as specified by framework clients choosing to provide an IPropertyMapper implementation.
The Storage Property Set contains properties specific to file system storage. Many of these properties can be re-used by other framework clients. Size, for example, can always be used to represent object size. Both path and class id properties have special behaviors associated with them. Both are stored in optimized compressed forms within a query result. The assumption for path is that many paths share a fixed prefix, and the assumption for class id is that many objects share the same guid. Definitions for the Storage Property Set are located in the header file STGPROP.H.
Description
Constant
ID
PROPID

Class ID of object
PID_STG_CLASSID
3
4

Storage Type of object
PID_STG_STORAGETYPE
4
5

Volume ID (NTFS object)
PID_STG_VOLUME_ID
5
6

Parent Work ID
PID_STG_PARENT_WORKID
6
7

File Index (NTFS object)
PID_STG_FILEINDEX
8
9

USN of last change
PID_STG_LASTCHANGEUSN
9
10

Name (Filename)
PID_STG_NAME
10
11

Path
PID_STG_PATH
11
12

Size
PID_STG_SIZE
12
13

File System Attributes
PID_STG_ATTRIBUTS
13
14

Last Write Time
PID_STG_WRITETIME
14
15

Create Time
PID_STG_CREATETIME
15
16

Last Access Time
PID_STG_ACCESSTIME
16
17

Allocated Size
PID_STG_ALLOCSIZE
18
19

Contents
PID_STG_CONTENTS
19
20

Short (8.3) Filename
PID_STG_SHORTNAME
20
21

The Query Property Set contains properties specific to the CI Framework. Many of these properties are ephemeral, having meaning only in the context of a particular query. Others, such as Work ID, are internal identifiers of little use to the end user. Definitions for the Query Property Set can be found in QUERY.H.

Description
Constant
ID
PROPID

Rank Vector (per query)
DISPID_QUERY_RANKVECTOR
2
24

Rank (per query)
DISPID_QUERY_RANK
3
25

Hit count (per query)
DISPID_QUERY_HITCOUNT
4
26

Work ID
DISPID_QUERY_WORKID
5
27

Wildcard Property
DISPID_QUERY_ALL
6
0

Unfiltered (TRUE for documents which failed filtering)
DISPID_QUERY_UNFILTERED
7
29

Virtual Path
DISPID_QUERY_VIRTUALPATH
9
31

Index

Error! No index entries found.

� IPropertyStorage and IPropertySetStorage are OLE interfaces for enumerating properties and property-sets respectively.

� IPropertyStorage and IPropertySetStorage are OLE interfaces for enumerating properties and property-sets respectively.

