[image: image1.wmf]
Windows NT

Content Index
Master Merge and ChangeLog using Sparse Files
shrinkff.doc

Sitaram Raju
Version 1.0

October 1, 1997
Distribution: Microsoft Internal Distribution

© Copyright Microsoft Corporation, 1997. All Rights Reserved

Microsoft Confidential

Printed on 10/1/97 at 2:28 PM
Note: This documentation is an early release of the final product documentation. It is meant to accompany software that is still in development. Some of the information in this documentation may be inaccurate or may not be an accurate representation of the functionality of the final retail product. Microsoft assumes no responsibility for any damages that might occur either directly or indirectly from these inaccuracies.

Contents

iContents

Relevant Documents
1
Existing Master Merge and ChangeLog Algorithms
1
Master Merge using Sparse Files
1
ChangeLog using Sparse Files
3

0if <> 0 "Chapter 0: " ""
Master Merge and ChangeLog using Sparse Files

This is a design document for optimizing master merge and changelog using the patent pending shrink from front algorithm. Shrink from front relies on the sparse file feature of NTFS 5.0. Sparse files are files where regions of a file can be specified to have zeroes as the data, and NTFS will attempt to deallocate the disk space for the zeroed regions thereby optimizing disk usage. NTFS has chosen the size and file offset granularity for deallocating regions to be 64K, which means that NTFS will not deallocate regions of zeroed data that are not some multiple of 64K and whose starting offset is not some multiple of 64K.
Relevant Documents

1. Detailed code of Master Merge and ChangeLog using Sparse Files by Sitaram Raju
2. Method and Mechanism for Freeing Disk Space in a File System Patent application by Srikanth Shoroff, Kyle Peltonen, Brian Berkowitz and Mark Zbikowski

3. Sparse File Support for NTFS by Brian Andrew

Existing Master Merge and ChangeLog Algorithms

Master merge is a sequential merge of all the keys from two or more source files into a single destination file. After a master merge completes successfully, all the source files are deleted. The algorithm used currently in Index Server is:

1. Create the target destination file

2. While there are more keys to be merged from source files

· Read the next appropriate key from the source file and add it to the target file

3. Delete the source files

The drawback with this master merge algorithm is that the space needed is approximately twice the combined size of source files. Using sparse files, the space requirements can be reduced to a little more than the combined size of source files.

The changelog is a persistent list of change notifications that need to be propagated to the indexes maintained by Index Server. As a notification is successfully processed from the head of changelog it can be removed from the changelog. As a performance optimization, when a notification is processed it is not cleaned up right away; instead Index Server remembers that the notification has been processed. So, cleaning up of processed notifications is batched. When a number of such notifications have been batched, Index Server cleans up the removed notifications by copying the remaining valid notifications to another file, freeing up the space occupied by the original changelog file and making the new file the new changelog. The drawback with this method is that the copying is an expensive operation. Using sparse files, the copying can be completely eliminated.

Master Merge using Sparse Files

The algorithm for master merge using sparse files is:

1. Create the target destination file

2. While there are more keys to be merged from source file

· Read the next appropriate key from the source file and add it to the target file

· Check if checkpointing is needed. If more than 64K bytes of data has been removed from any source file since the last checkpoint, mark the first 64K of that source file as being sparse (i.e. zero the 64K of data so that it can be potentially deallocated by the file system).

3. Delete the source files

The sparse file based algorithm frees up disk space from source files as the merge progresses. As a coding simplification, Index Server makes sparse only the old master index and not all indexes participating in the masster merge. Index Server maintains a directory for each index to facilitate fast lookup of keys in the index. In a previous incarnation of Index Server, when it was based on Object File System (OFS), the directory tree allowed transacted and persistent adds and deletes of directory keys using write-ahead logging. In the current version of Index Server, there is no such transacted directory. Also, the directory tree in the current version of Index Server is two-level, it has level-1 and level-2 keys, and so when new keys are added to the directory, the add is not an append operation to the serialized directory, but instead it is a generic write operation. The lack of a transacted directory and the presence of two-level keys necessitate a different sparse file based master merge algorithm.

The new master merge algorithm creates a new on-disk directory at the checkpointing step of the master merge algorithm. There are two alternatives. The first alternative is to have two directories, say dir1 and dir2 and to ping-pong between the two directories. This scheme can be generalized from two to N directories. At the first checkpoint, dir1 is created. At the second checkpoint dir2 is created, and it is marked as the current directory. At the third checkpoint, the algorithm checks if any queries are still using dir1 (by ref counting). If dir1 is still in use, one can either wait, or one can skip this checkpointing step and continue the merge until the next checkpoiont. In the common case, there will be no wait, because the checkpoint interval is fairly long, and usually queries are not that long running. The second alternative can be considered to be the case where N is infinity, i.e. new directories are always created at every checkpoint. In both alternatives, at the end of the master merge, the final directory is renamed to the *.dir name, where * is the corresponding id number of the master merge index.

The detailed steps for the second option, where new directories are created at every checkpoint, is:

1. At the start of the master merge, the name of the master merge log is atomically and persistently added to the index table. Also, the sparse bit is set on the old master index via the fsctl FSCTL_SET_SPARSE. If the sparse bit is not set, NTFS will not deallocate zeroed data in the file.

2. Create a new directory, say dir1. The class CMMDirNameGenerator in the detailed code generates names from a reserverd partition Id, 0xFFFD, which allows for 64K directory names. The detailed code uses special ids within this reserved partition to indicate the boundary cases of no directory has been checkpointed yet, and for the case where the final directory has been checkpointed.

3. As the merge progresses, add appropriate keys to dir1.

4. At every checkpoint, i.e. when at least 64K has been , using a split key, do

a) Flush the index stream upto the split key

b) Create level2 keys in dir1, upto the split key, and then flush dir1

c) As a write transaction to the master merge log do:

1) Mark previous directory as a zombie. A zombie directory will be around as long as there are queries referencing the directory. When the last query reference goes away a zombie directory is deleted. The detailed code adds new methods for zombification to the class PDirectory: Reference(), DeReference(), IsZombie() and IsInUse().

2) Mark dir1 as the current directory

3) Commit the write transaction.

5. Make sparse by zeroing data in the old master index stream upto the minimum of the split key and page in use. The fsctl FSCTL_SET_ZERO_DATA makes the region sparse, by zeroing data.

6. When merging is complete, rename the final directory to *.dir name, where * is the corresponding index number of the target master merge index.

7. As a write transaction to the master merge log, make the renamed directory the current directory.

8. At this point, the merge can either wait for all previous temporary directories to be freed, or it can continue, assuming that in case of a system crash, the temporary directories will be cleaned up by a later master merge.

9. To complete the master merge, the index table is atomically updated to

a) Reflect the new master index

b) The master merge log's entry is removed from the index

10. Finally, the master merge log is deleted

ChangeLog using Sparse Files

As described above, the existing ChangeLog algorithm batches notifications that have been successfully processed from the Changelog and then copies the remaining valid notifications to a new file that becomes the new Changelog. The availability of sparse files means that the successfully processed notifications can simply be zeroed. This simulates a persistent FIFO queue where notifications are added to the back and removed from the front; in fact, disk space is literally added to the back and removed from the front of the persistent queue. The amount of notifications to be batched is chosen to the equal to the size granularity used by NTFS for deallocating regions, i.e. 64K.

Index

Error! No index entries found.

