Coding Conventions and Utility Classes

Purpose

This document is a repository of coding conventions, tips, techniques and classes used by the Query team. It is a work-in-progress and should not be considered complete. Primarily, this should be a place to brain-dump information useful to new members of the team.

Coding Conventions

The ‘Lok’ naming convention

If a method is likely to be called from multiple threads and expects the caller to serialize access, then start the name of the method with ‘Lok’. For example, a hash class might have a method named CHash::LokRehash, or CHash::LokAdd. The purpose of this convention is to help detect potential threading issues during code review.

Put constants on the left hand side of equality tests

When comparing a variable to a numeric constant, put the constant on the left hand side of the test. This prevents accidental assignment when missing an ‘=’.

if (i == 10) // One character to alternate legal incorrect code

if (i = 10) // Wrong!

if (10 == i) // Good.

if (10 = i) // Compiler caught the missing ‘=’ sign!

Trap exceptions at interface boundaries

At the boundary between our code and the outside world, be sure to wrap the outermost (interface) method in a TRY/CATCH. If there is a chance system exceptions will be generated, through dereference of bogus user pointers for example, then TRANSLATE_EXCEPTIONS/UNTRANSLATE_EXCEPTIONS should also be used.

Declare private copy constructors

The default C++ copy constructor performs a bitwise copy. For complex data types, this is the wrong behavior. If it’s not necessary to write a copy constructor (because you don’t expect an object to be copied) you should still consider adding a copy constructor as a private member. Just give it a null body. The effect is to cause a compile-time error if someone accidentally tries to copy this object.

Tips

Need to get an NT handle to a file and don’t want to use the NT/RTL API? Use CiNtOpen() in ntopen.?xx

An easy way to double-check your build check-in instructions

Take your check-in script, and copy to a batch file. Change ‘ssync’ commands to ‘in’ or ‘addfile’ commands and use the batch file to check in your code. Any errors in the batch file are also errors in the script the build lab is going to use to ssync your change.

Utility Classes

Synchronization

CEventSetter

Sets an event when exiting scope.

Header: h\cisem.hxx

CAutoEventSem

Auto-release version of CEventSem.

Header: h\cisem.hxx

CEventSem

C++ wrapper for an event.

Header: h\cisem.hxx

CReleasableLock

Lock using a Mutex Semaphore that can be released/requested

Header: h\cisem.hxx

CLock

Smart object encapsulating lock of a CMutexSem. Lock is acquired in constructor and released in destructor.

Header: h\cisem.hxx

CMutexSem

C++ wrapper for a critical section.

Header: h\cisem.hxx

Dynamic Arrays

CDynArray

The CDynArray class is a template used to hold dynamically sized arrays of objects. Array growth is handled in a uniform manner for all template instatiations.

Header: h\dynarray.hxx.

CCountedDynArray

Identical to CDynArray except that a count of items is maintained and the class can pack the array.

Header: h\dynarray.hxx.

CCountedIDynArray

Identical to CCountedDynArray except array objects are interface pointers. This class "releases" instead of destroys the objects referenced.

Header: h\dynarray.hxx

CDynArrayInPlace

Identical to CDynArray except array objects are stored in place, instead of storing an array of pointers. This reduces memory allocations, but does not work for objects with destructors.

Header: h\dynarray.hxx

CDynArrayInPlaceNST

CDynArrayInPlace for non simple types.

Header: h\dynarray.hxx

CDynStackInPlace

Identical to CDynArrayInPlace except array is accessed as a stack.

Header: h\dynarray.hxx

Lists

CDoubleLink

Header: h\dblink.hxx

CDoubleList

Header: h\dblink.hxx

TDoubleList

Template version of CDoubleList that casts the results

Header: h\dblink.hxx

CForwardIter

Header: h\dblink.hxx

CBackwardIter

Header: h\dblink.hxx

TFifoCircularQueue

Thread safe template for a first in first out circular queue.

Header: h\circq.hxx

CBitArray

Encapsulates methods for allocating, testing, setting, and clearing an array bits.

Header: h\bitarray.hxx

CThread

Encapsulates thread. Provides methods for starting/stopping, changing priority, etc.

Header: h\thrd32.hxx

CDriveInfo

Encapsulates methods for acquiring information about a local drive, such as free space, volume name, drive letter, and file system type.

Header: h\driveinf.hxx

Registry

SRegKey

Safe pointer for registry handle. RegCloseKey called on destruction.

Header: h\smart.hxx

Smart Pointers

XCoMem

Template for smart pointer to CoTaskMemAlloc-ed object. Object is CoTaskMemFree-ed when XCoMem is destroyed.

Header: h\smart.hxx

XGrowable

Template for class which contains a fixed allocation of an object but can be grown to any size. Use when you are manipulating an array of objects, usually a string, and the common case is a small size (< 256) array but the upper bound is unlimited. XGrowable allows you to manipulate the common case on the stack (e.g. no heap allocation).

Header: h\tgrow.hxx

XInterface

Template for smart pointer to an interface. Object is released in XInterface destructor.

Header: h\smart.hxx

XPtr

Template for a smart pointer to a user-defined object. Object is deleted in XPtr destructor unless acquired prior to XPtr destruction.

Header: h\smart.hxx

XPtrST

Identical to XPtr except for the lack of operator ->. Used for Simple Types.

Header: h\smart.hxx

