

� EMBED PBrush ����
IFilter Specification v1.5

Windows Design Team, September 7, 1996�
�

This document describes the IFilter interface, which is used to extract text from objects. The principle use for IFilter is to create document content filters for use with Microsoft Index Server.�
Contents�� TOC \o * MERGEFORMAT �

IFilter Interface	� GOTOBUTTON _Toc366739528 � PAGEREF _Toc366739528 �3��

Introduction	� GOTOBUTTON _Toc366739529 � PAGEREF _Toc366739529 �3��

Chunks	� GOTOBUTTON _Toc366739530 � PAGEREF _Toc366739530 �3��

Properties and Pseudo-Properties	� GOTOBUTTON _Toc366739531 � PAGEREF _Toc366739531 �3��

Embedded and Linked Objects	� GOTOBUTTON _Toc366739532 � PAGEREF _Toc366739532 �4��

Proposed Uses of IFilter	� GOTOBUTTON _Toc366739533 � PAGEREF _Toc366739533 �4��

Full Text Search	� GOTOBUTTON _Toc366739534 � PAGEREF _Toc366739534 �4��

Viewing	� GOTOBUTTON _Toc366739535 � PAGEREF _Toc366739535 �4��

IFilter	� GOTOBUTTON _Toc366739536 � PAGEREF _Toc366739536 �4��

IFilter::Init	� GOTOBUTTON _Toc366739537 � PAGEREF _Toc366739537 �5��

Text canonicalization	� GOTOBUTTON _Toc366739538 � PAGEREF _Toc366739538 �5��

Attributes	� GOTOBUTTON _Toc366739539 � PAGEREF _Toc366739539 �6��

Chunk Information	� GOTOBUTTON _Toc366739540 � PAGEREF _Toc366739540 �6��

Links	� GOTOBUTTON _Toc366739541 � PAGEREF _Toc366739541 �6��

Flags	� GOTOBUTTON _Toc366739542 � PAGEREF _Toc366739542 �6��

Access Failure	� GOTOBUTTON _Toc366739543 � PAGEREF _Toc366739543 �7��

IFilter::GetChunk	� GOTOBUTTON _Toc366739544 � PAGEREF _Toc366739544 �7��

IFilter::GetText	� GOTOBUTTON _Toc366739545 � PAGEREF _Toc366739545 �9��

IFilter::GetValue	� GOTOBUTTON _Toc366739546 � PAGEREF _Toc366739546 �9��

IFilter::BindRegion	� GOTOBUTTON _Toc366739547 � PAGEREF _Toc366739547 �10��

��
�if �seq chapt \c�0� <> 0 "Chapter �seq chapt \c�0�: " ""��title �IFilter Interface�

�comments �This document describes the IFilter interface, which will be used to extract text from objects for placement in the Microsoft Index Server content index.�

Introduction

The primary purpose of the IFilter interface is to extract text, without formatting, from documents. IFilter is the foundation upon which higher level operations such as document indexing or application-independent viewers can be built.

Although clients of IFilter may use the interface in any way they see fit, it was designed to meet the specific needs of full text search engines. An IFilter will scan objects for plain text and properties (attributes). The search engine must break the result of IFilter::GetText apart into words, normalize them and store the results in an index. It may use the locale identifier specified with a text chunk to perform proper language-specific word breaking and normalization.

Chunks

Each object can be asked to produce the “chunks” of Unicode text contained within itself. Text within one chunk is intended to be a linear, sequential flow of text with the same attribute and locale. Thus, two pieces of text that do not have such a relationship between each other would be in different chunks. Separate text boxes in a graphics file, labels and titles on charts, and possibly even text in separate cells of a spreadsheet are all examples of text in separate chunks.

Each chunk is given a chunk id that uniquely identifies the chunk. These ids are guaranteed to remain constant until the IFilter interface is released. Repeated instantiations of the IFilter interface with the same initial parameters will produce the same set of chunks. Multiple instantiations with different initial parameters may produce a different set of chunks. Changing the set of attributes (see following section) may re-partition the chunks of an object. Chunk id 0 is invalid.

Chunks may overlap, but a specific attribute should be applied to a given character at most one time.

Properties and Pseudo-Properties

Text extracted via IFilter may be tagged with many attributes, but only one attribute at a time. When these attributes refer to textual chunks they are treated as properties by the content index but are not treated as properties by the system. They are known as pseudo-properties.

Pseudo-properties are not accessible through the standard OLE IPropertyStorage interface. Pseudo-properties allow the user to search for documents based on the value of some internal field in the document that has not been exposed as a property to the system. For example, a spreadsheet describing monthly sales for an employee might export employee-id and total-sales pseudo-properties. This would enable a query for all spreadsheets (months) in which some employee sold more than x dollars.

Pseudo-property names must follow OLE property naming conventions. Each pseudo-property must be specified as property set\property. Failure to follow this naming convention will result in unpredictable query behavior. Specifying a pseudo-property name which matches a true property name may also result in undefined query behavior.

The IFilter author may also choose to publish OLE style properties via IFilter. These properties are retrieved using the IFilter::GetValue call. Logically, they should be considered external annotations of a document. For example, this mechanism can be used to publish HTML anchors. If a class supports retrieval of OLE properties via IPropertyStorage, the IFilter author has the option of requesting the caller of IFilter use IPropertyStorage to enumerate OLE properties, either in lieu of or to supplement properties emitted via IFilter::GetValue.

Embedded and Linked Objects

An object must enumerate the chunks of text in its embeddings. These nested chunks appear to the original caller as chunks of the outer object. There is no operating system support provided for this operation. Providers of IFilter are responsible for binding to the IFilter interface of embedded objects. If the current chunk is within an embedding, all GetText and GetValue calls should be passed directly to the embedding’s IFilter and the return values from the embedding should be returned to the client. Other calls require some additional work. GetChunk, for example, may require renumbering chunk ids to make them unique.

An object can optionally be asked to enumerate the chunks of text ‘contained’ in its linked objects. As with embedded objects, providers of IFilter are responsible for binding to the IFilter interface of linked objects, then renumbering the chunks of the linked objects so they will appear to the original caller as chunks of the outer object. The same rules that apply to an embedding’s chunks apply to a link’s chunks.

The original source of a chunk (embedding, link, or top-level object) is not exposed by IFilter.

Proposed Uses of IFilter

Although clients of IFilter may use the interface in any way they see fit, it was designed to meet the specific needs for two tasks: filtering and viewing (browsing / hit-highlighting). They are described below.

Full Text Search

Full text search engines are the simpler of the two filter clients. They will merely scan objects for plain text, pseudo properties and full properties. They will break the result of IFilter::GetText apart into words, normalize them and then store the result in an inverted index. The locale identifier specified with a text chunk is used to perform proper language-specific word breaking and normalization. Full properties are retrieved via IFilter::GetValue and are (optionally) stored in a lookaside property cache.

Viewing

Document viewing will be used to display the results of full text queries. A simplistic model of the viewing process is that documents matching a query will be 'indexed' on-the-fly and the resulting in-memory index will be searched to locate query hits. A document viewer will highlight and navigate between these hits.

IFilter

interface IFilter : public IUnknown�{� SCODE Init(ULONG grfFlags,� ULONG cAttributes,� FULLPROPSPEC const * aAttributes,� DWORD * pdwFlags);�� SCODE GetChunk(STAT_CHUNK * pStat);�� SCODE GetText(ULONG * pcwcBuffer,� WCHAR * awcBuffer);�� SCODE GetValue(PROPVARIANT ** ppPropValue);�� SCODE BindRegion(FILTERREGION origPos,

 REFIID riid,� void * * ppunk);��}

IFilter::Init

SCODE IFilter::Init(ULONG grfFlags,� ULONG cAttributes,� FULLPROPSPEC const * aAttributes,� DWORD * pdwFlags);�

This method is called to initialize the filtering session. If the interface is successfully initialized then calls to other IFilter functions may be made. Once a successful call has been made to Init the object must appear frozen from the point of view of the caller. The object is frozen until the filter object is released.

Multiple calls to Init reset the state of the filter object. The filter is re-positioned to the beginning of the object and the object state is frozen. Chunk ids must remain consistent across multiple calls to Init with the same parameters.

grfFlags is a group of flags taken from the enumeration IFILTER_INIT. They control text canonicalization, attribute output, embedding scope and IFilter access patterns.

typedef enum tagIFILTER_INIT�{� IFILTER_INIT_CANON_PARAGRAPHS			= 1,� IFILTER_INIT_HARD_LINE_BREAKS			= 2,� IFILTER_INIT_CANON_HYPHENS			= 4,� IFILTER_INIT_CANON_SPACES			= 8,�� IFILTER_INIT_APPLY_INDEX_ATTRIBUTES		= 16,� IFILTER_INIT_APPLY_OTHER_ATTRIBUTES		= 32,� IFILTER_INIT_INDEXING_ONLY			= 64,�� IFILTER_INIT_SEARCH_LINKS			= 128�} IFILTER_INIT;

typedef enum tagIFILTER_FLAGS

{

 IFILTER_FLAGS_OLE_PROPERTIES = 1

} IFILTER_FLAGS;

Text canonicalization

Generally the text output via GetText should exactly match the actual text of the document, but in order to achieve maximum interoperability some canonicalization of common features is desirable. These features include paragraph breaks, line breaks, hyphens and spaces.

The four flags controlling canonicalization of the output text are defined as follows:

IFILTER_INIT_CANON_PARAGRAPHS�Paragraph breaks should be marked with the Unicode PARAGRAPH SEPARATOR (0x2029).

IFILTER_INIT_HARD_LINE_BREAKS�Soft line breaks (such as end of line in Microsoft(Word) should be replaced by hard line breaks, LINE SEPARATOR (0x2028). Existing hard line breaks may be doubled. Any of carriage return (0x000D), line feed (0x000A), or the carriage return and line feed combination should be considered a hard line break. The intent is to enable pattern-expression matchers that match against the observed line breaks.

IFILTER_INIT_CANON_HYPHENS�Various word processors have forms of hyphens that are not represented in the host character set, such as optional hyphens (appearing only at end of line) and non-breaking hyphens. This flag indicates that optional hyphens are to be nulled out, and non-breaking hyphens are to be converted to normal, plain hyphens (0x2010), or HYPHEN-MINUSES (0x002D).

IFILTER_INIT_CANON_SPACES�As the previous flag canonicalizes hyphens, this one canonicalizes spaces. All special space characters, such as non-breaking spaces, etc., are to be converted to the standard SPACE character (0x0020).

IFilter servers are also allowed to embed null characters in the text, which will be [nearly] ignored by clients. Unicode character 0x0000 will be completely ignored, and 0x0001 will be treated as a word break.�

Attributes

Different clients of the IFilter interface will want different views of an object. Two flags in grfFlags control the set of attributes that should be applied to chunks. They are defined as follows:

IFILTER_INIT_APPLY_INDEX_ATTRIBUTES�The client wants text split into chunks representing pseudo-properties.

IFILTER_INIT_APPLY_OTHER_ATTRIBUTES�Any attributes not covered by the previous two flags should be emitted.

In addition to the attribute categories specified above, specific attributes may also be requested as an array of size cAttributes, stored in aAttributes. If cAttributes is non-zero this takes precedence over attribute specification in grfFlags and only the attributes in aAttributes will be returned.

If no attribute flags are specified and cAttributes is zero then CONTENTS� is assumed.

Chunk Information

Because the IFilter implementation will need to store some chunk information when operations other than content indexing occur, the following flag has been added to allow IFilter to be optimized for the indexing situation:

IFILTER_INIT_INDEXING_ONLY�The client will only be calling Init once. The client will not be using the function BindRegion. The eliminates the possibility of accessing a chunk both before and after accessing another chunk.

Links

For viewing purposes, it may be desirable to search across links as well as in the document and its embeddings. For this reason, we have defined the following flag:

IFILTER_INIT_SEARCH_LINKS�This flag indicates that the text extraction process must recursively search all links within the document. If a link is unavailable, the GetChunk call where the first chunk of the link would have been returned should return FILTER_E_LINK_UNAVAILABLE� XE "Error Codes:FILTER_E_LINK_UNAVAILABLE" �.

Flags

The pdwFlags parameter allows the IFilter implementation to pass information back to the caller. Currently, the only valid flag is:

IFILTER_FLAGS_OLE_PROPERTIES�This flag indicates that the caller should use the IPropertySetStorage and IPropertyStorage interfaces to locate additional properties. When this flag is set, properties available via OLE property enumeration should not be returned from IFilter.

If OLE properties should not be enumerated, then pdwFlags should be set to zero.

Access Failure

For some implementations of IFilter, it may not be possible (or may be computationally expensive) to detect failure to access a document until Init is called, or possibly even later. If access is denied due to password protection or other similar security measures then FILTER_E_PASSWORD should be returned. Other access failures can be reported via FILTER_E_ACCESS.

IFilter::GetChunk

SCODE IFilter::GetChunk(STAT_CHUNK * pStat);�

GetChunk positions the filter at the beginning of the next chunk and returns a description of the chunk in pStat. After this call, the chunk described in pStat is the current chunk. The chunk descriptor is owned by the caller, but the property name pointer which may be set in the property specification is owned by the callee and should not be freed. Several operations (see below) can only be applied to the current chunk. Before GetChunk has been called for the first time, there is no current chunk. When the current chunk is the last chunk, additional call(s) to GetChunk will return FILTER_E_END_OF_CHUNKS� XE "Error Codes:FILTER_E_END_OF_CHUNKS" �. If the next chunk is an embedding for which a filter is not available, this call will return FILTER_E_EMBEDDING_UNAVAILABLE� XE "Error Codes:FILTER_E_EMBEDDING_UNAVAILABLE" �. If the next chunk is in an unavailable link, this call will return FILTER_E_LINK_UNAVAILABLE� XE "Error Codes:FILTER_E_LINK_UNAVAILABLE" �. Access failure may also be reported with FILTER_E_PASSWORD and FILTER_E_ACCESS. After an error return code of anything other than FILTER_E_END_OF_CHUNKS the next call to IFilter will still fetch the next chunk after the unavailable one.

A description of the active chunk will be placed in *pStat. This structure is defined as follows:

typedef enum tagCHUNKSTATE�{� CHUNK_TEXT = 0x1,� CHUNK_VALUE = 0x2�} CHUNKSTATE;�

typedef enum tagCHUNK_BREAKTYPE�{�	CHUNK_NO_BREAK = 0,�	CHUNK_EOW	= 1,�	CHUNK_EOS	= 2,�	CHUNK_EOP	= 3,�	CHUNK_EOC	= 4�} CHUNK_BREAKTYPE;�

typedef tagSTAT_CHUNK�{�	ULONG 		idChunk;�	CHUNK_BREAKTYPE	breakType;�	CHUNKSTATE 		flags;�	LCID 		locale;�	FULLPROPSPEC 	attribute;

	ULONG			idChunkSource;

	ULONG			cwcStartSource;

	ULONG			cwcLenSource;�} STAT_CHUNK;

The chunk id for this chunk is returned in idChunk. It must be unique from every other chunk id returned by GetChunk during a single instantiation of IFilter. Chunk ids must be in increasing order. The order in which chunks are returned should correspond to the order of their text in the source document. Some search engines may take advantage of the inter-attribute proximity exposed between chunks of various attributes.

The breakType field contains the type of break that precedes this chunk. These are defined as follows:

CHUNK_NO_BREAK�This means that there will be no break placed between this chunk and the previous chunk-- the chunks will be glued together. All of the information in pStat except for breakType and idChunk will be taken from the most recent STAT_CHUNK that did not specify CHUNK_NO_BREAK. The other fields in pStat will not be modified. On exit, they will contain whatever value was in them on entry to GetChunk. Derived chunks cannot be glued using CHUNK_NO_BREAK. A single word cannot span more than two glued chunks.

CHUNK_EOW�This means that there will be a word break placed between this chunk and the previous chunk that had the same attribute. Use of CHUNK_EOW should be minimized.�

CHUNK_EOS�This means that there will be a sentence break placed between this chunk and the previous chunk that had the same attribute.

CHUNK_EOP�This means that there will be a paragraph break placed between this chunk and the previous chunk that had the same attribute.

CHUNK_EOC�This means that there will be a chapter break placed between this chunk and the previous chunk that had the same attribute.

A change in attribute implies a word, sentence, paragraph or chapter break.

The flags field indicates whether this chunk should be treated as text (for example, a sequence of words) or value. If flags is CHUNK_TEXT then IFilter::GetText should be used to retrieve the contents of the chunk and parse it as a series of words. If flags is CHUNK_VALUE then IFilter::GetValue should be used to retrieve the value and treat it as a single property value. If the filter wishes the same text to be treated as both text and value it should be emitted twice in two different chunks.

The locale field specifies the language and sub-language of this text. Chunk locale will be used by document indexers to perform proper normalization of text. If the chunk is not text or a value of type VT_LPWSTR, VT_LPSTR or VT_BSTR then this field is ignored.

The attribute field specifies which attribute should be applied to this chunk. If the filter wishes the same text to have more than one attribute, the filter needs to emit the text once for each attribute in separate chunks.

Take the following example that might appear in a book:

The small detective exclaimed, "C'est finis!"

Confessions

	The room was silent for several minutes. After thinking very hard about it, the young woman asked, "But how did you know?"

This section might be broken into chunks as follows:

id�
Text�
breakType�
flags�
locale�
attribute�
�
1�
The small dete�
N/A�
CHUNK_TEXT�
ENGLISH_UK�
CONTENT�
�
2�
ctive exclaimed,�
CHUNK_NO_BREAK�
N/A�
N/A�
N/A�
�
3�
"C'est finis!"�
CHUNK_EOW�
CHUNK_TEXT�
FRENCH_BELGIAN�
CONTENT�
�
4�
Confessions�
CHUNK_EOC�
CHUNK_TEXT�
ENGLISH_UK�
CHAPTER_�NAMES�
�
5�
Confessions�
CHUNK_EOP�
CHUNK_TEXT�
ENGLISH_UK�
CONTENT�
�
6�
The room was silent for several minutes.�
CHUNK_EOP�
CHUNK_TEXT�
ENGLISH_UK�
CONTENT�
�
7�
After thinking very hard about it, the young woman asked, "But how did you know?"�
CHUNK_EOS�
CHUNK_TEXT�
ENGLISH_UK�
CONTENT�
�

If a GetChunk call to an IFilter of an embedding or link returns FILTER_E_END_OF_CHUNKS� XE "Error Codes:FILTER_E_END_OF_CHUNKS" �, then it is the responsibility of the outer IFilter to check to see if there are any more chunks outside of that embedding or link to be returned. For example, if a document has two embeddings and the first has returned FILTER_E_END_OF_CHUNKS� XE "Error Codes:FILTER_E_END_OF_CHUNKS" �, then the outer IFilter must call GetChunk on the IFilter for the next embedding.

In addition, before returning the results of a call to GetChunk of an embedded or linked object, the provider must check to make sure that the chunk id is unique, and if it is not, renumber the chunk and keep a mapping of the new chunk id.

The fields

	ULONG			idChunkSource;

	ULONG			cwcStartSource;

	ULONG			cwcLenSource;

are used to describe the source of a derived chunk. If the text of the current non-contents chunk (psuedo-property or property) is derived from some contents chunk, the idChunkSource is set to the id of the source chunk, cwcStartSource is set to the offset at which the source text for the chunk starts in the source chunk, and finally cwcLenSource is either set to zero or to the length of the source text from which the current chunk was derived. Zero signifies that there is character-by-character correspondence between the source text and the derived text. A non-zero value means that there is no such direct correspondence. This information is useful for the search engine when it wants to highlight the hits. If the query is done for a pseudo-property, the search engine will highlight the original text from which the text of the property has been derived. For instance, for a C++ code filter, when searching for Foo in a pseudo-property “function definitions,” the browser will highlight the function header inside the contents of a file. If the chunk is not derived, idChunkSource must be the same as idChunk. If the filter attributes specify a pseudo-property only, then there is no content chunk from which the current pseudo-property chunk is derived. In this case, idChunkSource must be set to 0, which is an invalid chunk id.

IFilter::GetText

SCODE IFilter::GetText(ULONG * pcwcBuffer,� WCHAR * awcBuffer);�

GetText is used to retrieve the text from the current chunk. If the current chunk does not have a flags value of CHUNK_TEXT then the error FILTER_E_NO_TEXT� XE "Error Codes:FILTER_E_NO_TEXT" � will be returned.

On entry, pcwcBuffer contains the size, in (Unicode) characters, of awcBuffer. On exit, pcwcBuffer contains the number of characters actually written to awcBuffer. More than one call to GetText may be required to retrieve all the text in the current chunk. Each call to GetText retrieves text immediately following the last call to GetText. Note that it is perfectly legitimate for the last character in one call to be in the middle of a word, and the first character in the next call to continue the word. Search engines must handle this situation.

When all text in a chunk has been returned the next call to GetText should return FILTER_E_NO_MORE_TEXT� XE "Error Codes:FILTER_E_NO_MORE_TEXT" �. All additional calls to GetText should return this error until GetChunk has been called successfully, advancing to the next chunk. As an optimization, the last call that returns text may return FILTER_S_LAST_TEXT, indicating the next call to GetText will return FILTER_E_NO_MORE_TEXT� XE "Error Codes:FILTER_E_NO_MORE_TEXT" �� XE "Error Codes:FILTER_S_LAST_TEXT" �. This can save the client a call.

IFilter::GetValue

SCODE IFilter::GetValue(PROPVARIANT ** ppPropValue);�

GetValue is the analog to GetText for non-textual attribute values. GetValue should only be called once per chunk. Any additional calls to GetValue should return FILTER_E_NO_MORE_VALUES� XE "Error Codes:FILTER_E_NO_MORE_VALUES" � until GetChunk has been called successfully, advancing to the next chunk.

Indirect values must be allocated with CoTaskMemAlloc. They are owned by the caller of GetValue, who must free them with CoTaskMemFree.

If the current chunk does not have a flags value of CHUNK_VALUE then the error FILTER_E_NO_VALUES� XE "Error Codes:FILTER_E_NO_VALUES" � will be returned. The effect of publishing the same value from more than 1 chunk is undefined.

IFilter::BindRegion

SCODE IFilter::BindRegion (FILTERREGION origPos,

 REFIID iid� void ** ppunk);�

BindRegion is used to retrieve an interface representing the specified portion of the object. This method is for future use, for example, to enable document viewing.

A FILTERREGION structure will be filled in to describe the position of the text. The structure is defined as:

typedef struct tagFILTERREGION�{�	ULONG idChunk;�	ULONG cwcStart;�	ULONG cwcExtent;�} FILTERREGION;

If cwcExtent characters beginning at offset cwcStart in chunk idChunk extends beyond the end of the chunk then the continuation should be in the next chunk with an identical attribute. If this operation is impossible then FILTER_W_REGION_CLIPPED� XE "Error Codes:FILTER_W_MONIKER_CLIPPED" � should be returned. This situation arises when the next identical chunk is in a link or embedding.

It is acceptable not to implement BindRegion and return E_NOTIMPL. Not all filters are capable of supporting this method in a rational way. Filters which are implemented by viewing applications will benefit the most from IFilter::BindRegion.

The information contained in this document represents the current view of Microsoft Corporation on the issues discussed as of the date of publication. Because Microsoft must respond to changing market conditions, it should not be interpreted to be a commitment on the part of Microsoft, and Microsoft cannot guarantee the accuracy of any information presented after the date of publication.

This document is for informational purposes only. MICROSOFT MAKES NO WARRANTIES, EXPRESS OR IMPLIED, IN THIS DOCUMENT.

© 1996 Microsoft Corporation. All rights reserved.

Microsoft is a registered trademark of Microsoft Corporation. Other product and company names herein may be the trademarks of their respective owners.

� 	The intent is to provide implementors of IFilter an efficient means to ‘remove’ embedded formatting from text without modifying positional information. A scrap of HTML such as:

<p>This is a paragraph with emphasized text.</p>

could be filtered as:

This is a paragraph with *emphasized**** text.****

where the ‘*’ represents Unicode 0x0000.

� 	CONTENTS is my short name for PSGUID_STORAGE\PID_STG_CONTENTS.

� Clients of IFilter may choose a word breaking algorithm that is in conflict with CHUNK_EOW decisions made in an IFilter implementation. A content query returns optimal results when the word breaking algorithm used to split phrases in the user’s query matches the algorithm used to split words in the documents. The former is always provided by the search engine. The search engine algorithm is also used to split words within a chunk, but many small chunks separated by CHUNK_EOW may affect its accuracy.

IFilter Interface Version 1.5		� DATE �09/11/96�

© Microsoft Corporation, 1996. All Rights Reserved		� PAGE �1�

