
1
 ICommandTree::SetCommandTree

ICommandTree : ICommand

ICommandTree : ICommand

This interface is optional for providers which support command. It contains methods for manipulating query trees. Providers that support Command Trees must also support specifying the same functionality through ICommandText.

A command object can have only one command; that command can be in the form of a command tree (specified in ICommandTree) or a text command (specified in ICommandText). Thus, if a command is specified through SetCommandTree or ICommandText::SetCommandText, it replaces the command object’s command, regardless of whether that command was in text or tree form. If a command is retrieved through GetCommandTree or ICommandText::GetCommandText, it is retrieved in the specified form, regardless of how the command was set. Thus, GetCommandText must be able to convert a command tree into command text, and GetCommandTree must be able to convert command text into a command tree. Note that in the latter conversion, the provider should return a navigable command tree representation of the text, which is not necessarily in optimized form; if the provider cannot create a fuller representation, the command tree can consist of a single text node.

Most providers will not permit setting a new command tree while there is a rowset open that was created by the command object (and thus directly reflects the result table of the current command tree). Some providers, however, may support this operation even while a rowset is open. If so, the new command tree’s output schema (set of columns) must include all column for which there currently are accessors, and all rowsets’ accessors remain valid. Currently open rowsets must be modified dynamically to reflect the new command tree’s result table. HROWs remain valid, meaning that a new sort order or a new selection predicate are not reflected for those rows, and that all accessors that may be created after the command tree modification will work with HROWs obtained before the command tree modification. If an error occurs while replacing or modifying a command tree with open rowsets, the command object, its command tree, the rowsets, HROWs and accessors remain unchanged.

Method
Description

FindErrorNodes

FreeCommandTree

GetCommandTree

SetCommandTree

ICommandTree::FindErrorNodes

A helper function that walks a command tree and returns an array of nodes with errors in them.

HRESULT FindErrorNodes (

const DBCOMMANDTREE *
pRoot,

ULONG *

pcErrorNodes,

DBCOMMANDTREE **

prgErrorNodes);
Parameters

pRoot [in]
Pointer to the root of the command tree.

pcErrorNodes [out]
Pointer to memory in which to return the number of nodes containing errors.

prgErrorNodes [out]
Pointer to memory in which to return an array of pointers to nodes that have errors in them. The command object allocates memory for this array and returns the address to this memory; the consumer releases this memory with IMalloc::Free when it no longer needs the array. If *pcErrorNodes is 0 on output, the provider does not allocate any memory and ensures that *prgErrorNodes is a null pointer on output.

Return Value

S_OK
The method succeeded.

E_FAIL
A provider-specific error occurred.

E_INVALIDARG
pRoots, pcErrorNodes, or prgErrorNodes was a null pointer.

E_OUTOFMEMORY
The provider was unable to allocate sufficient memory in which to return the array of pointers to nodes containing errors.

Comments

ICommandTree::FreeCommandTree

A helper function that walks a command tree and deallocates all DBCOMMANDTREE node structures as well as all variants in those structures, and finally sets the root pointer to a null pointer.

HRESULT FreeCommandTree (

DBCOMMANDTREE **
ppRoot);
Parameters

ppRoot [in]

Return Value

S_OK
The method succeeded.

E_FAIL
A provider-specific error occurred.

E_INVALIDARG
ppRoot was a null pointer.

DB_E_CANNOTFREE
The consumer called SetCommandTree with fCopy = FALSE, therefore relinquishing ownership of the memory to the provider.

Comments

FreeCommandTree is only a helper function that can be used by a consumer to free their copy of the command tree constructed locally or obtained by GetCommandTree. It does not free the copy of the tree owned by the command object. When a consumer calls SetCommandTree with fCopy = FALSE, the consumer relinquishes ownership of the memory to the provider. Therefore, if the consumer calls FreeCommandTree after having called SetCommandTree with fCopy = FALSE, FreeCommandTree returns an error code DB_E_CANNOTFREE meaning the consumer does not have ownership of the tree to free it.

ICommandTree::GetCommandTree

Echo the current command as a tree, including all post-processing operations added.

HRESULT GetCommandTree (

DBCOMMANDTREE **
ppRoot);
Parameters

ppRoot [out]
The command object allocates memory for the command tree and returns the address to this memory; the consumer releases this memory with IMalloc::Free, one node at a time, when it no longer needs the command tree. The provider sets ppRoot to a null pointer if an error occurs.

Return Value

S_OK
The method succeeded.

DB_S_ERRORSINTREE
The provider discovered non-fatal errors in the command text previously set by ICommandText::SetCommandText while building the command tree.

E_FAIL
A provider-specific error occurred.

E_INVALIDARG
ppRoot was a null pointer.

E_OUTOFMEMORY
The provider was unable to allocate sufficient memory in which to return the command tree.

DB_E_CANTTRANSLATE
The provider cannot represent the command text previously set by ICommandText::SetCommandText as a tree.

Comments

The returned tree reflects exactly the command set by the last invocation of ICommandTree::SetCommandTree or ICommandText::SetCommandText, as modified by subsequent calls to IQuery::AddPostProcessing. If the command is stored as a tree, the returned tree is a copy of the one stored in the command object. If a tree node was passed in with text, it is also echoed as text. If the command is stored as text, the provider should return a “navigable” command tree representation of the text, which is not necessarily in optimized form. If the provider cannot create a fuller representation, the command tree can consist of a single text node. For example, if the tree can be represented as a DBOP_SQL_select node, and the provider supports that node, it must be returned in that format. However, if the tree cannot be represented as a DBOP_SQL_select node, but can be represented in a non-trivial command tree (that is, other than the DBOP_text_command), the provider must return it as that non-trivial tree; the provider may only return the tree as the trivial DBOP_text_command node if that is the only command node it supports; otherwise, it must return a valid, non-trivial navigable tree or return DB_E_CANTTRANSLATE if the text cannot be represented in such a tree. The provider should not do any unnecessary validation, such as binding, at this time, but if in the course of parsing it discovers non-fatal errors in building the tree it should put the error information in the tree and return DB_S_ERRORSINTREE.

This method does not reveal a provider’s internal, optimized translation (which may be different from a DBCOMMANDTREE structure) of text to (non-text) tree operations.

The returned tree includes the markings set by the validation methods invoked so far (ICommandValidate::ValidateSyntax and ICommandValidate::ValidateCompletely).

ICommandTree::SetCommandTree

Set a command object’s command tree, replacing the existing one or replacing a text command specified with ICommandText. The provided command tree is copied into the command object; thus, the consumer may delete the original tree or text without affecting the command object. Most error checking is deferred until one of the validation methods, optimization (see ICommandPrepare), or the ICommand::Execute method are invoked. This method only verifies that the command tree can indeed be copied into the command object’s space.

HRESULT SetCommandTree (

DBCOMMANDTREE **
ppRoot,

DBCOMMANDREUSE

dwCommandReuse,

BOOL

fCopy);
Parameters

ppRoot [in]
The root of the command tree.

dwCommandReuse [in] A bitmask that specifies whether state from the previous command is retained. If state that was not previously specified is marked for reuse, the flag is ignored and no error occurs. See ICommandText::SetCommandText for a description of these flags.
fCopy [in]
If TRUE, the command tree is copied, and the caller retains ownership of the command tree’s memory. If FALSE, the provider takes the entire tree, without copying, and set the caller’s root pointer to a null pointer. When the command object needs to deallocate the tree, it will call IMalloc::Free once for each node in the tree.

If fCopy is FALSE, the consumer must not change the command tree without another call to SetCommandTree. The affect of any such changes is undefined. In particular, the provider can assume that the command tree has not changed between the calls that use the tree, such as SetCommandTree, ICommandValidate::ValidateSyntax or ValidateCompletely, ICommandPrepare::Prepare, and ICommand::Execute.

Return Value

S_OK
The method succeeded.

E_FAIL
A provider-specific error occurred.

E_INVALIDARG
pRoot was a null pointer.

dwCommandReuse was invalid.
DB_E_OBJECTOPEN
A rowset was open on the command object.

Comments

The following example shows how to build and set a simple command.

hr = pICreateCommand->CreateCommand(IID_ICommand,

 (IUnknown **) &pICommand);

pICreateCommand->Release();

// Build a command for the following query:

// SELECT * FROM CUSTOMERS ORDER BY CITY

CreateSelectNode(&pctSelect);

CreateProjectListAnchor(&pctPLListAnchor);

pctSelectNode->pctFirsChild = pctPLListAnchor;

CreateProjectListNode("*", &pctPLListNode);

CreateFromListAnchor(&pctFListAnchor);

CreateFromListNode("CUSTOMERS", &pctFLNode);

pctPLListAnchor->pctFirstChild = pctPLListNode;

pctPLListAnchor->pctNextSibling = pctFListAnchor;

CreateSortListAnchorNode(&pctSLAnchor);

CreateSortListElementNode("ascending",&pctSLNode);

CreateScalarIdNode("CITY", &pctScalar);

pctFListAnchor->pctFirstChild = pctFLNode;

pctFListAnchor->pctNextSibling = pctSLAnchor;

pctSLAnchor->pctFirstChild = pctSLNode;

pctSLNode->pctFirstChild = pctScalar;

// Get ICommandTree Interface

hr = pICommand->QueryInterface(IID_ICommandTree,

 (IUnknown **) &pICommandTree);

// Set Command Tree in Command Object

pICommandTree->SetCommandTree(&pctSort, FALSE);

pICommandTree->Release();

The functions used to create the various nodes (e.g. CreateSelectNode) are simple wrappers that set values in the DBCOMMANDTREE structure; they are not part of the OLE DB specification. For example, the code for CreateFromListNode might be:

void CreateFromListNode(

 PWSTR szFromList,

 DBCOMMANDTREE ** ppctFLNode);

{

 // Allocate DBCOMMANDTREE structure. Place pointer to it in

 // *ppctFLNode. Code not shown.

 *ppctFLNode->op = DBOP_from_list;

 *ppctFLNode->hrOperatorOk = S_OK;

 *ppctFLNode->hrContextOk = S_OK;

 *ppctFLNode->pctFirstChild = NULL;

 *ppctFLNode->pctNextSibling = NULL;

 *ppctFLNode->eKind = DBVALUEKIND_NAME;

 *ppctFLNode->pwszName = szFromList;

}

/ndf{1 index where{pop pop pop}{dup xcheck{bind}if def} ifelse}bd

/SetPageOffset{neg wp$y add/dTop ed/dLeft ed}ndf

/SetPageSize {neg dTop add/dBot ed dLeft add/dRight ed}ndf

/DoCropMarks{gs 0 setgray /dopaint true def 0.25 sl

 dLeft 76 sub dTop M 72 0 rlt dLeft 76 sub dBot M 72 0 rlt

 dRight 4 add dTop M 72 0 rlt dRight 4 add dBot M 72 0 rlt

 dLeft dTop 76 add M 0 -72 rlt dRight dTop 76 add M 0 -72 rlt

 dLeft dBot 4 sub M 0 -72 rlt dRight dBot 4 sub M 0 -72 rlt

 stroke gr}ndf

/DoPageBox {gs 0 setgray /dopaint true def 0.25 sl

 dLeft dTop M dRight dTop L dRight dBot L dLeft dBot L

 cp stroke gr}ndf

40.5 72 SetPageOffset

531 648 SetPageSize

DoCropMarks

DoPageBox"

Filename: CMDTRE.TMP Project: title
Template: NAEREFP.DOT Author: meliss Last Saved By: meliss
Revision #: 2 Page: 1 of 8 Printed: 00/00/00 00:00 AM

0 setgray /dopaint true def 2 2 moveto

/str 30 string def /Times-Roman findfont 5 scalefont setfont

(Printed On:) show statusdict begin product show end

(Colorlayer:) show /colorlayer where {pop colorlayer str cvs show}{(?) show}ifelse

(Document Page:) show wp$fpage show"
!Unexpected End of Expression

/ndf{1 index where{pop pop pop}{dup xcheck{bind}if def} ifelse}bind def

/ed{exch def}bind def

/SetPageOffset{neg wp$y add/dTop ed/dLeft ed}ndf

/SetPageSize {neg dTop add/dBot ed dLeft add/dRight ed}ndf

/DoCropMarks{gsave 0 setgray /dopaint true def 0.25 setlinewidth

 dLeft 76 sub dTop moveto 72 0 rlineto dLeft 76 sub dBot moveto 72 0 rlineto

 dRight 4 add dTop moveto 72 0 rlineto dRight 4 add dBot moveto 72 0 rlineto

 dLeft dTop 76 add moveto 0 -72 rlineto dRight dTop 76 add moveto 0 -72 rlineto

 dLeft dBot 4 sub moveto 0 -72 rlineto dRight dBot 4 sub moveto 0 -72 rlineto

 stroke grestore}ndf

/DoPageBox {gsave 0 setgray /dopaint true def 0.25 setlinewidth

 dLeft dTop moveto dRight dTop lineto dRight dBot lineto dLeft dBot lineto

 closepath stroke grestore}ndf

40.5 72 SetPageOffset

531 648 SetPageSize

DoCropMarks

DoPageBox"

Filename: CMDTRE.doc Project: title

Template: NAEREFP.DOT Author: meliss Last Saved By: meliss
Revision #: 24 Page: 100 of 8 Printed: 00/00/00 00:00 AM

0 setgray /dopaint true def 1.5 33.5 moveto

/str 30 string def /Helvetica-Narrow findfont 7 scalefont setfont

(Printed On:) show statusdict begin product show end

(Colorlayer:) show /colorlayer where {pop colorlayer str cvs show}{(?) show}ifelse

(Document Page:) show wp$fpage show"

OLE DB Programmer’s Reference Version 2 100

/ndf{1 index where{pop pop pop}{dup xcheck{bind}if def} ifelse}bind def

/ed{exch def}bind def

/SetPageOffset{neg wp$y add/dTop ed/dLeft ed}ndf

/SetPageSize {neg dTop add/dBot ed dLeft add/dRight ed}ndf

/DoCropMarks{gsave 0 setgray /dopaint true def 0.25 setlinewidth

 dLeft 76 sub dTop moveto 72 0 rlineto dLeft 76 sub dBot moveto 72 0 rlineto

 dRight 4 add dTop moveto 72 0 rlineto dRight 4 add dBot moveto 72 0 rlineto

 dLeft dTop 76 add moveto 0 -72 rlineto dRight dTop 76 add moveto 0 -72 rlineto

 dLeft dBot 4 sub moveto 0 -72 rlineto dRight dBot 4 sub moveto 0 -72 rlineto

 stroke grestore}ndf

/DoPageBox {gsave 0 setgray /dopaint true def 0.25 setlinewidth

 dLeft dTop moveto dRight dTop lineto dRight dBot lineto dLeft dBot lineto

 closepath stroke grestore}ndf

40.5 72 SetPageOffset

531 648 SetPageSize

DoCropMarks

DoPageBox"

Filename: CMDTRE.doc Project: title

Template: NAEREFP.DOT Author: meliss Last Saved By: meliss
Revision #: 24 Page: 93 of 8 Printed: 00/00/00 00:00 AM

0 setgray /dopaint true def 1.5 33.5 moveto

/str 30 string def /Helvetica-Narrow findfont 7 scalefont setfont

(Printed On:) show statusdict begin product show end

(Colorlayer:) show /colorlayer where {pop colorlayer str cvs show}{(?) show}ifelse

(Document Page:) show wp$fpage show"

OLE DB Programmer’s Reference Version 2 93

