Microsoft Index Server Programmer’s Reference

11/13/98

Microsoft Index Server Programmer’s Reference v0.1

Windows Design Team, July 21, 1997

This document describes the programmatic interface to Microsoft Index Server.

Contents

Microsoft Index Server Programmer’s Reference
3
Introduction
3
Index Server API
3
LocateCatalogs
3
Parameters
3
Return Values
4
Remarks
4
Example
4
CICreateCommand
5
Parameters
5
Return Values
5
Remarks
5
Example
6
CITextToSelectTree
6
Parameters
6
Return Values
7
Remarks
7
Example
7
CITextToFullTree
8
Parameters
9
Return Values
9
Remarks
9
Example
9
ICommand Property Extensions
13
Force Use of the Index
13
Defer Non-Indexed Trimming
13
Use Extended DB Types
14
Machine Name
14
Catalog Name
14
Include Scopes
15
Scope Flags
15
Values
15
ICommand Property Example
16
Data Types and Constants
17
CIPROPERTYDEF
17
Members
17
Storage Property Set
17
Query Property Set
18
Data Source Object CLSID
19
Example
19
Appendix A: OLE DB Interfaces Supported by Index Server
20
Interfaces Supported on Command Objects
20
Interfaces Supported on Rowset Objects
20
Appendix B: Supported OLE DB Properties
21

0if <> 0 "Chapter 0: " ""
Microsoft Index Server Programmer’s Reference

This document describes extensions to the OLE DB API provided by Index Server.

Introduction

Microsoft Index Server is designed to perform content and property searches over file systems. The Index Server API enables applications to add features that exploit an indexed file system. Using the API, an application can issue queries over file systems and present the results to the user.

Most programmatic access to Index Server is through OLE DB. Index Server supports all required interfaces to be an OLE DB provider. For a list of OLE DB interfaces supported, refer to Appendix A. For a list of defaults for OLE DB properties, refer to Appendix B. For information about OLE DB, refer to the OLE DB Programmer’s Reference.

Index Server supports OLE DB Version 2.0 command trees. To enable command tree definitions in oledb.h, define the constant OLEDBVER in program source files before including oledb.h:

#define OLEDBVER 0x200

Where necessary or convenient, Index Server has defined API, ICommandProperty property, and property set extensions to OLE DB. These extensions make it easier to write applications that make use of Index Server. This document describes these extensions.

Index Server API

Index Server provides functions to find catalogs (indexes), create OLE DB ICommand objects for catalogs, and parse queries using the Index Server query language.

These functions are defined in ntquery.h and are exported from ntquery.lib.

LocateCatalogs

LocateCatalogs finds indexes that can be used to process queries for a files in a specified path. The machine and catalog parameter values returned by LocateCatalogs can be used to create an OLE DB ICommand object for issuing queries over a given scope.

STDAPI LocateCatalogs(WCHAR const * pwszScope,

 ULONG iBmk,

 WCHAR * pwszMachine,

 ULONG * pcMachine,

 WCHAR * pwszCatalog,

 ULONG * pcCatalog);

Parameters

pwszScope [in]

Points to a null-terminated string that specifies the scope for an Index Server query. The scope can be local (e.g. C:\directory) or a remote UNC (e.g. \\MACHINE\SHARE\directory). The scope cannot be a redirected drive letter, i.e. a drive letter that refers to a drive on a remote machine. Scopes must be physical, not Internet Information Server virtual scopes.

iBmk [in]

Specifies the 0-based bookmark of the result to be retrieved. Pass 0 to retrieve the first machine and catalog that index pwszScope, 1 to retrieve the second machine and catalog that index pwszScope, etc. If no index for the bookmark is available, LocateCatalogs returns S_FALSE.

pwszMachine [out]

Points to a buffer where a null-terminated string will be written if the function is successful. The result string is the machine name on which a query over the scope pwszScope can be executed.

pcMachine [in/out]

On input, points to a wide character count that specifies the size of pwszMachine. On output, specifies the count of characters used in pwszMachine if the function is successful, or the count of characters needed to store the name of the machine if the buffer is too small. If the buffer is too small, LocateCatalogs returns S_OK.

pwszCatalog [out]

Points to a buffer where a null-terminated string will be written if the function is successful. The result string is the machine name on which a query over the scope pwszScope can be executed.

pcCatalog [in/out]

On input, points to a wide character count that specifies the size of pwszCatalog. On output, specifies the count of characters used in pwszCatalog if the function is successful, or the count of characters needed to store the name of the catalog if the buffer is too small. If the buffer is too small, LocateCatalogs returns S_OK.

Return Values

An HRESULT, S_OK if successful. If no machine and catalog can be found that index the scope, or iBmk is beyond the count of machines and catalogs that index the scope, the function returns S_FALSE. If there is an error, LocateCatalogs returns E_FAIL.

If a machine and catalog match is found but the machine and catalog buffers aren’t big enough, LocateCatalogs returns S_OK, and fills pcCatalog and pcMachine with the wide character required. Callers of LocateCatalogs must check the return code, pcMachine, and pcCatalog to determine if the call was successful.

Remarks

LocateCatalogs is useful when it is not known what machine and catalog index a scope. If the machine and catalog are known, it’s more efficient to execute a query without calling LocateCatalogs.

LocateCatalogs does not verify that the machine and catalog returned are available. If an application fails to issue a query with the machine and catalog returned, it should increment iBmk and call LocateCatalogs again to get the next machine and catalog that index the scope.

Example

This example enumerates all machines and catalogs capable of resolving queries over the scope “C:\directory”.

HRESULT hr = S_OK

for (ULONG iBmk = 0; S_OK == hr; iBmk++)
{

 WCHAR awcMachine[MAX_COMPUTERNAME_LENGTH + 1];

 const ULONG cwcMachineBuffer = sizeof awcMachine / sizeof WCHAR;

 ULONG cwcMachine = cwcMachineBuffer;

 WCHAR awcCatalog[MAX_PATH + 1];

 const ULONG cwcCatalogBuffer = sizeof awcCatalog / sizeof WCHAR;

 ULONG cwcCatalog = cwcCatalogBuffer;

 hr = LocateCatalogs(L”c:\\directory”,

 iBmk,

 awcMachine,

 &cwcMachine,

 awcCatalog,

 &cwcCatalog);

 if ((hr == S_OK) &&

 (cwcMachine <= cwcMachineBuffer) &&

 (cwcCatalog <= cwcCatalogBuffer))

 {

 wprintf(L“matching machine and catalog: ‘%s’, ‘%s’\n”,

 awcMachine, awcCatalog);

 }

}

CICreateCommand

CICreateCommand creates an ICommand object for Index Server, and sets the catalog and machine properties on the object. The ICommand object can be used for issuing queries.

STDAPI CICreateCommand(IUnknown ** ppICommand,

 IUnknown * pUnkOuter,

 REFIID riid,

 WCHAR const * pwcsCatalog,

 WCHAR const * pwcsMachine)

Parameters

ppICommand [out]

Address of output variable that receives the interface pointer requested in riid.

pUnkOuter [in]

Points to an optional outer unknown. Can be 0 for no aggregation, in which case riid can be other than IID_IUnknown.

riid [in]

Specifies the IID of the interface returned in ppICommand. Must be IID_IUnknown unless pUnkOuter is 0. Pass IID_ICommand to get an ICommand interface if aggregation isn’t needed and pUnkOuter is 0.

pwcsCatalog [in]

Points to a null-terminated string that specifies the name of the catalog used to execute queries. This is the value for the DBPROP_CI_CATALOG_NAME ICommand property.

pwcsMachine [in]

Points to a null-terminated string that specifies the name of the machine on which the query will be executed. This is the value for the DBPROP_CI_MACHINE_NAME ICommand property. Specify L”.” for the local machine.

Return Values

An HRESULT, S_OK if successful.

Remarks

If interface aggregation isn’t required, pass IID_ICommand for riid and 0 for pUnkOuter. Otherwise, call IUnknown::QueryInterface on the returned object to get an ICommand interface.

CICreateCommand does not return an error if the catalog or machine do not exist or are not available. The connection to the catalog and machine are established when ICommand::Execute() is called, and connection errors are returned at that time.

Additional catalog, machine, and scope parameters can be specified after an ICommand is created using the ICommandProperties interface.

Multiple queries can be executed on the ICommand object returned by CICreateCommand, but only one query can exist at a time. Issuing multiple queries on a single ICommand object is much more efficient than creating a new ICommand object for each query.

CICreateCommand is a shortcut for creating OLE DB ICommand objects. It obviates code to create an OLE DB data source object, a session object, an ICommand creation object, then an ICommand object.

Example

This example creates an ICommand object for the system catalog on the local machine.

ICommand * pICommand;

HRESULT hr = CICreateCommand((IUnknown **) &pICommand, 0, IID_ICommand, L”system”, L”.”);

if (SUCCEEDED(hr))

{

 // …

 // execute one or more queries with the ICommand

 // …

 pICommand->Release();

}

CITextToSelectTree

CITextToSelectTree creates a DBCOMMANDTREE from an Index Server query language string. The command tree returned by this function can be used as the next sibling under a DBOP_table_name node. A DBOP_project node is also required to form a complete command tree.

STDAPI CITextToSelectTree(WCHAR const * pwszRestriction,

 DBCOMMANDTREE * * ppTree,

 ULONG cProperties,

 CIPROPERTYDEF * pProperties,

 LCID LocaleID);

Parameters

pwszRestriction [in]

Points to a null-terminated string specifying an Index Server query. The syntax for queries is described in the Index Server documentation.

ppTree [out]

Address of output variable that receives the command tree built by the function.

cProperties [in]

Count of properties in the pProperties array, or 0 if pProperties is 0.

pProperties [in]

Address of an array of properties that can be referred to by friendly name in pwszRestriction. Column names in the wcsFriendlyName field of each CIPROPERTYDEF must be specified in uppercase. Index Server’s built-in properties do not need to be defined to be used. It is an error to define a property with the same friendly name as a built-in property.

LocaleID [in]

The locale ID used for nodes in the tree returned in ppTree that contain an LCID field, including content restrictions and sort order.

Return Values

An HRESULT, S_OK if successful.

Remarks

Command trees created by CITextToSelectTree contain the select portion of a DBCOMMANDTREE. A tree returned by CITextToSelectTree can be combined with project and sort nodes to form a complete command tree. Use CITextToSelectTree instead of CITextToFullTree if the sort order and project columns tree nodes are already available.

The query tree allocated by CITextToSelectTree must be freed either with ICommandTree::FreeCommandTree or passed to ICommandTree::SetCommandTree with the fCopy parameter set to FALSE.

Example

This example creates a DBCOMMANDTREE. A custom property from a Microsoft Word document named “IssueNumber” of type “Number” is defined and used in the query.

DBCOMMANDTREE * pCompleteTree;

DBCOMMANDTREE * pTableNode;

// …

// Insert code here to make pCompleteTree a complete tree using pTableNode

// as the DBOP_table_name node that has no query restriction (yet).

// User CoTaskMemAlloc to allocate memory for the nodes.

// …

//

CIPROPERTYDEF aProperties[1];

const GUID guidOffice = { 0xd5cdd505, 0x2e9c, 0x101b,

 0x93, 0x97, 0x08, 0x00, 0x2b, 0x2c, 0xf9, 0xae }

 };

aProperties[0].wcsFriendlyName = L”ISSUENUMBER”;

aProperties[0].dbType = DBTYPE_R8;

aProperties[0].dbCol.uGuid.guid = guidOffice;

aProperties[0].dbCol.eKind = DBKIND_GUID_NAME;

aProperties[0].dbCol.pwszName.ulPropid = L”ISSUENUMBER”;

DBCOMMANDTREE * pSelectTree;

HRESULT hr = CiTextToSelectTree(L”microsoft and @issuenumber=2”,

 &pSelectTree,

 1,

 aProperties,

 GetSystemDefaultLCID());

if (SUCCEEDED(hr))

{

 pTableNode->pctNextSibling = pSelectTree;

 hr = pICommand->SetCommandTree(pCompleteTree,

 DBCOMMANDREUSE_NONE,

 FALSE);

 if (SUCCEEDED(hr))

 {

 // …

 // execute a query

 // …

 }

}

This is the DBCOMMANDTREE pSelectTree created by the example code:

CITextToFullTree

CITextToFullTree creates a complete DBCOMMANDTREE from a query string, output columns, sort columns, and a set of custom properties.

STDAPI CITextToFullTree(WCHAR const * pwszRestriction,

 WCHAR const * pwszColumns,

 WCHAR const * pwszSortColumns,

 WCHAR const * pwszReserved,

 DBCOMMANDTREE * * ppTree,

 ULONG cProperties,

 CIPROPERTYDEF * pProperties,

 LCID LocaleID);

Parameters

pwszRestriction [in]

Points to a null-terminated string that specifies an Index Server query. The syntax for queries is described in the Index Server documentation.

pwszColumns [in]

Points to a null-terminated string that specifies a comma separated list of column names that are returned in the query results. These columns can be bound by OLE DB accessors.

pwszSortColumns [in]

Points to a null-terminated string that contains a comma separated list of column names that specify the sort order for the query results. A sort direction can be appended to each column name. Use [d] for descending, and [a] for ascending. If no sort order is specified, ascending is the default. Can be 0 for no sort order.

pwszReserved [in]

Must be 0.

ppTree [out]

Address of output variable that receives the command tree built by the function.

cProperties [in]

Count of properties in the pProperties array, or 0 if pProperties is 0.

pProperties [in]

Address of an array of properties that can be referred to by friendly name in pwszRestriction. Column names in the wcsFriendlyName field of each CIPROPERTYDEF must be specified in uppercase. Can be 0 if no properties are being defined and cProperties is 0. Index Server’s built-in properties do not need to be defined to be used. It is an error to define a property with the same friendly name as a built-in property.

LocaleID [in]

The locale ID used for nodes in ppTree that contain an LCID field, including content restrictions, sort order, and others.

Return Values

An HRESULT, S_OK if successful.

Remarks

The query tree allocated by CITextToSelectTree must be freed either with ICommandTree::FreeCommandTree or passed to ICommandTree::SetCommandTree with the fCopy parameter set to FALSE.

Example

This sample code creates a command tree. The list of properties returned by the query include myproperty, path, and size. The sort order is first by rank descending, then by path ascending. The default system locale is used to create the command tree.

CIPROPERTYDEF aProperties[1];

const GUID guidOffice = { 0xd5cdd505, 0x2e9c, 0x101b,

 0x93, 0x97, 0x08, 0x00, 0x2b, 0x2c, 0xf9, 0xae }

 };

aProperties[0].wcsFriendlyName = L”ISSUENUMBER”;

aProperties[0].dbType = DBTYPE_R8;

aProperties[0].dbCol.uGuid.guid = guidOffice;

aProperties[0].dbCol.eKind = DBKIND_GUID_NAME;

aProperties[0].dbCol.pwszName.ulPropid = L”ISSUENUMBER”;

DBCOMMANDTREE * pTree;

HRESULT hr = CiTextToFullTree(L”microsoft and @issuenumber=2”,

 L”size,path,issuenumber”,

 L”rank[d],path[a]”,

 &pTree,

 1,

 aProperties,

 GetSystemDefaultLCID());

if (SUCCEEDED(hr))

{

 hr = pICommand->SetCommandTree(pTree,

 DBCOMMANDREUSE_NONE,

 FALSE);

 if (SUCCEEDED(hr))

 {

 // …

 // execute a query

 // …

 }

}

This is the DBCOMMANDTREE pTree created by the example code:

ICommand Property Extensions

Index Server defines a number of ICommand properties that can be used to customize queries. The properties are specific to Index Server, and may not apply to other OLE DB providers.

ICommand properties are set using OLE DB’s ICommandProperties interface. The properties must be set before a query is executed to have an effect on the query.

Force Use of the Index

DBPROP_USECONTENTINDEX controls the use of the index when processing queries.

If the value is VARIANT_TRUE, the index is always used to resolve the query, even if the index is not up to date. If the value is VARIANT_FALSE and the index is not up to date, the query engine may enumerate the file system to process the query.

This setting affects property value queries like “@size > 1000”.

Enumerating the file system can be disk intensive and slow.

Content queries always use the index and will never enumerate regardless of the setting of this property.

Certain types of queries require DBPROP_USECONTENTINDEX to be VARIANT_FALSE to return results, for example “#filename *.dll OR #filename *.exe”. These queries require enumeration and can’t use the index even if the index is up to date.

This property corresponds to the CiForceUseCi variable in Index Server’s IDQ files.

This property corresponds to the AllowEnumeration variable in Index Server’s ASP Query object.

Property Set
DBPROPSET_QUERYEXT

Property ID
DBPROP_USECONTENTINDEX

Value Type
DBTYPE_BOOL

Default
VARIANT_FALSE

Defer Non-Indexed Trimming

DBPROP_DEFERNONINDEXEDTRIMMING optimizes query execution for a specific type of query.

If the value is VARIANT_TRUE, a maximum number of rows for the result is specified, and the sort order is by rank descending, then scope and security checking are deferred until either the maximum number of rows is reached or the query is completed. This may result in less than the expected number of hits to be returned for queries in which scope checks or security trimming removes results. The default is to optimize for recall; the result set trimming occurs in the course of executing the query.

This flag is best used when the query scope encompasses the entire catalog and all files in the result set have the same security Access Control Lists.

This property corresponds to the CiDeferNonIndexedTrimming variable in Index Server’s IDQ files.

This property corresponds to the OptimizeFor variable in Index Server’s ASP Query object.

Property Set
DBPROPSET_QUERYEXT

Property ID
DBPROP_DEFERNONINDEXEDTRIMMING

Value Type
DBTYPE_BOOL

Default
VARIANT_FALSE

Use Extended DB Types

DBPROP_USEEXTENDEDDBTYPES controls the data type of columns bound by OLE DB accessors.

If the value is VARIANT_TRUE, accessor column bindings can be based on PROPVARIANTs. By default, only OLE Automation VARIANTs and any directory binding are allowed for accessor column bindings.

Many commonly used properties are stored using types that are not OLE Automation VARIANTs. This causes considerable overhead in the OLE DB accessor used to retrieve the data, since the data must be coerced into a different type.

Clients that can make use of PROPVARIANTS should set DBPROP_USEEXTENDEDDBTYPES to VARIANT_TRUE and use OLE DB accessors with bindings that use PROPVARIANT types.

Property Set
DBPROPSET_QUERYEXT

Property ID
DBPROP_USEEXTENDEDDBTYPES

Value Type
DBTYPE_BOOL

Default
VARIANT_FALSE

Machine Name

Th DBPROP_MACHINE property specifies the names of the machine(s) on which a query will be processed.

If more than one catalog or machine are specified, the properties DBPROP_MACHINE, DBPROP_CI_CATALOG_NAME, DBPROP_CI_INCLUDE_SCOPES, and DBPROP_CI_SCOPE_FLAGS must all have the same number of entries. The exception is that if more than one catalog or machine are specified, the count of scopes and flags can either be the count of catalogs and machines or 1.

If more than one machine or catalog are specified, the query will be executed on multiple machines, and the results will be merged on the local machine.

Machine names should not include preceding slashes, e.g. \\machine.

The machine name “.” refers to the local machine. If the name of the local machine is specified, the query will be treated as a remote query.

Property Set
DBPROPSET_CIFRMWRKCORE_EXT

Property ID
DBPROP_MACHINE

Value Type
DBTYPE_ARRAY | DBTYPE_BSTR

Default
“.” (the local machine)

Catalog Name

The DBPROP_CI_CATALOG_NAME property specifies the names of the catalog(s) over which the query will be processed.

If more than one catalog or machine are specified, the properties DBPROP_MACHINE, DBPROP_CI_CATALOG_NAME, DBPROP_CI_INCLUDE_SCOPES, and DBPROP_CI_SCOPE_FLAGS must all have the same number of entries. The exception is that if more than one catalog or machine are specified, the count of scopes and flags can either be the count of catalogs and machines or 1.

If more than one machine or catalog are specified, the query will be executed on multiple machines, and the results will be merged on the local machine.

The default catalog installed with Windows is named “SYSTEM”
.

This property corresponds to the CiCatalog variable in Index Server’s IDQ files.

Property Set
DBPROPSET_ FSCIFRMWRK_EXT

Property ID
DBPROP_CI_CATALOG_NAME

Value Type
DBTYPE_ARRAY | DBTYPE_BSTR

Default
None

Include Scopes

The DBPROP_CI_INCLUDE_SCOPES property specifies the names of the file path(s) over which the query will be processed.

If more than one catalog or machine are specified, the properties DBPROP_MACHINE, DBPROP_CI_CATALOG_NAME, DBPROP_CI_INCLUDE_SCOPES, and DBPROP_CI_SCOPE_FLAGS must all have the same number of entries. The exception is that if more than one catalog or machine are specified, the count of scopes and flags can either be the count of catalogs and machines or 1.

If more than one machine or catalog are specified, the query will be executed on multiple machines, and the results will be merged on the local machine.

The scope “\” covers the entire catalog. The scope “/” covers the entire Internet Information Server virtual path name space. Scopes can be local drive letter based paths or remote UNC paths.

This property corresponds to the CiScope variable in Index Server’s IDQ files.

Property Set
DBPROPSET_ FSCIFRMWRK_EXT

Property ID
DBPROP_CI_INCLUDE_SCOPES

Value Type
DBTYPE_ARRAY | DBTYPE_BSTR

Default
“\” (the entire catalog)

Scope Flags

The DBPROP_CI_SCOPE_FLAGS property specifies attributes of the scopes specified for DBPROP_CI_INCLUDE_SCOPES.

If more than one catalog or machine are specified, the properties DBPROP_MACHINE, DBPROP_CI_CATALOG_NAME, DBPROP_CI_INCLUDE_SCOPES, and DBPROP_CI_SCOPE_FLAGS must all have the same number of entries. The exception is that if more than one catalog or machine are specified, the count of scopes and flags can either be the count of catalogs and machines or 1.

If more than one machine or catalog are specified, the query will be executed on multiple machines, and the results will be merged on the local machine.

This property corresponds to the CiFlags variable in Index Server’s IDQ files.

Values

QUERY_SHALLOW

Only files in the scope directory are included in the results. Cannot be combined with QUERY_DEEP.

QUERY_DEEP

Files in the scope directory and all subdirectories are included in the results. Cannot be combined with QUERY_SHALLOW.

QUERY_PHYSICAL_PATH

The scope is a physical directory. Cannot be combined with QUERY_VIRTUAL_PATH.

QUERY_VIRTUAL_PATH

The scope is a virtual (Internet Information Server) directory. Cannot be combined with QUERY_PHYSICAL_PATH.

Property Set
DBPROPSET_FSCIFRMWRK_EXT

Property ID
DBPROP_CI_SCOPE_FLAGS

Value Type
DBTYPE_UI4

Default
QUERY_DEEP | QUERY_PHYSICAL_PATH

ICommand Property Example

This example demonstrates how to set an ICommand property. SetUseContentIndex sets Index Server’s DBPROP_USECONTENTINDEX to VARIANT_TRUE.

HRESULT SetUseContentIndex(ICommand * pICommand)

{

 static const DBID dbcolNull = { {0,0,0,{0,0,0,0,0,0,0,0}},DBKIND_GUID_PROPID,0 };

 static const GUID guidQueryExt = DBPROPSET_QUERYEXT;

 DBPROP aProp[1];

 aProp[0].dwPropertyID = DBPROP_USECONTENTINDEX;

 aProp[0].dwOptions = DBPROPOPTIONS_SETIFCHEAP;

 aProp[0].dwStatus = 0;

 aProp[0].colid = dbcolNull;

 aProp[0].vValue.vt = VT_BOOL;

 aProp[0].vValue.boolVal = VARIANT_TRUE;

 DBPROPSET aPropSet[1];

 aPropSet[0].rgProperties = &aProp[0];

 aPropSet[0].cProperties = 1;

 aPropSet[0].guidPropertySet = guidQueryExt;

 ICommandProperties * pICommandProperties;

 HRESULT hr = pICommand->QueryInterface(IID_ICommandProperties,

 (IUnknown **) &pICommandProperties);

 if (FAILED(hr))

 return hr;

 hr = pICommandProperties->SetProperties(1, aPropSet);

 pICommandProperties->Release();

 return hr;

}

Data Types and Constants

CIPROPERTYDEF

The CIPROPERTYDEF structure contains information about the friendly name, type, and DBID of a property.

typedef struct tagCIPROPERTYDEF

{

 LPWSTR wcsFriendlyName;

 DWORD dbType;

 DBID dbCol;

} CIPROPERTYDEF;

Members

wcsFriendlyName

Points to a null-terminated string that specifies the friendly name for a property. The friendly name can be used in an Index Server query, column list, or sort order parsed by CITextToSelectTree and CITextToFullTree. Friendly names must be defined in uppercase.

dbType

The data type for the property. This type is used when building a DBCOMMANDTREE restriction node. The same property with different friendly names can have different types. Its value must either be an OLE DB DBTYPEENUM or a PROPVARIANT variant type.

dbCol

The property identifier for the property. Refer to the OLE DB Programmer’s Reference for information about DBID structures. Index Server properties must be either DBKIND_GUID_NAME or DBKIND_GUID_PROPID.

Storage Property Set

The storage property set defines properties found on files in a file system. The GUID for storage properties is PSGUID_STORAGE, which is defined in ntquery.h as:

#define PSGUID_STORAGE \

 { 0xb725f130, 0x47ef, 0x101a, \

 { 0xa5, 0xf1, 0x02, 0x60, 0x8c, 0x9e, 0xeb, 0xac } }

PID_STG_DIRECTORY

The directory in which a file is located. Default type is VT_LPWSTR. The Index Server friendly name is “directory”.

PID_STG_CLASSID

Class ID of a file. Default type is VT_CLSID. The Index Server friendly name is “classid”.

PID_STG_NAME

The name of the file. Default type is VT_LPWSTR. The Index Server friendly name is “filename”.

PID_STG_PATH

The complete path for a file. Default type is VT_LPWSTR. The Index Server friendly name is “path”.

PID_STG_SIZE

The size of a file. Default type is VT_I8. The Index Server friendly name is “size”.

PID_STG_ATTRIBUTES

The attribute flags for a file. Default type is VT_UI4. The Index Server friendly name is “attrib”.

PID_STG_WRITETIME

The date and time of the last write to the file. Default type is VT_FILETIME. The Index Server friendly name is “write”.

PID_STG_CREATETIME

The date and time the file was created. Default type is VT_FILETIME. The Index Server friendly name is “create”.

PID_STG_ACCESSTIME

The time of the last access to the file. Default type is VT_FILETIME. The Index Server friendly name is “access”.

PID_STG_CONTENTS

The contents of the file. This property is for query restrictions only; it cannot be retrieved in a query result. Default type is VT_LPWSTR. The Index Server friendly name is “contents”.

PID_STG_SHORTNAME

The short (8.3) filename for the file. Default type is VT_LPWSTR. The Index Server friendly name is “shortname”.

Query Property Set

The query property set contains properties computed or made available by the query engine in Index Server. The GUID is PSGUID_QUERY, which is defined in oledb.h as:

extern const GUID PSGUID_QUERY = {0x49691c90,0x7e17,0x101a,{0xa9,0x1c,0x08,0x00,0x2b,0x2e,0xcd,0xa9}};

Some of these properties are defined in oledb.h, the rest in ntquery.h.

PROPID_QUERY_RANKVECTOR

The array of ranks for each term in a vector query. Default type is VT_VECTOR | VT_UI4. The Index Server friendly name is “rankvector”.

PROPID_QUERY_RANK

The rank of a file, that indicates how well the query matched the file. This value is between 0 and 1000. Default type is VT_I4. The Index Server friendly name is “rank”.

PROPID_QUERY_HITCOUNT

The count of query hits in a file. Default type is VT_I4. The Index Server friendly name is “hitcount”.

PROPID_QUERY_ALL

Refers to all properties of the file. This property is for query restrictions only; it cannot be retrieved in a query result. Default type is VT_LPWSTR. The Index Server friendly name is “all”.

PROPID_QUERY_UNFILTERED

Filtered state of the file. Default type is VT_BOOL. There is no Index Server name for this property; it must be defined manually.

PROPID_QUERY_VPATH

The Index Information Server virtual path of a file. The path can be in the WWW, NNTP, or IMAP name spaces. Default type is VT_LPWSTR. The Index Server friendly name is “vpath”.

Data Source Object CLSID

The Index Server DSO CLSID is used to create an Index Server DSO using CoCreateInstance. It is defined in ntquery.h

CLSID_INDEX_SERVER_DSO

The CLSID constant for the Index Server DSO.

Example

This example creates an Index Server Data Source Object, from which a query can be executed.

const GUID CLSID_IndexServerDSO = CLSID_INDEX_SERVER_DSO;

IDBInitialize *pIDBInit;

HRESULT hr = CoCreateInstance(CLSID_IndexServerDSO,

 0,

 CLSCTX_INPROC_SERVER,

 IID_IDBInitialize,

 (void **) &pIDBInit);

Appendix A: OLE DB Interfaces Supported by Index Server

Interfaces Supported on Command Objects

These interfaces are supported on command objects:

ICommand

ICommandProperties

IAccessor

IConvertType

ISupportErrorInfo

IColumnsInfo

ICommandTree

Interfaces Supported on Rowset Objects

These interfaces are supported on rowset objects.

IRowset

IRowsetLocate

IRowsetScroll

IRowsetExactScroll

IAccessor

IRowsetInfo

IRowsetIdentity

IConvertType

IColumnsInfo

ISupportErrorInfo

Appendix B: Supported OLE DB Properties

The OLE DB properties in this table are supported by Index Server. Other properties are not supported. Refer to the OLE DB Programmer’s Reference for a complete description of these properties.

Property
Settable
Default

DBPROP_BLOCKINGSTORAGEOBJECTS
FALSE
VARIANT_FALSE

DBPROP_BOOKMARKS
TRUE
VARIANT_TRUE if the rowset is locatable.

DBPROP_BOOKMARKSKIPPED
FALSE
VARIANT_FALSE

DBPROP_BOOKMARKTYPE
FALSE
Bookmarks are DBPROPVAL_BMK_NUMERIC

DBPROP_CANFETCHBACKWARDS
FALSE
VARIANT_FALSE

DBPROP_CANHOLDROWS
TRUE
VARIANT_TRUE if the rowset is locatable

DBPROP_CANSCROLLBACKWARDS
FALSE
VARIANT_TRUE if the rowset is locatable

DBPROP_COLUMNRESTRICT
FALSE
VARIANT_FALSE

DBPROP_COMMANDTIMEOUT
TRUE
The default is 0, which means no timeout.

DBPROP_LITERALBOOKMARKS
FALSE
VARIANT_FALSE

DBPROP_LITERALIDENTITY
FALSE
VARIANT_TRUE if the rowset is locatable

DBPROP_MAXOPENROWS
FALSE
The default is 0, which means no limit.

DBPROP_MAXROWS
TRUE
The default is 0, which means no limit.

DBPROP_MEMORYUSAGE
TRUE
The default is 0, which means no limit. Not implemented.

DBPROP_ORDEREDBOOKMARKS
FALSE
VARIANT_TRUE if the rowset is locatable

DBPROP_OTHERINSERT
FALSE
VARIANT_TRUE if the rowset is asynchronous

DBPROP_OTHERUPDATEDELETE
FALSE
VARIANT_TRUE if the rowset is asynchronous

DBPROP_QUICKRESTART
FALSE
VARIANT_TRUE if the rowset is locatable

DBPROP_REENTRANTEVENTS
FALSE
VARIANT_FALSE

DBPROP_REMOVEDELETED
FALSE
VARIANT_TRUE

DBPROP_ROWRESTRICT
FALSE
VARIANT_TRUE

DBPROP_ROWTHREADMODEL
FALSE
The default is DBPROPVAL_RT_FREETHREAD.

DBPROP_SERVERCURSOR
FALSE
VARIANT_TRUE

DBPROP_STRONGIDENTITY
FALSE
VARIANT_TRUE if the rowset is locatable

DBPROP_UPDATABILITY
FALSE
The default is 0, which means updates aren’t supported.

The information contained in this document represents the current view of Microsoft Corporation on the issues discussed as of the date of publication. Because Microsoft must respond to changing market conditions, it should not be interpreted to be a commitment on the part of Microsoft, and Microsoft cannot guarantee the accuracy of any information presented after the date of publication.

This document is for informational purposes only. MICROSOFT MAKES NO WARRANTIES, EXPRESS OR IMPLIED, IN THIS DOCUMENT.

© 1997 Microsoft Corporation. All rights reserved.

Microsoft is a registered trademark of Microsoft Corporation. Other product and company names herein may be the trademarks of their respective owners.

DBOP_and

DBVALUEKIND_I4: (weight) 1000

DBOP_content

DBVALUEKIND_CONTENT

DBOP_column_name

DBVALUEKIND_ID

DBCONTENT

pwszPhrase: “microsoft”

dwGenerateMethod: GENERATE_METHOD_EXACT

lWeight: 1000

lcid: 0x409

DBID

guid: PSGUID_STORAGE

eKind: DBKIND_GUID_PROPID

ulPropid: PID_STG_CONTENTS

child

sibling

child

pdbcntntValue

pdbidValue

pdbidValue

pvarValue

child

DBID

guid: myGuid

eKind: DBKIND_GUID_PROPID

pwszName: ISSUENUMBER

VARIANT

vt: DBTYPE_R8

dblVal: 2.0

DBOP_column_name

DBVALUEKIND_ID

DBOP_equal

DBVALUEKIND_EMPTY

sibling

sibling

DBOP_table_name

DBVALUEKIND_EMPTY

child

DBOP_select

DBVALUEKIND_EMPTY

DBOP_scalar_constant

DBVALUEKIND_VARIANT

sibling

child

DBOP_project

DBVALUEKIND_EMPTY

child

DBOP_sort

DBVALUEKIND_EMPTY

child

child

DBOP_scalar_constant

DBVALUEKIND_VARIANT

sibling

sibling

pdbidValue

pvarValue

DBID

guid: guidOffice

eKind: DBKIND_GUID_PROPID

pwszName: ISSUENUMBER

VARIANT

vt: DBTYPE_R8

dblVal: 2.0

DBOP_column_name

DBVALUEKIND_ID

DBOP_equal

DBVALUEKIND_EMPTY

pdbidValue

pdbcntntValue

child

DBID

guid: PSGUID_STORAGE

eKind: DBKIND_GUID_PROPID

ulPropid: PID_STG_CONTENTS

DBCONTENT

pwszPhrase: “microsoft”

dwGenerateMethod: GENERATE_METHOD_EXACT

lWeight: 1000

lcid: 0x409

DBOP_column_name

DBVALUEKIND_ID

DBOP_content

DBVALUEKIND_CONTENT

DBOP_and

DBVALUEKIND_I4: (weight) 1000

sibling

child

DBOP_project_list_anchor

DBVALUEKIND_EMPTY

child

DBOP_project_list_element

DBVALUEKIND_EMPTY

child

pdbidValue

DBID

guid: PSGUID_STORAGE

eKind: DBKIND_GUID_PROPID

ulPropid: PID_STG_SIZE

DBOP_column_name

DBVALUEKIND_ID

pdbidValue

DBID

guid: PSGUID_STORAGE

eKind: DBKIND_GUID_PROPID

ulPropid: PID_STG_PATH

sibling

DBOP_column_name

DBVALUEKIND_ID

DBOP_project_list_element

DBVALUEKIND_EMPTY

child

pdbidValue

DBID

guid: guidOffice

eKind: DBKIND_GUID_PROPID

pwszName: ISSUENUMBER

DBOP_column_name

DBVALUEKIND_ID

DBOP_project_list_element

DBVALUEKIND_EMPTY

sibling

child

pdbidValue

DBID

guid: PSGUID_STORAGE

eKind: DBKIND_GUID_PROPID

ulPropid: PID_STG_PATH

DBOP_column_name

DBVALUEKIND_ID

DBOP_sort_list_element

DBVALUEKIND_EMPTY

sibling

child

pdbidValue

DBID

guid: PSGUID_QUERY

eKind: DBKIND_GUID_PROPID

ulPropid: PID_STG_RANK

DBOP_column_name

DBVALUEKIND_ID

DBOP_sort_list_element

DBVALUEKIND_EMPTY

child

DBOP_sort_list_anchor

DBVALUEKIND_EMPTY

� This is true for Windows 2000 Beta 1. It many not be true for future releases.

© Microsoft Corporation, 1997. All Rights Reserved

14

_903609281

