Index Server SSO

Page 11

[image: image1.png]Index Server

Index Server SSO

Alan Whitney, September 24 , 1997

Introduction

This document discusses the integration of Index Server with Active Server Pages (ASP) scripting. The Server-side objects (SSO) supporting the Index Server content indexes and query engine are described in detail.

In integrating Index Server with Active Server Pages for scripting, two models will be available. The method described here will permit setting query formulation parameters in a way that is familiar to users of Index Server 1.x, and then using Active Data Objects (ADO) to navigate and present results.

It is also possible to use ADO to specify a query using SQL extensions for content queries. This can be done because Index Server 2.0 implements a complete OLE-DB provider. This method of using ADO with ASP is not described in this document.

The IXSSO component supports two programmable objects. The Query object is used for query formulation and to provide an ADO recordset that is used to navigate and display the result set. The Utility object contains a set of miscellaneous methods that provide useful shortcuts for script writers, but which are not directly needed for query formulation.

The Olympus Net Library project will use a component that conforms to this specification. It is extremely desirable for Index Server and Net Library to use the same code base if not the same binary. If Olympus-specific behavior is required, it will be indicated by a unique progid and clsid, and the SSO will adapt itself accordingly.

This scripting facility is independent of the support for Index Server processing of HTML extension (.HTX) files. The SSO is not intended to provide administration capabilities for Index Server. IDQ.DLL will remain pretty much as it is today to provide backward compatibility and administration

The Index Server Query Object

The Index Server Query object is an ActiveX server-side control (i.e., it is an automation object with a dual interface supporting IDispatch). It uses properties to set query parameters and supports a few methods to create an ADO recordset and reflect the query parameters to and from the QueryString or Form collections. The query object is named by “IXSSO.Query” (or “nlsso.Query” for the Olympus version).

When first initialized, the Query object will attempt to look up a default column definition file in the registry and load these column definitions for use in all queries. If the column definition file is not found, a built-in default set of columns is used. Lines in the column definition file have the same format as the argument to the DefineColumn method below.

Method and Properties Summary

Settable Properties

Property name
Type
Description

Query
BSTR
The query specification

SortBy
BSTR
Specification of sorting criteria

GroupBy
BSTR
Specification of grouping criteria

OptimizeFor
BSTR
Optimization constraints

AllowEnumeration
VARIANT_BOOL
TRUE or FALSE

LocaleID
BSTR
Specifies the locale to use for executing the query

Columns
BSTR
List of columns available for retrieval in the ResultSet or Recordset

Catalog
BSTR
The index directory.

StartHit
LONG or array of LONG
Starting hit number.

ResourceUseFactor
LONG
Resource limit class for query

MaxRecords
LONG
Maximum number of records to retrieve.

Read-only Properties

Property name
Type
Description

QueryTimedOut
VARIANT_BOOL
TRUE if query exceeded the time limit for execution, FALSE otherwise.

QueryIncomplete
VARIANT_BOOL
TRUE if the query could not be resolved using the content index and AllowEnumeration was FALSE; FALSE otherwise.

OutOfDate
VARIANT_BOOL
TRUE if the content index out of date; FALSE otherwise.

Methods

CreateRecordset
Execute the query, produce a Recordset

DefineColumn
Define a column to be used in the query

QueryToURL
Produce the query string portion of a URL from the query parameters.

Reset
Clear the state of the query object

SetQueryFromURL
Set Query, et al., according to query string.

Properties

Query

Type
BSTR

Syntax
“Tripolish” query string

Comments:

The Query property specifies documents should be returned in the search. This is the “restriction”, as it’s known in Index Server.
Example:

Q.Query = “#filename *.htm and dog near cat”

Columns

Type
BSTR

Syntax

Fname1 [, fname2] …

Comments:

The Columns property gives a comma-separated list of column friendly names that will appear as columns in the result. The column names are case insensitive, and may be enclosed in quotes if they contain characters other than alphabetic and numeric characters.
Example:

Q.Columns = “DocAuthor, vpath, doctitle, ““My funny column”””

SortBy

Type
BSTR

Syntax

Fname1 [[a]|[d]] [, fname2 [[a]|[d]]] …

Comments:

Default sort order is ascending. Grouping implies sorting first by primary keys specified in GroupBy property. The optional [a] or [d] specifies an ascending or descending sort respectively.

It has been suggested that rank could default to descending, but that’s deemed too confusing. We could also switch the default on seeing a direction specifier; this approach is taken in Monarch.
Example:

Q.SortBy = “DocAuthor, rank[d]”

GroupBy

Type
BSTR

Syntax

GroupBy ::= GroupingTerm [, GroupingTerm] …

GroupingTerm ::= Unique | Quantile | Range | Cluster |

TimeGroup | AlphaGroup

Unique ::= [[unique]] fname1 [[a|d]] [+ fname2 [[a|d]]] …

Quantile ::= [[quantile]] fname1 [[a|d]] [+ fname2 [[a|d]]] … [[nbuckets]]

TimeGroup ::= [[time]] fname1 [[a|d]] [[TimeUnit]]

AlphaGroup ::= [[alpha]] fname1 [[a|d]] [+ fname2 [[a|d]]] … [[nchars]]

Cluster ::= [[cluster]] fname1 [+ fname2] … [[maxclusters]]

Range ::= [[range]] fname1 [???] …
To be specified…
TimeUnit ::= s | n | h | d | w | m | y | q
Comments:

Grouping specification. For all groupings (except by time), column names separated by a plus (+) are grouped together into individual categories and column names following a comma (,) are grouped together into subgroups of the previous grouping. The optional [a] or [d] following a column name specifies the sort direction of the column in the grouping. Each grouping may be prefixed by a keyword in brackets, which indicates the grouping type. If the grouping type is omitted, it defaults to the grouping type for the previous grouping in the grouping specification, or [unique] for the first grouping in the grouping specification.

In the unique grouping, unique values of the column set form the individual categories.

In the quantile grouping, nbuckets approximately equal-sized categories are formed. The break points between the categories are unspecified and free-floating to allow for the approximately equal distribution of result rows. Nbuckets defaults to 10 if not given.

In the time grouping, the named column is placed into a category according to the TimeUnit given. The TimeUnit is one of s, n, h, d, w, m, y or q meaning seconds, minutes, hours, days (default), weeks, months, years or quarters respectively. The column used for this categorization must of a type which can be interpreted as a timestamp, either DBTYPE_DATE or VT_FILETIME.

In the alphabetic grouping, the categories are formed by examining the first nchars (default 1) characters of the named column set and folding upper and lower case together. If multiple columns are specified in a grouping, the effect is as if the columns were concatenated together.

In the range grouping, the break points between categories is specified explicitly. The number of categories is the number of break points plus one. The exact syntax is to be specified.

In a clustering, one or more columns are grouped heuristically into clusters based upon a measure of similarity. The maximum number of clusters is specified according to maxclusters. There may be fewer than maxclusters clusters in the result.

Not supported in Index Server 2.0. Index Server 3.0 only supports the unique specification.
Examples:

Q.GroupBy = “[unique] DocAuthor”

or
Q.GroupBy = “[quantile] LastName[a]+FirstName[20]”

Catalog

Type
BSTR

Syntax

query://hostname/indexname
Comments:

The catalog is named with an URL-like syntax. The hostname is the machine name where the catalog can be found and the indexname gives the catalog name on that machine. Normal defaulting rules apply. The hostname defaults to the local machine if not supplied. The indexname defaults to the default catalog on the machine if not supplied.

Example:

Q.Catalog = “query://search.microsoft.com/kb”

StartHit

Type
BSTR

Syntax

n
Comments:

The starting hit property is used to optimize restarting of a query in a multi-page result. The value is a string supplied at the end of a page of results, which allows the query to quickly reposition to the next result when re-executed.

Example:

Q.StartHit = Request (“sh”)

LocaleID

Type
LONG (LCID)

Syntax

number
Comments:

This property is used for the language code and optional country code used for the query. The value is a Win32 LCID. The ISOToLocaleID function can be used to map a string version of a locale to the value needed by this function.
Example:

Q.LocaleID = 1033 ‘ EN-US locale code

OptimizeFor

Type
BSTR

Syntax

performance | recall [[weight]][, hitcount | nohitcount]
Comments:

This property replaces the Index Server parameter CiDeferNonIndexedTrimming. If the option is set to performance, scope and security trimming are deferred until after the maximum number of hits is collected. This may result in less than the expected number of hits to be returned for queries in which scope checks or security removes results. The default is to optimize for recall.

If the option is set to recall, the above mentioned result set trimming occurs in the course of executing the query. The optional weight parameter is for future use. Additional alternatives, or combinations may be permitted in the future (i.e., adding a precision keyword).
The hitcount or nohitcount alternatives control whether a total hit count should be computed. For higher performance, set the value to nohitcount. When nohitcount is set, the hitcount property is not available from the rowset property collection. This option is not available for Index Server 2.0.

Example:

Q.OptimizeFor = “performance,nohitcount”

AllowEnumeration

Type
VARIANT_BOOL

Syntax

TRUE | FALSE
Comments:

This property, if set to TRUE, allows queries to use enumeration to resolve the result set. Otherwise, queries are forced to use indexes only for resolution. The default value is FALSE.

This property expresses the inverse of the Index Server parameter CiForceUseCI.
Example:

Q.AllowEnumeration = TRUE

MaxRecords

Type
LONG

Syntax

number
Comments:

Use the MaxRecords property to limit the number of records the provider returns from the data source. The default setting of this property is zero, which means the provider returns all requested records. The MaxRecords property is read/write when the Recordset is closed and read-only when it is open.

Example:

Q.MaxRecords = 200

ResourceUseFactor

Type
LONG

Syntax

number
Comments:

The ResourceUseFactor property may be set in the range 1-5 to enforce a set of resource limit constraints on the execution of the query. The number given selects one of five resource limit classes that are, by default, successively more generous in the consumption of resources. Each resource limit class consists of a set of parameters (e.g., CPU time, memory, I/O bandwidth) that limit the query execution. Each parameter in each class can be overridden by the administrator. The administrator may also set the default resource limit class and the maximum settable resource limit class. The default setting of this property is zero, which means the default resource limit class will be used. The ResourceUseFactor property is read/write when the Recordset is closed and read-only when it is open.

Note: KyleP will define the resource limit classes in detail, and he will also describe the cross-query parameter settings which will use a similar 1-5 scale.

Note: Should we allow numbers which are in the defined range of 1-5, but larger than the administrator-defined maximum to be silently set to the maximum? This would allow the example below to work independently of what maximum was configured on the machine.
Example:

Q.ResourceUseFactor = 5

‘ I really want these results

Methods

CreateRecordSet

Execute a query and create an ADO Recordset for navigation of query results.

Syntax

RecordSet = CreateRecordSet(CursorType)

Returns

Returns an ADO RecordSet object for iterating over the results of the query.
Arguments

CursorType
is one of “sequential” or “nonsequential” to select whether a sequential (IRowset) or non-sequential (IRowsetScroll) recordset is created.

Remarks

Any required parameters of the query, such as the Query property and the Columns property must have been set prior to calling CreateRecordset.

Examples

The following creates a sequential recordset.

set recordset = Q.CreateRecordSet("sequential")
DefineColumn

Define the new “friendly name” for a column.

Syntax

DefineColumn strColumnDef
Returns

Nothing.
Arguments

strColumnDef
is a BSTR that defines the column. The syntax of the column definition string is:

fname [(type)] = propset-id [prop-id | “ prop-name “]

where fname is the friendly name given to the property, the optional type is the DBTYPE of the column (used in query restrictions), propset-id is a guid giving the property set ID for the column and prop-id or prop-name give the property ID or property name for the column.

Remarks

The fname may mask some previously defined or pre-defined column name. DefineColumn may also be used to define an alternative friendly name (an alias) for some existing column.

When the query object is first instantiated, there is a set of pre-defined columns already defined. These pre-defined columns include a set of commonly-used built-in column definitions and a set read from a file which augments the built-in columns. In the file, the format of column definitions is the same as it is for the DefineColumn method, with each column definition separated by a new line character.
Examples

Q.DefineColumn "DocAuthor(DBTYPE_STR|DBTYPE_BYREF) = F29F85E0-4FF9-1068-AB91-08002B27B3D9 4"
QueryToURL

Produce a URL string reflecting the state of the query object.

Syntax

strQueryString = QueryToURL()

Returns

StrQueryString is a BSTR that gives the CGI QueryString. This string is escaped for use in a URL.

Arguments

None.

Remarks

Note: Should there be a variant that produces hidden form variables also?

Examples

Href = “http://server/foo.asp?” & Q.QueryToURL()

Response.Write “Next page”
Reset

Reset the state of the query object.

Syntax

Reset

Returns

Nothing.
Arguments

None.

Remarks

The Reset method clears any internal state in the query object.
Examples

Q.Reset
SetQueryFromURL

Set query parameters from a web client request.

Syntax

SetQueryFromURL(strQueryString)

Returns

Nothing.
Arguments

strQueryString
is a BSTR that gives the CGI QueryString. This input string is assumed to be URL-encoded.

Remarks

The state of the query object is not reset prior to loading the query string values. Unrecognized tag names in the query string are ignored.

Note: It seems like it would be useful to have a version that takes a Denali collection; either the Form collection or the QueryString collection.

Examples

Q.SetQueryFromURL("qu=%40size+%3E+10000&so=rank%5bd%5d&mh=200")
The Index Server Utility Object

The Index Server Utility object is an ActiveX server-side control (i.e., it is an automation object with a dual interface supporting IDispatch). It consists of a variety of methods that may be helpful to script writers when using the Index Server query object. The utility object is named by “IXSSO.Utility”.The following line displays the DocTitle column of the current record, on “No Title” if the title is NULL.

<% = result.Column(“DocTitle”, “No Title”) %>
Utility Method Summary

AddScopeToQuery
Add a scope restriction to a query specification.

GetArrayElement
Access a safearray vector element

ISOToLocaleID
Convert a language code into a Win32 LCID.

LocaleIDToISO
Convert a Win32 LCID into a language code.

TruncateToWhitespace
Truncate a string at a whitespace character.

Methods

AddScopeToQuery

Add a scope restriction to a query specification.

Syntax

AddScopeToQuery QueryObj, Path [, Depth]
Returns

Nothing.

Arguments

QueryObj
is the query object to be modified

Path
is the scope to be added

Depth
is the depth of the scoping restriction, either “DEEP” or “SHALLOW”. If not present, it defaults to “DEEP”.

Remarks

AddScopeToQuery is equivalent to modifying the Tripolish query string thus:

if depth = “SHALLOW” then

depth_op = “BELOW_SHALLOW”

else

depth_op = “BELOW_DEEP”

end if

Q.query = “(“ &
Q.query & “) AND (“ & @path_column ” & depth_op & “ ” & path & “)”
Examples

util.AddScopeToQuery Q, “/kb”, “deep”

GetArrayElement

Access a variant array element.

Syntax

varResult = GetArrayElement(varArray, iElem)

Returns

varResult is a variant that contains the iElem element of varArray.
Arguments

varArray
is a variant containing a singly-dimensioned safearray.

IElem

identifies the array element that should be returned.

Remarks

If varArray is not a safearray, or iElem is either less than the lower bound of varArray or more than the higher bound of varArray, the type of varResult will be VT_EMPTY.
Examples

Request.Write (Util.GetArrayElement(RS(“vector-col”), i))

ISOToLocaleID

Convert an ISO 639 language code into a win32 LCID.

Syntax

LocaleID = ISOToLocaleID(strLanguage)

Returns

LocaleID is a Win 32 LCID that gives the translation of the ISO language code in strLanguage.

Arguments

strLanguage is a client browser language string from the HTTP Accept-Language header.

Remarks

The first recognized language code found in the input string is converted to a Win32 Locale identifier (LCID). The recognized language codes include all those from the ISO 639 standard that map to Win32 language IDs, and some country codes that have sub-language codes in Win32. If a language code is recognized, but the country code is not, the language code alone will be used unless there is a better match later in the string. In addition to the ISO language codes, the name “neutral” can be used.
If there is no matching language code, -1 is returned.
Examples

Lcid = Util.ISOToLocaleID(Request.QueryString(“HTTP_ACCEPT_LANGUAGE”))

LocaleIDToISO

Convert a win32 LCID into an ISO 639 language code.

Syntax

strLanguage = LocaleIDToISO(LocaleID)

Returns

strLanguage is the name of the language identified by LocaleID.

Arguments

LocaleID is a Win 32 LCID to be translated.

Remarks

Examples

Response.Write “Language is “ & Util.LocaleIDToISO(iLocale)

TruncateToWhitespace

Truncate a string at a whitespace character.

Syntax

NewString = TruncateToWhitespace(String, Length)

Returns

NewString is the truncated string

Arguments

String
is the string to be truncated

Length
is the maximum length of the string

Remarks

The purpose of the method is to allow script writers to display short forms of long properties like description without truncating in the middle of a word. It is impractical to use word breakers for this function. There is no equivalent routine for Oriental languages.

Examples

Response.Write util.TruncateToWhitespace(RS(“Characterization”), 200)

Conventional Form and QUERY_STRING Variables

It’s unnecessary to have the SSO define the QUERY_STRING variables that will be used to encode query parameters, since anyone who authors a .ASP page can do their own parsing of the Request.Form or Request.QueryString collections themselves. However, as a convenience for ASP authors, and to encourage the use of conventional parameters, the SSO provides the SetQueryFromURL and QueryToURL methods.

This section defines the URL tags in the QUERY_STRING used by these methods.

qu
Full text of query. Associated with the Query property.

so
Sort. Associated with the SortBy property.

sd
Sort down. Associated with the SortBy property, but specifies a descending sort.

ct
Catalog. Associated with the Catalog property.

gr
Grouping. Associated with the GroupBy property.

gd
Group down. Associated with the GroupBy property, but specifies a descending ordering.

mh
Maximum hits. Associated with the MaxRecords property.

sh
Start hit. Associated with the StartHit property.

ae
Allow Enumeration. Associated with the AllowEnumeration property. If set to a non-zero digit, enumeration is allowed.

op
Optimize for. Associated with the OptimizeFor property. A string of characters which may consist of x for “performance”, r for “recall” or h for “nohitcount”.

The following tags are used to create “built-up” query strings. In each, the n is a single digit in the range 0-9. The column, operator and query for each numeric value make up a query term which is combined with the full-text query string and other query terms using the ‘&’ operator.

cn
Column for built-up query. Associated with the Query property.

on
Operator for built-up query. Associated with the Query property.

qn
Query string for built-up query. Associated with the Query property.

Creating an ADO Recordset Object

ADO Recordsets will be used for access to the rows and columns of a query result. For pagination of results, the Recordset properties PageSize and AbsolutePage are used. Note that the AbsolutePage property is only usable when the recordset is not forward-only.

See the examples section for sample script code.

Examples

The following example gives VBScript code to create a query object, set query parameters and execute the query, producing a recordset for iterating over results.

<% REM Create the query and recordset objects. %>

<% set Query = Server.CreateObject("IXSSO.Query") %>

<% if IsObject(Query) = FALSE then %>

The IXS SSO has not been installed correctly. Please contact the Webmaster for this site.

<% else %>

<% iRequest = Request.ServerVariables("QUERY_STRING") %>
<% Query.SetQueryFromURL(iRequest)

 set RS=Query.CreateRecordSet("sequential")

 %>

<% end if %>

The following example gives VBScript code to iterate over the query results using ADO, and output the query results in a table.

<TABLE CELLPADDING=5 BORDER=0>

<!-- BEGIN column header -->

<TR>

<TD ALIGN=CENTER BGCOLOR="#800000">

Record

</TD>

<TD ALIGN=CENTER BGCOLOR="#800000">

File name

</TD>

<TD ALIGN=CENTER WIDTH=160 BGCOLOR="#800000">

Path

</TD>

<TD ALIGN=CENTER BGCOLOR="#800000">

Size

</TD>

<TD ALIGN=CENTER BGCOLOR="#800000">

Write

</TD>

</TR>

<!-- BEGIN first row of query results table -->

<%NextRecordNumber = 1%>

<% Do While Not RS.EOF%>

 <TR>

 <TD BGCOLOR="f7efde" ALIGN=CENTER>

 <%=NextRecordNumber %>.</TD>

 <TD BGCOLOR="f7efde" ALIGN=CENTER>

 <%=RS("FileName")%></TD>

 <TD BGCOLOR="f7efde" ALIGN=CENTER>

 <A HREF="http::<%=RS("vpath")%>"><%=RS("vpath")%></TD>

 <TD BGCOLOR="f7efde" ALIGN=CENTER>

 <%=RS("Size")%></TD>

 <TD BGCOLOR="f7efde" ALIGN=CENTER>

 <%=RS("Write")%></TD>

 </TR>

<%

 RS.MoveNext

 NextRecordNumber = NextRecordNumber+1

 Loop

 %>
The following example shows how the query and recordset can be cached in session variables for reuse on another page:

 <%

if IsObject(Session("Query")) And IsObject(Session("RecordSet"))

then

 set Q = Session("Query")

 set RS = Session("RecordSet")

 if RS.RecordCount <> -1 and NextPageNumber <> -1 then

 RS.AbsolutePage = NextPageNumber

 NextRecordNumber = RS.AbsolutePosition

 end if

 ActiveQuery = TRUE

else

 <!-- Create new query (code ommitted for brevity) -->

end if

%>

<!-- Later on the page… -->
<%

 ' If either of the previous or back buttons were displayed, save

 ‘ the query and the recordset in session variables.

 if SaveQuery then

 set Session("Query") = Q

 set Session("RecordSet") = RS

 else

 RS.close

 Set RS = Nothing

 Set Q = Nothing

 set Session("Query") = Nothing

 set Session("RecordSet") = Nothing

 end if

 %

The following example shows how the QUERY_STRING or form variables can be parsed from VBScript without a need for the SetQueryFromURL method.

<%

 NewQuery = FALSE

 UseSavedQuery = FALSE

 SearchString = ""

 if Request.ServerVariables("REQUEST_METHOD") = "POST" then

 SearchString = Request.Form("SearchString")

 SortBy = Request.Form("SortBy")

 Colset = Request.Form("ColChoice")

 Catalog = Request.Form("Catalog")

 ' NOTE: this will be true only if the button is actually pushed.

 if Request.Form("Action") = "New Query" then

 NewQuery = TRUE

 end if

 end if

 if Request.ServerVariables("REQUEST_METHOD") = "GET" then

 SearchString = Request.QueryString("qu")

 SortBy = Request.QueryString("so")

 Colset = Request.QueryString("co")

 Catalog = Request.QueryString("ct")

 if Request.QueryString("pg") <> "" then

 NextPageNumber = Request.QueryString("pg")

 NewQuery = FALSE

 UseSavedQuery = TRUE

 else

 NewQuery = SearchString <> ""

 end if

 end if

 %>

TBD:

Paginate results

Grouped query

Error handling

Complete examples, working demonstration

Issues and Tradeoffs

Is there a need for additional properties in the query object relating to an active RecordSet?
Is there anything we need access to that ADO does not provide? E.g., query state from IRowsetQueryStatus.

� It has been suggested that these properties of the query object be exposed as rowset properties through ADO. There are issues with this approach that need to be investigated, e.g., how will the names of the properties be exposed through ADO?

� For Index Server 2.0, this is the IS 1.x dialect of Tripolish.

� As described here, the catalog is single-valued. This will be the case for Index Server 2.0. For Index Server 3.0 and Olympus, this can be a comma-separated list of catalog URLs to allow for distributed search.

� The StartHit value needs to be supported in the rowset implementation as either a column or a rowset property. There is a naming issue with using a property in ADO (i.e., how will ADO know the name of an extension property).

� In a future release, this will be true. For Index Server 2.0, the BELOW_SHALLOW and BELOW_DEEP operators will not exist.

04/09/97

