
[image: image1.png]l'u Microsoft])
4y, Windows.net

UDDI Services – Three Usage Scenarios
Microsoft Corporation
Published: July 2002
Abstract

This document describes three of the implementation scenarios for Microsoft® Windows® .NET Server UDDI Services. The first scenario shows the developer and IT efficiency resulting from UDDI deployment across the enterprise. The second scenario shows how applications can be updated to be much more flexible and robust by leveraging UDDI Services at run-time. Finally, the third scenario outlines how the same capabilities can be extended outside the enterprise to external business partners.

Each scenario includes a general description of the challenges faced by enterprises of all sorts, followed by the details of how UDDI Services can be used to address these challenges. The concrete action steps for adoption of these capabilities are provided as well. We summarize each scenario by indicating the types of business benefits that enterprises may see as a part of their UDDI and Web services efforts.
This is a preliminary document and may be changed substantially prior to final commercial release of the software described herein.
The information contained in this document represents the current view of Microsoft Corporation on the issues discussed as of the date of publication. Because Microsoft must respond to changing market conditions, it should not be interpreted to be a commitment on the part of Microsoft, and Microsoft cannot guarantee the accuracy of any information presented after the date of publication.

This document is for informational purposes only. MICROSOFT MAKES NO WARRANTIES, EXPRESS OR IMPLIED, AS TO THE INFORMATION IN THIS DOCUMENT.

Complying with all applicable copyright laws is the responsibility of the user. Without limiting the rights under copyright, no part of this document may be reproduced, stored in or introduced into a retrieval system, or transmitted in any form or by any means (electronic, mechanical, photocopying, recording, or otherwise), or for any purpose, without the express written permission of Microsoft Corporation.

Microsoft may have patents, patent applications, trademarks, copyrights, or other intellectual property rights covering subject matter in this document. Except as expressly provided in any written license agreement from Microsoft, the furnishing of this document does not give you any license to these patents, trademarks, copyrights, or other intellectual property.

© 2001. Microsoft Corporation. All rights reserved.

Microsoft Active Directory, Visual Studio, Windows, and Windows NT are either registered trademarks or trademarks of Microsoft Corporation in the United States and/or other countries.

The names of actual companies and products mentioned herein may be the trademarks of their respective owners.

Contents

3Windows .NET Server UDDI Services – Three Usage Scenarios

Overview
3
Scenario 1. Visibility and Sharing - Web Service Interface Specifications
3
Step 1 - Basic Registration
5
Step 2: Interface Reuse
6
Step 3: Search Parameters and Rich Service Descriptions
6
Step 4: Automated Code Generation
7
Step 5: Operational View of Enterprise Services
7
Business Benefits:
7
Scenario 2. Runtime Discovery of Web Services - Optimization and Fault Tolerance
9
Step 1: Determine Service Selection Criteria
11
Step 2: Add Dynamic Discovery to Applications
11
Step 3: Access Point Registration
11
Step 4: Access Point Updates and Expansion
12
Step 5: Fault Tolerance/Backup Site Registration
12
Step 6: Critical Update Discovery
12
Business Benefits:
13
Scenario 3. Communication and Integration with Business Partner Communities
14
Step 1: Populate UDDI with Service Information
17
Step 2: Communicate Availability of UDDI to Partners
17
Step 3: Configure Access Points to Securely Send and Receive Documents
17
Step 4: Partners Add Their Services to Manufacturer's Instance of UDDI Services
18
Business Benefits:
18

Windows .NET Server UDDI Services – Three Usage Scenarios

Overview

This document describes three of the implementation scenarios for Microsoft® Windows® .NET Server UDDI Services. The first scenario shows the developer and IT efficiency resulting from UDDI deployment across the enterprise. The second scenario shows how applications can be updated to be much more flexible and robust by leveraging UDDI Services at run-time. Finally, the third scenario outlines how the same capabilities can be extended outside the enterprise to external business partners.

Each scenario includes a general description of the challenges faced by enterprises of all sorts, followed by the details of how UDDI Services can be used to address these challenges. The concrete action steps for adoption of these capabilities are provided as well. We summarize each scenario by indicating the types of business benefits that enterprises may see as a part of their UDDI and Web Services efforts.

Scenario 1. Visibility and Sharing - Web Service Interface Specifications

Customer:

Large auto manufacturer (Company)

Target Audience:

Information Systems Managers

Senior and Junior Divisional Developers

IT Operations and Management
Challenge:

Where are the services and applications available throughout my enterprise, and how are they accessed?

Scenario:

The Company has challenges identifying the applications and information services that are available across its enterprise. The Company is comprised of multiple business divisions, each with their own applications written in different programming languages (C++, C#, Visual Basic®, Perl, COBOL, etc.) and served from multiple platforms (Windows, Unix, Linux, MVS). In addition, various divisions have purchased package business applications from vendors such as SAP and Siebel.

A few divisions that are traditionally early adopters of new technology have exposed their applications through a set of SOAP/XML-based Web Services, but many have not. Similarly, some divisions have established well-defined standard interfaces for their applications, but many have not. The Company's Automotive and Racing divisions are early technology adopters, while their Financial Services division is generally more conservative. While each division continues to develop and deploy new systems, it is not generally possible to track what is available for use across divisions (and in some cases even those internal to one division), and sharing of any development information across divisions is limited at best.
Because this information is dispersed and not well organized, a number of inefficiencies result in the Company's application development process.

· Application code and functionality is duplicated across divisions, resulting in wasted time and effort.

· While developers might have some general information about an application, it is difficult to locate specific resources or even the application itself. As such, time is expended emailing/phoning other developers and I.T. managers, leading to a protracted hunt for the information.

· Once an application is located, there is not a standard way to determine how the application works, what protocols or interfaces it supports, the specifics of the business functionality it provides, etc. This often results in more time spent using email or phone to learn about the application.

· When integration between divisional applications needs to be developed, significant time is spent between developers attempting to share information or troubleshoot basic implementation details.

UDDI Function:

UDDI was designed specifically to solve many of the inefficiencies described above. A standards-based, platform-independent solution based itself on XML and SOAP, UDDI provides a structured mechanism to query and publish in order to discover services in an enterprise. Designed to house both XML-based Web Services as well as legacy applications, UDDI offers an IT department the possibility of structuring and cataloging services across the enterprise so that the right service can be found at the right time.

Deploying UDDI Services can offer the Company increased developer and IT efficiency on several fronts. First, it provides a single location to register services. These services can be categorized in whatever fashion makes sense for the Company, so that applications can be described and discovered across divisions, products, technologies, geographies, etc. With UDDI Services available, the Company’s developers can focus on writing the new and necessary applications, as opposed to getting bogged down either looking for services or rewriting an application that already exists.
 Second, UDDI supports the ability to deploy an index of the schemas and standards – such as Web Servie Description Language (WSDL) files -- that are used to access divisional systems, and promote the reuse of these protocols across the Company, without specific ties to the underlying tools or technologies. This can result in reduced costs integrating systems together at a corporate level, or across cooperating divisions. Knowledge of these protocols also simplifies the learning curve as developers work to interoperate with other systems.
Third, UDDI provides a common resource that can be accessed directly from development tools and integrated development environments (IDEs). For example, Visual Studio.NET features support for UDDI in consuming WSDL files.

Through Visual Studio® .NET, an enterprise developer can locate a service, or protocol specification, import it into the development environment, and automatically generate the code required to communicate with that service. As an enterprise established their portfolio of standard protocols, developers are able to invest their time in value-added capabilities, and not on the overhead of communicating with the underlying infrastructure. This feature is not limited to Visual Studio .NET: because UDDI is based on an open standard, any UDDI-aware development tools can take advantage of similar functionality.

Getting Started:

Step 1 - Basic Registration

The Company's enterprise technology team deploys UDDI Services as a part of their .NET development services infrastructure. This solution is made available to the entire development staff.

Each of the developers has been working on new applications and services for their respective divisions. As a part of an initiative to share more information across divisions, the Finance and Automotive divisions agree to integrate their next generation credit application and ordering systems. The Finance division is developing their applications on a mainframe using COBOL, and the Automotive division is a Microsoft .NET early adopter, and is using XML, SOAP, and Visual Studio .NET. As a part of the integration effort, a coordination team is put in place to facilitate communication. This coordination team deploys UDDI Services, and an administrator adds permissions for the development teams to start adding service information.

The first step in the development process is to provide information about the services already in development to the other division. Each developer is provided with UDDI specifications and documentation, and is instructed to register their new application services in UDDI. The process that the two development teams follow to publish their information is quite different. The Visual Studio.NET developers use the native UDDI integration, and register their services directly from their IDE. COBOL programmers use the browser-based UI provided as a part of the UDDI Service and directly add information about their integration points, and pointers to the specifications, as well as the copy books defining the file formats and documentation.

When this process is complete, both teams have a common understanding of the interfaces available across their applications, and can begin to reuse common work. The two divisions now have a foundation for information sharing and code reuse as they move forward. The Company teams are no longer required to spend their time on telephone and email discussions, but instead share their information through a common solution that works with all development tools, platforms, and technologies.

Step 2: Interface Reuse

As the Finance application team completes this project, and they start their migration to newer tools, they can begin to update the service profiles, and reuse existing work. Additionally, other divisions can be brought into the effort, both to include their development activity, as well as to take advantage of the foundation that has already been established. Before starting a new project, Company developers refer to UDDI to find out if the service is already being provided, or an interface specification that is already in use is available. As a result duplicate effort is reduced, or eliminated completely.

Step 3: Search Parameters and Rich Service Descriptions

As more of the Company's divisional development teams publish their services and interfaces to UDDI, it's important that they are organized in a manner that they are easy to locate, and matches with established search criteria. In the next phase of the project, application teams from other divisions around the globe and others join to take advantage of the efficiencies that have been gained.

As a result, UDDI starts to contain a relatively large number of services and interfaces, and it becomes important to add more categorization information to the service registrations to ensure that developers and applications can accurately locate those they are interested in. To facilitate this, the coordination team establishes a richer set of meta-information targeted at the Company's specific needs. Schemes are established to characterize services based on the industry they are appropriate for, security mechanisms, functional area, and quality of service. Each of these attributes are added to the existing services in UDDI, and made available to be part of new registrations. An application or developer searching for services can now use these as additional search parameters to locate exactly what they desire.

Step 4: Automated Code Generation

The development teams that have adopted Web Services technologies, and have defined registered their interfaces using WSDL descriptions provide an additional value across the Company. These service descriptions can be imported directly into Visual Studio .NET, and the required underlying code to communicate with the services is automatically generated. The Company developers can now focus their efforts on creating value-added application capabilities, and not on tedious integration work.

Step 5: Operational View of Enterprise Services

As a side effect of the development team efforts in leveraging UDDI, a consolidated view of the Company's operational systems is created. Information about the set of application services and the other characteristics that are registered is available to the Operations teams. They now have a starting point to ensure that the entire portfolio is managed and monitored as needed.

Business Benefits:

Developer Efficiency

· Eliminate duplicate development work across divisions

· Provide common resource for Visual Studio .NET and/or mixed development teams

Legacy Integration

· Legacy applications and interface formats are discoverable across the enterprise

· Information about services is available to all developers, even if they are using older development tools or programming languages

IT Efficiency

· Single view of services across the enterprise (for Intranet or Extranet)
· Ability to manage and structure how Web services are deployed and discovered
Scenario 2. Runtime Discovery of Web Services - Optimization and Fault Tolerance

Customer:

Brokerage Firm (Firm)

Target Audience:

Information Systems Managers

Senior and Junior Divisional Developers

IT Operations and Management
Challenge:

When multiple access points for a service are available, how do client applications dynamically locate the most optimal? Should a disaster cause a service to become unavailable, where are alternates provided?
Scenario:

The Firm provides a set of information services to its brokers around the world. These XML Web Services include the ability to access customer portfolios and to receive up-to-the-minute news feeds from its analysts on Wall Street, as well as executing trades. For some of the more heavily used or mission critical services, local access points are provided around the world. For example, over 200 service access points are provided for trading services. The rationale behind this decision is to optimize access to the service, and to minimize both network latency and communication costs.

A single, rich client application has been written by the Firm's corporate IT team to incorporate these Web Services into its core functionality. The challenge faced by the developers of this application is providing a mechanism for the application to discover the most appropriate access point based on geography. How can one single code base have knowledge of the many different local access points for this service? How can the code dynamically choose the most appropriate access point for a specific trader or office? In emerging markets, new access points are deployed as demand increases. How does the application discover these new services and automatically update configuration?

The Firm also contracts with partners to print paper confirmations of each mutual fund trade executed in North America. As trades complete, the results are communicated to the partner data centers and printing operations to ensure that the investor receives paper confirmation within the required 48 hours. It is critical that this information is shared as reliably and quickly as possible. To ensure reliability, the printer provides at multiple access points for each service - the primary, a set of backups, and disaster recovery site - as a part of their UDDI entry. Should the primary system have a failure, the Firm's system needs to automatically locate and communicate with the backup service. How can the application recover if the access point for this critical web service were to change?

A custom solution could be written to solve the problem, but the Firm corporate IT department is swamped, and does not have time to write another layer of redundancy into their application. It's far easier to leverage UDDI to ensure that information about available services is available for applications to dynamically discover.

UDDI Function:

Addressing the different run time scenarios as described above is decidedly part of UDDI’s core functionality. UDDI has been designed as an open solution that not only facilitates user-based browsing at design time, but also machine-based invocation and discovery at run time. As such, UDDI offers an inherent foundation for optimization and fault tolerance by acting as an abstract layer between Web service clients and Web services themselves.
Note that it is possible to dynamically acquire the end point for a web service using other means, such as configuration files, database look-ups, or by making a Web service call to an ad hoc broker service. The advantages of using UDDI as this broker is that (a) UDDI has broad industry-wide support (unlike an ad hoc solution) and (b) UDDI supports a very flexible taxonomy-based query mechanism that allows you to select the URL based on classification schemes (e.g., physical location, cost of use, QOS guarantees). This flexibility lives at a higher layer of abstraction than lower-level protocols.
For example, consider the Firm's first challenge: how can its news feed application, which is dependent on numerous Web Services, have knowledge of multiple service access points – ones that could change or be updated at any time? Instead of hard coding those access points, the Firm could design the application so that, when the application starts, the user’s location is identified, and the most appropriate access point is retrieved from UDDI Services and cached. This ensures that the communication costs and latency associated with each Web Service call is minimized. A trader in Berlin communicates through his or her local access point, and does not inadvertently communicate with a more expensive or less performant service deployed for New York or Sydney. If at some later date, the user changed locations, the application could re-query UDDI and update its cache for the local services.

In the case where primary, backup and disaster recovery access points for the Firm’s mission critical trading Web Services are available, the Firm's trading confirmation application is configured to query UDDI for alternates if the primary service point is not available. A fall through algorithm is established such that the application recovers from a faulty server by immediately locating the appropriate alternate. In the event of a more catastrophic failure, a UDDI lookup provides the location of the disaster recovery site that hosts the same services in the recovery environment. With a set of backups that are automatically located through UDDI, information is communicated reliably.
Getting Started:

Step 1: Determine Service Selection Criteria

In order to enable optimized discovery of services available to the trading applications, the Firm defines the set of characteristics used for selection. A set of taxonomies for these characteristics is developed to include quality of service, communication cost and latency, and physical locations of the service points. These characteristics are then incorporated into the set of rules the applications use to select which access point will be invoked. UDDI Services supports the creation of multiple classification schemes that are custom designed for a particular enterprise use case.
Step 2: Add Dynamic Discovery to Applications

Once the service interface selection rules are established, the Firm's development team updates the trading applications to perform a UDDI lookup when the application starts. The correct access point is cached by the application for when the service is required. As a result, the optimal service is always used. This ensures that performance and reliability is maintained while the Firm's communication costs are minimized as much as possible.

Step 3: Access Point Registration

The Firm's operations team registers all of the access points for services available to the trading applications. In addition to the basic information about service availability, their operations team incorporates additional descriptive information including quality of service, network communication cost, and physical location. These characteristics are consistent with those defined in Step 1 above, and are used for service selection by the trading applications.

Step 4: Access Point Updates and Expansion

As the Firm's business continues to improve, or new markets are entered, the set of access points for its trading Web Service is expanded to ensure that service levels are maintained and communication costs are controlled. To this end, the operations team lists new access points for a service and updates the service profile. As an example, an increase in the demand for coffee, and related market prices, dramatically increases the number of individual investors in Puerto Rico. When the Firm expands their local office to meet this increased demand, a new access point is deployed. The following day, the local brokers' applications automatically update themselves to use this service, and no longer connect through Miami.

Step 5: Fault Tolerance/Backup Site Registration

For mission critical services, the Firm always lists both a primary and backup service point. Should communication with the primary service fail for any reason, the backup is attempted as a fallback. The Puerto Rico office maintains the option to use the Miami service point, should their new local access not be available.

Step 6: Critical Update Discovery

Should a major catastrophe occur and cause a failure in all of the Firm's data centers, their disaster recovery plan includes deployment of critical services at external facilities. Previously, the plan to update communication connections was to redeploy the same network addresses at the recovery sites and allow remote systems to resume connections. Unfortunately, updating all the IP routing information requires a number of hours before it completes. As a much faster recovery mechanism, the disaster recovery team updates the web service access points listed in UDDI, and all applications immediately have access to the new information. The Firm's overall service recovery time drops considerably as a result.

Business Benefits:

Flexible Applications

· Applications automatically invoke the optimal service

· Fault tolerance and backup service providers are an inherent part of the application design

Operations Efficiency

· Optimized alternate service points are automatically used

· Disaster recovery and backup sites can be communicated to all applications and discovered in the event of failures.

Scenario 3. Communication and Integration with Business Partner Communities

Customer:

Commercial Aircraft Manufacturer (Manufacturer)

Target Audience:

Information Systems Managers

Senior and Junior Corporate Developers
Business Development Managers and Business Analysts
Business Partner Developers and Managers
Challenge:

How are thousands of business partners provided information they need to develop and/or configure both their web service clients and non-XML electronic services in a scalable, efficient way?

Scenario:

The Manufacturer has a network of over 18,000 business partners for their commercial aircraft business alone. A relatively small percentage of them have demonstrated the technology skills and supporting budget to deploy complete EDI solutions. Another subset is prepared to interoperate with the Manufacturer using XML Web Services, and has established a strategy to adopt the next generation of technologies. The remaining (significant) majority still use phone and fax to communicate.
When any of the three subsets of business partners wish to expand their relationship to include electronic communication, the Manufacturer faces significant challenges. They are forced to spend thousands of dollars and significant developer time to work with each partner individually, walking the partner through the steps toward interoperability development, configuration, and testing. Even in the case when a commonly used enterprise software package (i.e., Microsoft Great Plains or other ISVs) supports configuration with external partners, the Manufacturer still faces hurdles in “bridging the last mile” and ensuring reliability and compatibility, without a prohibitively large time and resource commitment. A significant investment in many of the lower-tier/lower-volume partners is generally not justified and thus the inefficient and error-prone fax or email method of doing business continues. The Manufacturer is unable to realize the possibilities of electronic commerce with a majority of its partners as a result, as the approach is neither cost effective nor scalable.

 The Manufacturer would like to automate this process through open industry standards, so that its partners can join their trading network in a timely, efficient, cost-effective, automated fashion. Fundamentally, the Manufacturer seeks to create its own electronic trading community with a large percentage of their partners. How can they provide such a service to its many different partners, across platforms and software packages, without requiring work with each individually?
UDDI Function:

Through deployment of UDDI Services on their extranet, the Manufacturer provides a standardized discovery mechanism so that partners can determine the protocols and interfaces necessary for doing business. For example, small suppliers, currently using fax and email, can query UDDI to determine what software packages are compatible with the company’s electronic commerce system. Perhaps they discover Great Plains is a compatible system. As such, they can be assured that, upon purchasing Great Plains or other Microsoft business software, it can be easily configured to communicate based on service definitions discovered in the Manufacturer’s instance of UDDI Services.

Similarly, a medium-sized company that has a development team with expertise to interact with Web Services can obtain the requirements for communicating directly with the Manufacturer through UDDI Services, and can configure their applications with little direct assistance. This approach enables more electronic relationships to be established at a much lower entry cost for each business in the equation. Moreover, the company could configure run time behavior into its application, like the scenarios addressed above, providing a level of fault tolerance and reliability into their electronic commerce solution.

Additionally, large partners, using other XML and non-XML electronic services such as EDI, can use UDDI as a foundation for interoperability, again saving time as far as phone and email communication between the development teams. UDDI’s support of non-XML services provides the similar advantages in description and discovery as the core support of XML-based Web Services.

All three of these scenarios -– small companies that buy packaged software, medium companies that roll their own Web Services and large companies that can support an EDI infrastructure –- demonstrate how a large company with a diverse set of partners could take advantage of an extranet UDDI deployment. By managing these different scenarios in one location, a company can centralize the location where this data is stored.

Moreover, the Manufacturer could reasonably require that its business partners register their services directly within UDDI Services. In this way, the company has an ideal mechanism for tracking its partners and the protocols its partners are using, thus creating reciprocal efficiencies in their communication. This data is valuable not only for IT professionals, but also for Business Development Managers and Analysts, who can discover a variety of aggregated information about their different suppliers.

Getting Started:

Step 1: Populate UDDI with Service Information

After deploying UDDI Services on their extranet, the Manufacturer populates it with the information about the services available to their partners, and additional information for efficient discovery. Populating the Manufacturer’s instance of UDDI Services can be accomplished in a number of ways. The Manufacturer's developers and IT managers can populate it using the web browser interface that ships with UDDI. Or, the entire process can be scripted, and UDDI can be programmatically populated through the UDDI API. By automating the process, updates and changes are very simple.

The critical information to be added to UDDI includes (1) interfaces and protocols supported, including 3rd party software applications and EDI information, (2) access points for the various services offered (3) additional ACL or security information required to enable the Manufacturer's partners to access UDDI Services on their extranet.

Step 2: Communicate Availability of UDDI to Partners

When UDDI is populated, the Manufacturer notifies its partners that this new capability is now available. Certainly, different channels could be exercised for this communiqué depending on the business partner, ranging from providing a simple email to adding a session to a partner conference.

After gaining an understanding of this new UDDI initiative, the Manufacturer's partners access UDDI in multiple ways. They use the browser-based UI or, the partners interact with the UDDI Services on the Manufacturer’s extranet with their UDDI-aware client tools. Because UDDI is based on open XML standards, partners' client tools are not tied to a specific platform or technology, offering great flexibility in terms of how they interacts with the UDDI services provided by the Manufacturer.

Step 3: Configure Access Points to Securely Send and Receive Documents

Once a Manufacturer business partner - regardless of their size - is prepared to begin doing business electronically, they communicate their readiness to go live with their implementation, and request credentials to access the production services. At this time, the Manufacturer's systems administrators assign permissions for the partner to the service end points.

Step 4: Partners Add Their Services to Manufacturer's Instance of UDDI Services
Once a partner is live and operational, Manufacturer requires that partners register their Web Services and access points in UDDI. As a result, Manufacturer is able to locate its partners’ services to determine information such as purchase order status and shipping status. Also, Manufacturer is then able to run reports based on data registered in UDDI to determine how many of its trading partners are online, what software packages they are using, etc. This gives the Manufacturer an accurate view of the electronic commerce relationships it has established across its partner community.

Business Benefits:

Developer Efficiency

· Reduce interoperability effort for both corporate and partner developers

Partner and Legacy Integration

· Organize close partner communities and facilitate automated discovery - independent of platform, technology, or development language

· Minimizes redundant communication with business partners and provide a standard means for services inquiry

