Internal Developer FAQ for the Java Package Manager

MICROSOFT CONFIDENTIAL

Last Changed July 24, 1997

Q1. What is the Java Package Manager?

Q2. How do I use non-JPM aware Java development tools?

Q3. Can I extract individual packages from the Package Manager?
Q4. How can I list currently installed packages?

Q5. What is the order of a class search?

Q6. What is a Distribution Unit?

Q7. How do I make a Distribution Unit for my Java classes?

Q8. How do I provide updates for a Distribution Unit?

Q9. How do I install a distribution unit via IE4?

Q10. How do I install a distribution unit or Java ZIP from the command line?

Q AUTONUM What is the Java Package Manager?

The Package Manager for Java is used by the Microsoft Java Virtual Machine to organize Java packages. A Java package is a set of Java classes that are related; often they form a toolkit or an application. The current method of installing and using Java packages consists of placing all the class files into a ZIP, JAR, or CAB file and then placing this file at the end of the environment variable named CLASSPATH. The CLASSPATH is a list of directories and archives that contain class files. When a Java Virtual Machine needs a class, it searches through each entry of the class path to find it.

After intensive Java usage, the CLASSPATH can become filled with references to packages that are old or unused. It is difficult to know what packages are needed and which ones are not. The CLASSPATH may even have references to different versions of the same package! To address these and other concerns, the Package Manager can be used to organize Java packages, supplanting the CLASSPATH variable. Package Management offers:

· Version Control. Package version numbers are tracked, allowing Java programs and installers to intelligently update the system.

· Improved Security. Instead of having to fully trust all installed classes, the package manager stores the allowed capabilities of each package, as verified by Authenticode.

· Ease Of Use. Java programs can now install packages without having to alter the CLASSPATH and require a reboot.
· Compatibility. The JPM will accept ZIP, CAB, and uncompressed JAR formats for installation.

· Cross-Platform Flexibility. Applications control the JPM through COM, DLL, and Java interfaces.

· Scalability. JPM can quickly search a large number of libraries, unlike the CLASSPATH which fast becomes unwieldy and makes class-searching bugs hard to uncover.

When a Java package is installed in the Package Manager, the original archive file is removed, and the classes are stored internally. Thus, developers need to use the clspack command (described in Q3 below) to generate the ZIP files used by Java compilers. All of the standard Java packages shipped with this version of Internet Explorer 4 are installed in the Package Manager, except for the AFC. AFC will be in

the package manager in the final version.

Q AUTONUM How do I use non-JPM aware Java development tools?

You can create an old-style ZIP set of packages using the clspack tool, which is supplied with the VM. This tool allows you to take packages that are currently installed via the package manager, and write their contents into a ZIP file.

The easiest way to use clspack is to type: clspack –auto. This will create a single CLASSES.ZIP in your %WINDIR%\Java\Classes directory that contains all classes stored in the package manager. The Microsoft Java compiler looks in this location by default for classes, so there is no need to set your CLASSPATH environment variable.

For other compilers that do not check this location by default, set your CLASSPATH environment variable with:

set CLASSPATH=%WINDIR%\Java\Classes\Classes.zip

before running the compiler. It’s a good idea to place this command in a batch file for easy use.

Q AUTONUM Can I extract individual packages from the Package Manager?

The clspack tool can also be used to extract individual packages.

The usage is: clspack myzipfile.zip listfile
Here, listfile is the name of a text file containing the list of packages to write to the zip, say:

java.io

com.ms.util

com.ms.util.cab

com.ms.fx

Q AUTONUM How can I list currently installed packages?

The clspack tool can list all of the packages currently installed in the package manager with:

clspack -dump

Q AUTONUM What is the order of a class search?

When a class is requested, the package manager searches for it in the following order:

1. Check explicitly-specified path (generally supplied via the -classpath command-line option)

2. Check HKLM\Software\Microsoft\Java VM\DevClasspath registry entry

3. Search installed classes

4. Check HKLM\Software\Microsoft\Java VM\TrustedClasspath registry entry

5. Check HKLM\Software\Microsoft\Java VM\TrustedLibsDirectory registry entry

6. Check HKLM\Software\Microsoft\Java VM\Classpath registry entry

7. Check HKLM\Software\Microsoft\Java VM\LibsDirectory registry entry

8. Check CLASSPATH local environment variable

Packages installed through the package manager will override classes sitting on any classpaths stored in the registry except for DevClasspath. This is for both performance and compatibility. However, there are still occasions when developers may want to temporarily override the package manager with a registry setting. To handle this, there is now a new class path that the VM supports, called the DevClasspath. This works just like the old class path, but its priority in the search order is different. Classes on the DevClasspath will be used before classes installed through the package manager, while classes on the old class path won't.

To set your DevClasspath, make the following registry entry:

HKLM\Software\Microsoft\Java VM\DevClasspath=<class path (string value)>

Q AUTONUM What is a Distribution Unit?

A Distribution Unit (DU) is a transport standard for applications, libraries, etc. It is a CAB file that contains a Distribution Unit Profile (DUP) which contains details on what version the DU is, the versions of the contents of the DU, and how to install the contents of the DU. DUs are handled by the Code Download feature of Internet Explorer 4.0. Simply place your DU on an HTML page with the <EMBED> or <OBJECT> tags and Internet Explorer will automatically install it onto client systems.

If a DU contains Java packages, it invokes the JPM to install them.

More information on DUs is available in the DU specification.

Q AUTONUM How do I make a Distribution Unit for my Java classes?

To make a DU for a set of Java packages, use the dubuild tool from the JPM. Given a tree of Java classes, it will bundle the tree into a CAB file and create an OSD that has an entry for each package in the tree. For example, given the directory tree:

C:\tree ---- tools

+- image

then:

cd \

DUBuild first.cab tree /N MyProductBits

will create c:\first.cab with the packages tree.tools and tree.image.

Q AUTONUM How do I provide updates for a Distribution Unit?

It is possible to create “delta” DUs that consists only of changed packages and have pointers to a secondary “old” DU that contains the other unchanged packages. To do this, invoke DU this way:

DUBuild second.cab tree first.cab

This creates a cabinet named “second.cab” that has only the changed packages in the tree from the time first.cab was created. The DUP in second.cab points to first.cab for all unchanged packages. Note that a package is considered changed if any one of the files inside has been modified since the time first.cab was created.

Q AUTONUM How do I install a distribution unit via IE4?

In IE4, use the following HTML to install your distribution unit:

<OBJECT
 classid=”clsid:00202ACD-ABCD-ABCD-ABCD-020202023423”
 codebase=”myjava.cab#version=1,0,100,3”>
</OBJECT>

where you replace the classid parameter with a GUID for your DU, and place your DU filename and version in the codebase parameter.

Q AUTONUM How do I install a distribution unit or Java ZIP from the command line?

To install a package into the JPM, first put it into a standard ZIP or CAB file with OSD. Then use the JPM RUNDLL interface as follows:

rundll32 c:\windows\system\msjava.dll,JavaPkgMgr_Install <filename>,<file type>,<hi version>,<lo version>,<build>,<package flags>,<install flags>,<namespace>
File Type:

0=CAB

1=ZIP

Package Flags:

0=System class

1=Non system class

2=Needs trusted source

Install Flags:

1=No version check

2=No signer check

4=Autodetect packages

8=Delete input file

A sample command line would be:

rundll32 c:\windows\system\msjava.dll,JavaPkgMgr_Install myclasses.zip,1,4,79,2151,0,12

