AudioActive 2.0 COM API Specification

Introduction and Overview

The main goal of this API is to allow Microsoft developers to integrate AudioActive with their projects using a COM implementation.

AudioActive (AA) is one component of the Blue Ribbon technology group’s Interactive Music Architecture (IMA). This is a delta spec, so it will not cover the details of what AudioActive 1.0 is or does; in the Other Resources section, you can learn where to look to find this information. Rather, this spec will cover all changes between the two.

Additional goals of this API include not extensively changing the feature set, so that developers will have an easy time migrating to the new COM implementation.

A COM implementation also allows for more flexible ways to add new features in the future with a minimum of effort and a maximum of compatibility.

Brief Overview On AudioActive 1.0 Functionality

AudioActive allows dynamic creation and playback of MIDI music. Music may be completely generated on the fly based on a predefined style and personality, or may be as concrete as a MIDI file, with the more typical option being somewhere in between - a predefined section including chord changes and embellishments that plays a certain style but allows enough randomness in the musical patterns to keep the music fresh each time it is played.

There are also methods for controlling the music playback in real-time, including being able to transition smoothly from one type of music to another. The AudioActive 1.0 DLL allows little access to the internals of the code and data structures used to create interactive music.

Goals for this API

The primary goal of this API is to provide a COM interface to the functionality that currently exists. The COM object will be designed with integration of other components (such as RenderActive) in mind and will be easily expandable according to the needs of the application. The COM objects will also be easily adapted to an OCX interface. OCX objects are important for AudioActive’s use over the internet and require the use of COM.

A secondary goal of this API is to expose the functionality and data that were previously hidden in the AudioActive 1.0 DLL version of the API. This will allow the creation of music products, including authoring tools, based on a single code base.

New functionality will be put in place to support more advanced musical features than are allowed now. Currently planned is support for continuous controller events (such as volume, panning, expression), pitch bend events, and polychords. This new functionality only affects the underlying data types used by AudioActive and has no effect on the actual API.

Other Available Resources

The original AudioActive 1.0 Developers Kit, from which this delta spec is based, can be installed by running \\kgb2\bluerel\AudioActiveDevKit\Setup.Exe. After installing it, if you would like to see a technical reference document of the original version of AudioActive, look at the file AudioActive Help (AA.HLP).

For a quick understanding of AudioActive 1.0, look at the AudioActive White Papers, located on “\\kgb2\bluerel\AudioActive Documentation\AudioActive White Paper.Doc”.

The AudioActive Experimenter is a sample application, with associated code, to allow you to see AudioActive 1.0 in action.

If you want to look for more up to date information, check out our web site at http://consweb/tech/blueribbon . If you have any questions, contact bthomas or meljgrey.

The team members of the Blue Ribbon technology group include Brian Thomas (bthomas), Mark Burton (markburt), David Miller (davmil), Melissa Jordan Grey (meljgrey), Todor Fay (todorfay), Annette Crowley (annettec), Karen White (karenwhi), Tim Dehan (a-tdehan), Patrick Stratton (a-patst), and Eric Ledoux (ericle).

Schedule and Delivery Plan

For completion dates for the milestones listed below, go the internal web page “http://consweb/tech/blueribbon/IMASchedule.htm”. If you have problems accessing this page, contact bthomas.

The final product will include two DLLs for NT and three DLLs plus an auxiliary file for Win95. The difference is due to the thunking layer which is only compatible with Win95 and is used to circumvent the problems with the multimedia timer in Win95. The primary DLL, AudioActive.DLL will contain all of the implementation of the COM objects except for IAARealTime, IAAMIDIOut, and IClock. These will be implemented for NT in AART.DLL, and in AART32.DLL, AART16.DLL for Windows 95. The windows 95 version will also require AATCK.TCK which aids it in emulating true multitasking.

Milestone 1

This milestone includes a complete redesign of the API to conform with the COM model of programming.

AudioActive COM API

The AudioActive API will be redesigned to fit with the component object model. No real new functionality will be added, although some functionality will change rather dramatically simply due to the new COM interface. For example file i/o, previously done only on a file name basis, will be updated to use the standard IPersistStream interface. A type library (AudioActive.tlb) will be built so that the AudioActive COM objects will be usable within Visual Basic as is.

Milestone 2

This milestone involves no API changes, but does change a lot of how things work

IAARealTime

The implementation of the IAARealTime interface will be pulled out into a separate DLL so that later it may be replaced more easily. The IAARealTime interface is the portion of AudioActive that handles all real-time timing issues. Because of problems with current Win32 timing, this interface may need to be rewritten to handle thunking down to 16 bits. This is also the least portable portion of AudioActive and it is possible to make the rest of AudioActive completely platform independent, simply writing a new IAARealTime interface for each new platform.

Continuous Controller Support

Support will be added within the engine to deal with continuous controller events such as pitch bend, volume, and panning. No changes to the API will be made, but the engine will now support more complex styles generated with SuperJAM. This change will most probably involve a change in one or more of the data structures used by AudioActive.

Engine Cleanup

This stage involves removing redundancies and anachronisms in the code which may lead to inefficiency and possibly misleading debug output. This may involve some adjustments to the file formats and/or data structures.

Milestone 3

This milestone also involves no API changes, but does change a lot of how things work

PolyChords

Support for PolyChords will be added to the engine. This change will not require any API changes, although several data structure changes are expected.

Thunked IAARealTime

A version of IAARealTime will need to be created that thunks down to 16-bit code to circumvent timing problems in the current Win32 architecture.

Key

�

Key Concepts

�

* This interface must be implemented by the application.

The diagram above describes the functional arrangement of objects in AudioActive. The IAAEngine interface is the primary method for applications to deal with AudioActive and is where all the actual data resides and the composition of new music takes place. At the most basic level, data is created by the AAEngine and passed to the AARealTime object which makes sure everything is played on time and in the correct order and then finally to the AAMIDIOut object. For complete descriptions of the interfaces mentioned above, see the Components and Implementation section below.

�

This diagram describes the relationship of the data objects used by the AAEngine object. The AAEngine object is the ultimate manager of all data objects, with some objects owning or referring to other objects.

Components and Implementation

Summary of Functions

Helper Functions

AudioActiveSimpleInitCS_301200550042

AllocAAClockCS_301200550040

AllocAAEngineCS_301200550039

AllocAAMIDIInCS_301200550038

AllocAAMIDIOutCS_301200550037

AllocAARealTimeCS_301200550033

Interfaces

IAABandIAABand

IClockIClock

IAAEngineIAAEngine

IAAEventSinkIAAEventSink

IAALoaderCS_301200550240

IAAMIDIInIAAMIDIIn

IAAMIDIOutIAAMIDIOut

IAAMIDISinkIAAMIDISink

IAAMotifIAAMotif

IAANotifySinkIAANotifySink

IAAPatternIAAPattern

IAAPersonalityIAAPersonality

IAARealTimeIAARealTime

IAASectionIAASection

IAASongIAASong

IAAStyleIAAStyle

IAATemplateIAATemplate

Structures

AABAND

AACHORD

AACLICK

AACOMMAND

AAEVENT

AAMOTIF

AAPATTERN

AAPERSONALITY

AASECTION

AASONG

AASTYLE

AATEMPLATE

AudioActiveSimpleInit

HRESULT AudioActiveSimpleInit(IAAEngine** ppEngine, IAANotifySink* pNotifySink, IAALoader* pLoader)

This function is the simplest way to initialize AudioActive for most applications. This function goes through the following steps:

AllocAAEngineCS_301200550039() is called.

AllocAARealTimeCS_301200550033() is called.

AllocAAClockCS_301200550040() is called.

AllocAAMIDIOutCS_301200550037() is called.

the IAARealTimeIAARealTime interface is registered with the IAAEngineIAAEngine interface.

the IAAEventSinkIAAEventSink associated with the IAARealTime interface is also registered with the IAAEngine interface.

the IAAMIDISinkIAAMIDISink interface associated with the IAAMIDIOutIAAMIDIOut interface is registered with the IAARealTime interface.

if the IAALoaderCS_301200550240 pointer passed was NULL, a default loader is allocated. The IAALoader is then registered with the IAAEngine interface.

the user supplied IAANotifySinkIAANotifySink interface is registered with the IAARealTime interface.

The IAAEngine interface allocated is returned via the ppEngine variable. The other allocated interfaces may be determined by querying the links to them. If pNotifySink is NULL no notification sink will be automatically registered.

RETURN VALUES:

	S_OK			Everything initialized correctly.

	E_OUTOFMEMORY		One of the interfaces could not be allocated.

	E_INVALIDARG		An invalid pointer was passed to this function.

AllocAAClock

HRESULT AllocAAClock(IClock** ppClock)

This function allocates the default implementation of the IClockIClock interface. A pointer to the interface is returned in the address pointed to by ppClock.

RETURN VALUES:

	S_OK			The function succeeded.

	E_OUTOFMEMORY		The interface could not be allocated.

	E_INVALIDARG		An invalid pointer was passed to this function.

AllocAAEngine

HRESULT AllocAAEngine(IAAEngine** ppEngine)

This function allocates the default implementation of the IAAEngineIAAEngine interface. A pointer to the interface is returned in the address pointed to by ppEngine.

RETURN VALUES:

	S_OK			The function succeeded.

	E_OUTOFMEMORY		The interface could not be allocated.

	E_INVALIDARG		An invalid pointer was passed to this function.

AllocAAMIDIIn

HRESULT AllocAAMIDIIn(IAAMIDIIn** ppMIDIIn)

This function allocates the default implementation of the IAAMIDIInIAAMIDIIn interface. A pointer to the interface is returned in the address pointed to by ppMIDIIn.

RETURN VALUES:

	S_OK			The function succeeded.

	E_OUTOFMEMORY		The interface could not be allocated.

	E_INVALIDARG		An invalid pointer was passed to this function.

AllocAAMIDIOut

HRESULT AllocAAMIDIOut(IAAMIDIOut** ppMIDIOut)

This function allocates the default implementation of the IAAMIDIOutIAAMIDIOut interface. Note that the default version of the IAAMIDIOut interface also supports the IAAMIDISinkIAAMIDISink interface. A pointer to the interface is returned in the address pointed to by ppMIDIOut.

RETURN VALUES:

	S_OK			The function succeeded.

	E_OUTOFMEMORY		The interface could not be allocated.

	E_INVALIDARG		An invalid pointer was passed to this function.

AllocAARealTime

HRESULT AllocAARealTime(IAARealTime** ppRealTime)

This function allocates the default implementation of the IAARealTimeIAARealTime interface. Note that the default implementation of the IAARealTime interface also supports the IAAEventSinkIAAEventSink and IAAMIDISinkIAAMIDISink interfaces. A pointer to the interface is returned in the address pointed to by ppRealTime.

RETURN VALUES:

	S_OK			The function succeeded.

	E_OUTOFMEMORY		The interface could not be allocated.

	E_INVALIDARG		An invalid pointer was passed to this function.

IAAEngine interface

DECLARE_INTERFACE_(IAAEngine, IUnknown)

{

	/* IUnknown methods */

	HRESULT QueryInterface(REFIID riid, LPVOID* ppvObj);

	ULONG AddRef();

	ULONG Release();

	/* IAAEngine methods */

	HRESULT PlaySectionCS_301200550053(IAASection* pSection, long fFlags, long lStartTime);

	HRESULT PlaySongCS_301200550054(IAASong* pSong, long fFlags, long lStartTime);

	HRESULT PlayMotifCS_301200550055(IAAMotif* pMotif, long fFlags);

	HRESULT StopCS_301200550056(long fFlags);

	HRESULT FlushSectionQueueCS_301200550057();

	IAASection* GetCurrentSectionCS_301200550058();

	HRESULT AutoTransitionCS_301200550059(IAASection* pToSection, long fCommand, long fFlags);

	HRESULT AllocSectionCS_301200550060(IAASection** ppSection);

	HRESULT ComposeSectionCS_301200550061(IAAStyle* pStyle, IAAPersonality* pPersonality, IAATemplate* pTemplate, short nActivity, IAASection** ppSection);

	HRESULT ComposeSectionFromShapeCS_301200550062(IAAStyle* pStyle, IAAPersonality* pPersonality, short nActivity, ComposeShape shape, short nNumMeasures, long lCommand, IAASection** ppSection);

	HRESULT ComposeTransitionCS_301200550261(IAASection* pFromSection, IAASection* pToSection, short nMeasureNum, long fCommand, long fFlags, IAASection** ppSection);

	HRESULT AllocSongCS_301200550063(IAASong** ppSong);

	HRESULT AllocMotifCS_301200550064(IAAMotif** ppMotif);

	HRESULT AllocBandCS_301200550065(IAABand** ppBand);

	HRESULT AllocTemplateCS_301200550066(IAATemplate** ppTemplate);

	HRESULT ComposeTemplateFromShapeCS_301200550067(ComposeShape shape, short nNumMeasures, IAATemplate** pTemplate);

	HRESULT AllocStyleCS_301200550068(IAAStyle** ppStyle);

	HRESULT AllocPersonalityCS_301200550069(IAAPersonality** ppPersonality);

	HRESULT AllocPatternCS_301200550070(IAAPattern** ppPattern);

	HRESULT GetFirstStyleNameCS_301200550071(BSTR* ppszStyleName);

	HRESULT GetNextStyleNameCS_301200550072(BSTR* ppszStyleName);

	HRESULT SetPrepareTimeCS_301200550073(short nPrepareTime);

	HRESULT SetDebugCS_301200550074(short nDebug);

	IAAEventSink* GetEventSinkCS_301200550075();

	HRESULT RegisterEventSinkCS_301200550078(IAAEventSink* pEventSink);

	IAARealTime* GetRealTimeCS_301200550077();

	HRESULT RegisterRealTimeCS_301200550078(IAARealTime* pRealTime);

	IAALoader* GetLoaderCS_301200550260();

	HRESULT RegisterLoaderCS_301200550259(IAALoader* pLoader);

	HRESULT ReleaseStyleCS_301200550253(IAAStyle* pStyle);

	HRESULT ReleasePersonalityCS_301200550252(IAAPersonality* pPersonality);

	HRESULT ReleaseAllStylesCS_301200550245();

	HRESULT ReleaseAllPersonalitiesCS_301200550244();

};

This interface represents the AudioActive composition engine. The IAAEngine interface works with and knows intimately the data object interfaces: IAABandIAABand, IAAMotifIAAMotif, IAAPatternIAAPattern, IAAPersonalityIAAPersonality, IAASectionIAASection, IAASongIAASong, IAAStyleIAAStyle, and IAATemplateIAATemplate. The IAAEngine is responsible for generating the music to be played based on these data interfaces and passes it on to the IAARealTimeIAARealTime interface for the actual playback.

IAARealTime interface

DECLARE_INTERFACE_(IAARealTime, IUnknown)

{

	/* IUnknown methods */

	HRESULT QueryInterface(REFIID riid, LPVOID* ppvObj);

	ULONG AddRef();

	ULONG Release();

	/* IAARealTime methods */

	long get_TempoCS_301200550079();

	HRESULT put_TempoCS_301200550080(long lTempo);

	long get_TimeSignatureCS_301200550081();

	HRESULT put_TimeSignatureCS_301200550082(long lTimeSignature);

	short get_RelTempoCS_301200550083();

	HRESULT put_RelTempoCS_301200550084(short nTempo);

	short get_RelVolumeCS_301200550085();

	HRESULT put_RelVolumeCS_301200550086(short nVolume);

	short get_MutesCS_301200550087();

	HRESULT put_MutesCS_301200550088(short nMutes);

	short get_PPQNCS_301200550262();

	long get_MusicTimeCS_301200550089();

	HRESULT ResetMusicTimeCS_301200550090();

	HRESULT FlushEventsAfterTimeCS_301200550238(long lTime);

	IAANotifySink* GetNotifySinkCS_301200550091();

	HRESULT RegisterNotifySinkCS_301200550092(IAANotifySink* pNotifySink);

	IClock* GetClockCS_301200550093();

	HRESULT RegisterClockCS_301200550094(IClock* pClock);

};

This interface represents the playback engine of AudioActive. It also supports the IAAEventSinkIAAEventSink interface and the IAAMIDISinkIAAMIDIIn interface. It is responsible for maintaining the queue of raw events to be played and playing them back on time by sending them out to a registered IAAMIDISink interface. The interface retrieces its timing data solely from the registered IClockIClock interface. An application can force synchronization by replacing the IClock implementation with one of its own.

IAAEventSink interface

DECLARE_INTERFACE_(IAAEventSink, IUnknown)

{

	/* IUnknown methods */

	HRESULT QueryInterface(REFIID riid, LPVOID* ppvObj);

	ULONG AddRef();

	ULONG Release();

	/* IAAEventSink methods */

	IAAEventSink* GetEventSinkCS_301200550095();

	HRESULT RegisterEventSinkCS_301200550096(IAAEventSink* pEventSink);

	HRESULT QueueEventCS_301200550097(struct AAEvent* pEvent);

};

This interface is responsible for receiving AAEVENTCS_301200550025s and optionally passing them on to the next IAAEventSink a chain that will ultimately lead to the IAARealTimeIAARealTime interface. It is not required to sort the events in any way, nor can it expect events to arrive in a sorted order.

IAAMIDISink interface

DECLARE_INTERFACE_(IAAMIDISink, IUnknown)

{

	/* IUnknown methods */

	HRESULT QueryInterface(REFIID riid, LPVOID* ppvObj);

	ULONG AddRef();

	ULONG Release();

	/* IAAMIDISink methods */

	IAAMIDISink* GetMIDISinkCS_301200550098();

	HRESULT RegisterMIDISinkCS_301200550099(IAAMIDISink* pMIDISink);

	HRESULT PlayMIDIEventCS_301200550100(long lMIDIEvent, long lTimeInMils);

};

This interface is responsible for receiving MIDI events and optionally passing them on to the next IAAMIDISink a chain that will ultimately lead to some sort of output device, possibly the IAAMIDIOutIAAMIDIOut interface. It is not required to pay any attention to the lTimeInMils field (i.e. it may play events immediately as they are received) but must preserve it.

IAALoader

DECLARE_INTERFACE_(IAALoader, IUnknown)

{

	/* IUnknown methods */

	HRESULT QueryInterface(REFIID riid, LPVOID FAR* ppvObj);

	ULONG AddRef();

	ULONG Release();

	/* IAALoader methods */

	HRESULT LoadPersonalityCS_301200550242(LPSTR pszFileName, LPSTR pszPersonalityName, IAAPersonality FAR* FAR* ppPersonality);

	HRESULT LoadStyleCS_301200550241(LPSTR pszFileName, LPSTR pszStyleName, IAAStyle FAR* FAR* ppStyle);

};

This function loads referenced data objects when loading sections or styles. An application my override this interface o provide whatever processing is necessary to load the referenced files from whatever stream is necessary.

IAANotifySink interface

DECLARE_INTERFACE_(IAANotifySink, IUnknown)

{

	/* IUnknown methods */

	HRESULT QueryInterface(REFIID riid, LPVOID* ppvObj);

	ULONG AddRef();

	ULONG Release();

	/* IAANotifySink methods */

	HRESULT OnSongStartedCS_301200550101(IAASong* pSong, long fFlags);

	HRESULT OnSongEndedCS_301200550102(IAASong* pSong, long fFlags, long lEndTime);

	HRESULT OnSectionStartedCS_301200550103(IAASection* pSection, long fFlags);

	HRESULT OnSectionEndedCS_301200550104(IAASection* pSection, long fFlags, long lEndTime);

	HRESULT OnSectionChangedCS_301200550105(IAASection* pSection, long fFlags);

	HRESULT OnNextSectionCS_301200550106(IAASection* pSection, long fFlags);

	HRESULT OnEmbellishmentCS_301200550107(long lEmbellishment, long fFlags);

	HRESULT OnGrooveCS_301200550108(long lGroove, long fFlags);

	HRESULT OnMetronomeCS_301200550109(short nMeasure, short nBeat);

	HRESULT OnMIDIInputCS_301200550110(long lMIDIEvent, long lMusicTime);

	HRESULT OnNotePlayedCS_301200550111(struct AAEvent* pEvent);

};

This interface is implemented by the application to receive notification events from the AudioActive playback engine. These callbacks should take as little time as possible as long processing times may interfere with the timing of the music being played.

IAAMIDIIn interface

DECLARE_INTERFACE_(IAAMIDIIn, IUnknown)

{

	/* IUnknown methods */

	HRESULT QueryInterface(REFIID riid, LPVOID* ppvObj);

	ULONG AddRef();

	ULONG Release();

	/* IAAMIDIIn methods */

	HRESULT ActivateCS_301200550112();

	HRESULT DeactivateCS_301200550113();

	HRESULT SetDeviceCS_301200550114(short nDeviceID);

	IAAMIDISink* GetMIDISinkCS_301200550115();

	HRESULT RegisterMIDISinkCS_301200550116(IAAMIDISink* pMIDISink);

};

This function implements MIDI input. If MIDI input is not necessary for your application, it is recommended that this interface not be allocated.

IAAMIDIOut interface

DECLARE_INTERFACE_(IAAMIDIOut, IUnknown)

{

	/* IUnknown methods */

	HRESULT QueryInterface(REFIID riid, LPVOID* ppvObj);

	ULONG AddRef();

	ULONG Release();

	/* IAAMIDIOut methods */

	HRESULT ActivateCS_301200550117();

	HRESULT DeactivateCS_301200550118();

	HRESULT SetDeviceCS_301200550119(short nDeviceID);

};

This interface implements MIDI output. It must also implement the IAAMIDISinkIAAMIDISink interface to receive the actual MIDI events.

IClock interface

DECLARE_INTERFACE_(IClock, IUnknown)

{

	/* IUnknown methods */

	HRESULT QueryInterface(REFIID riid, LPVOID* ppvObj);

	ULONG AddRef();

	ULONG Release();

	/* IClock methods */

	long GetTimeCS_301200550120();

};

This interface is responsible for keeping track of the current time in milliseconds for the IAARealTimeIAARealTime interface's use.

IAASection interface

DECLARE_INTERFACE_(IAASection, IUnknown)

{

	/* IUnknown methods */

	HRESULT QueryInterface(REFIID riid, LPVOID* ppvObj);

	ULONG AddRef();

	ULONG Release();

	/* IAASection methods */

	LPSTR get_NameCS_301200550047();

	HRESULT put_NameCS_301200550121(LPSTR pszName);

	long get_TempoCS_301200550122();

	HRESULT put_TempoCS_301200550123(long lTempo);

	short get_LengthCS_301200550124();

	HRESULT put_LengthCS_301200550125(short nLength);

	long get_LengthInMilsCS_301200550126();

	IAAStyle* get_StyleCS_301200550127();

	HRESULT put_StyleCS_301200550128(IAAStyle* pStyle);

	IAAPersonality* get_PersonalityCS_301200550129();

	HRESULT put_PersonalityCS_301200550130(IAAPersonality* pPersonality);

	IAABand* get_BandCS_301200550131();

	HRESULT put_BandCS_301200550132(IAABand* pBand);

	short get_KeyCS_301200550133();

	HRESULT put_KeyCS_301200550134(short nKey);

	short get_RepeatsCS_301200550135();

	HRESULT put_RepeatsCS_301200550136(short nRepeats);

	long get_UserDataCS_301200550137();

	HRESULT put_UserDataCS_301200550138(long lUserData);

	IAASection* CloneCS_301200550144();

	HRESULT PlayCS_301200550139(long fFlags, long lStartTime);

	HRESULT StopCS_301200550140(long fFlags);

	HRESULT RemoveFromQueueCS_301200550145();

	VARIANT_BOOL IsPlayingCS_301200550141();

	HRESULT GetDataCS_301200550142(AASECTION* pSection);

	HRESULT SetDataCS_301200550143(AASECTION* pSection);

};

This interface respresents a section of music. It must also support the IPersistStream interface so that sections may be loaded and saved.

IAASong interface

DECLARE_INTERFACE_(IAASong, IUnknown)

{

	/* IUnknown methods */

	HRESULT QueryInterface(REFIID riid, LPVOID* ppvObj);

	ULONG AddRef();

	ULONG Release();

	/* IAASong methods */

	LPSTR get_NameCS_301200550048();

	HRESULT put_NameCS_301200550146(LPSTR pszName);

	LPSTR get_AuthorCS_301200550147();

	HRESULT put_AuthorCS_301200550148(LPSTR pszAuthor);

	short get_LengthCS_301200550149();

	long get_LengthInMilsCS_301200550150();

	IAASection* GetFirstSectionCS_301200550151();

	IAASection* GetNextSectionCS_301200550152(IAASection* pSection);

	HRESULT InsertSectionCS_301200550153(IAASection* pPrevSection, IAASection* pSection);

	HRESULT AppendSectionCS_301200550154(IAASection* pSection);

	HRESULT ReleaseSectionCS_301200550155(IAASection* pSection);

	IAASong* CloneCS_301200550156();

	HRESULT SaveAsMIDI(LPSTREAM pStream);

	HRESULT PlayCS_301200550157(long fFlags, long lStartTime);

	HRESULT StopCS_301200550158(long fFlags);

	VARIANT_BOOL IsPlayingCS_301200550159();

	HRESULT GetDataCS_301200550160(AASONG* pSong);

	HRESULT SetDataCS_301200550161(AASONG* pSong);

};

This interface respresents a song composed of a list of sections. It must also support the IPersistStream interface so that songs may be loaded and saved.

IAAMotif interface

DECLARE_INTERFACE_(IAAMotif, IUnknown)

{

	/* IUnknown methods */

	HRESULT QueryInterface(REFIID riid, LPVOID* ppvObj);

	ULONG AddRef();

	ULONG Release();

	/* IAAMotif methods */

	LPSTR get_NameCS_301200550044();

	HRESULT put_NameCS_301200550162(LPSTR pszName);

	short get_LengthCS_301200550163();

	HRESULT put_LengthCS_301200550164(short nLength);

	IAABand* get_BandCS_301200550165();

	HRESULT put_BandCS_301200550166(IAABand* pBand);

	short get_BeatsPerMeasureCS_301200550167();

	short get_ClicksPerBeatCS_301200550168();

	HRESULT PlayCS_301200550169(long fFlags);

	HRESULT StopCS_301200550170(long fFlags);

	VARIANT_BOOL IsPlayingCS_301200550171();

	IAAMotif* CloneCS_301200550172();

	HRESULT GetDataCS_301200550173(AAMOTIF* pMotif);

	HRESULT SetDataCS_301200550174(AAMOTIF* pMotif);

};

This interface respresents a musical motif. It must also support the IPersistStream interface so that motifs may be loaded and saved.

IAAStyle interface

DECLARE_INTERFACE_(IAAStyle, IUnknown)

{

	/* IUnknown methods */

	HRESULT QueryInterface(REFIID riid, LPVOID* ppvObj);

	ULONG AddRef();

	ULONG Release();

	/* IAAStyle methods */

	LPSTR get_NameCS_301200550049();

	HRESULT put_NameCS_301200550175(LPSTR pszName);

	short get_BeatsPerMeasureCS_301200550176();

	HRESULT put_BeatsPerMeasureCS_301200550177(short nBeatsPerMeasure);

	short get_ClicksPerBeatCS_301200550178();

	HRESULT put_ClicksPerBeatCS_301200550179(short nClicksPerBeat);

	long get_DefaultTempoCS_301200550180();

	HRESULT put_DefaultTempoCS_301200550181(long lTempo);

	IAABand* GetFirstBandCS_301200550182();

	IAABand* GetNextBandCS_301200550183(IAABand* pBand);

	HRESULT AddBandCS_301200550184(IAABand* pBand);

	HRESULT ReleaseBandCS_301200550185(IAABand* pBand);

	IAABand* GetDefaultBandCS_301200550186();

	HRESULT SetDefaultBandCS_301200550187(IAABand* pBand);

	IAABand* get_BandCS_301200550188(LPSTR pszName);

	IAAPersonality* GetFirstPersonalityCS_301200550189();

	IAAPersonality* GetNextPersonalityCS_301200550190(IAAPersonality* pPersonality);

	HRESULT AddPersonalityCS_301200550191(IAAPersonality* pPersonality);

	HRESULT ReleasePersonalityCS_301200550192(IAAPersonality* pPersonality);

	IAAPersonality* GetDefaultPersonalityCS_301200550193();

	HRESULT SetDefaultPersonalityCS_301200550194(IAAPersonality* pPersonality);

	IAAPersonality* get_PersonalityCS_301200550195(LPSTR pszName);

	IAAMotif* GetFirstMotifCS_301200550196();

	IAAMotif* GetNextMotifCS_301200550197(IAAMotif* pMotif);

	HRESULT AddMotifCS_301200550198(IAAMotif* pMotif);

	HRESULT ReleaseMotifCS_301200550199(IAAMotif* pMotif);

	IAAMotif* get_MotifCS_301200550200(LPSTR pszName);

	IAAPattern* GetFirstPatternCS_301200550201();

	IAAPattern* GetNextPatternCS_301200550202(IAAPattern* pPattern);

	HRESULT AddPatternCS_301200550203(IAAPattern* pPattern);

	HRESULT ReleasePatternCS_301200550204(IAAPattern* pPattern);

	IAAPattern* get_PatternCS_301200550205(LPSTR pszName);

	IAAStyle* CloneCS_301200550206();

	HRESULT GetDataCS_301200550207(AASTYLE* pStyle);

	HRESULT SetDataCS_301200550208(AASTYLE* pStyle);

};

This interface respresents a style of music. It must also support the IPersistStream interface so that styles may be loaded and saved.

IAAPersonality interface

DECLARE_INTERFACE_(IAAPersonality, IUnknown)

{

	/* IUnknown methods */

	HRESULT QueryInterface(REFIID riid, LPVOID* ppvObj);

	ULONG AddRef();

	ULONG Release();

	/* IAAPersonality methods */

	LPSTR get_NameCS_301200550046();

	HRESULT put_NameCS_301200550209(LPSTR pszName);

	IAAPersonality* CloneCS_301200550210();

	HRESULT GetDataCS_301200550211(AAPERSONALITY* pPersonality);

	HRESULT SetDataCS_301200550212(AAPERSONALITY* pPersonality);

};

This interface respresents a musical personality. It must also support the IPersistStream interface so that personalities may be loaded and saved.

IAABand interface

DECLARE_INTERFACE_(IAABand, IUnknown)

{

	/* IUnknown methods */

	HRESULT QueryInterface(REFIID riid, LPVOID* ppvObj);

	ULONG AddRef();

	ULONG Release();

	/* IAABand methods */

	LPSTR get_NameIAABandMTget_NameHI();

	HRESULT put_NameCS_301200550213(LPSTR pszName);

	short get_VolumeCS_301200550214(short nInstrument);

	HRESULT put_VolumeCS_301200550215(short nInstrument, short nVolume);

	short get_PanCS_301200550216(short nInstrument);

	HRESULT put_PanCS_301200550217(short nInstrument, short nPan);

	short get_PatchCS_301200550218(short nInstrument);

	HRESULT put_PatchCS_301200550219(short nInstrument, short nPan);

	IAABand* CloneCS_301200550220();

	HRESULT GetDataCS_301200550221(AABAND* pBand);

	HRESULT SetDataCS_301200550222(AABAND* pBand);

};

This interface respresents a band. It must also support the IPersistStream interface so that bands may be loaded and saved.

IAATemplate interface

DECLARE_INTERFACE_(IAATemplate, IUnknown)

{

	/* IUnknown methods */

	HRESULT QueryInterface(REFIID riid, LPVOID* ppvObj);

	ULONG AddRef();

	ULONG Release();

	/* IAATemplate methods */

	LPSTR get_NameCS_301200550050();

	HRESULT put_NameCS_301200550223(LPSTR pszName);

	short get_LengthCS_301200550224();

	HRESULT put_LengthCS_301200550225(short nLength);

	IAATemplate* CloneCS_301200550226();

	HRESULT GetDataCS_301200550227(AATEMPLATE* pTemplate);

	HRESULT SetDataCS_301200550228(AATEMPLATE* pTemplate);

};

This interface respresents a template used for composing new sections. It must also support the IPersistStream interface so that templates may be loaded and saved.

IAAPattern interface

DECLARE_INTERFACE_(IAAPattern, IUnknown)

{

	/* IUnknown methods */

	HRESULT QueryInterface(REFIID riid, LPVOID* ppvObj);

	ULONG AddRef();

	ULONG Release();

	/* IAAPattern methods */

	LPSTR get_NameCS_301200550045();

	HRESULT put_NameCS_301200550229(LPSTR pszName);

	short get_LengthCS_301200550230();

	HRESULT put_LengthCS_301200550231(short nLength);

	short get_BeatsPerMeasureCS_301200550232();

	short get_ClicksPerBeatCS_301200550233();

	IAAPattern* CloneCS_301200550234();

	HRESULT GetDataCS_301200550235(AAPATTERN* pPattern);

	HRESULT SetDataCS_301200550236(AAPATTERN* pPattern);

};

This interface respresents a pattern, the basic building blocks of styles. It must also support the IPersistStream interface so that patterns may be loaded and saved.

IAALoaderCS_301200550240->LoadPersonality()

HRESULT LoadPersonality(LPSTR pszFileName, LPSTR pszPersonalityName, IAAPersonality** ppPersonality);

This function takes the filename and/or personality name and loads a personality based on it. This function is called during the loading of sections or styles and may be overridden by the application by defining their own implementation of IAALoader. If the application overrides this interface it should be prepared for either the filename or personality name being NULL. This function may return a pointer to an already loaded personality or may open a stream and load a new one.

RETURN VALUES:

	S_OK			The function succeeded.

	E_FAIL			The function failed

IAALoaderCS_301200550240->LoadStyle()

HRESULT LoadStyle(LPSTR pszFileName, LPSTR pszStyleName, IAAStyle** ppStyle);

This function takes the filename and/or personality name and loads a style based on it. This function is called during the loading of sections and may be overridden by the application by defining their own implementation of IAALoader. If the application overrides this interface it should be prepared for either the filename or style name being NULL. This function may return a pointer to an already loaded style or may open a stream and load a new one.

RETURN VALUES:

	S_OK			The function succeeded.

	E_FAIL		The function failed

IAARealTimeIAARealTime->get_PPQN()

short get_PPQN();

This function returns the PPQN value - Pulses Per Quarter Note. This is the number of musical clock ticks it takes to make up a single quarter note.

IAAEngineIAAEngine->ComposeTransition()

HRESULT ComposeTransition(IAASection* pFromSection, IAASection* pToSection, short nMeasureNum, long fCommand, long fFlags, IAASection** ppSection);

Composes a transition from the measure nMeasureNum in pFromSection to pToSection. If pFromSection is NULL, the currently playing section is used. pToSection may be NULL as long as AAF_MODULATE is not passed as one of the flags. nMeasureNum may be 0 if pFromSection is NULL in which case the current measure of the current section is used.

Any one of the following commands may be passed in the lCommand parameter:

AAC_FILL	Perform a musical Fill during the transition.

AAC_BREAK	Perform a musical Break during the transition.

AAC_END	Resolve the first section with an ending.

AAC_INTRO	Play an intro before the next section.

AAC_GROOVE_A	Perform in a very low activity groove.

AAC_GROOVE_B	Perform in a low activity groove.

AAC_GROOVE_C	Perform in a regular activity groove.

AAC_GROOVE_D	Perform in a high activity groove.

These flags are valid for the fFlags parameter:

AAF_MODULATE	The music should modulate in key and personality from the first to the second section. Otherwise, it should stay in the key and personality of the starting section.

AAF_LONG	The transition should last two measures instead of one.

RETURN VALUES:

S_OK				The function succeeded.

AAE_NOCURRENTSECTION	NULL was passed as pFromSection and there is no currently playing section.

E_INVALIDARG			An invalid measure number was passed

IAAEngineIAAEngine->GetLoader()

IAALoader* GetLoader();

This function returns the current registered IAALoaderCS_301200550240 interface. If no IAALoader interface is registered, NULL is returned.

IAAEngineIAAEngine->RegisterLoader()

HRESULT RegisterLoader(IAALoader* pLoader);

This function registers an IAALoaderCS_301200550240 interface with the IAAEngine. This interface is used when loading styles or sections that make reference to personalities or styles that may exist in different streams.

RETURN VALUES:

	S_OK			The function succeeded.

	E_INVALIDARG		The pointer passed is invalid

IAAEngine->ReleaseSection()

HRESULT ReleaseSection(IAASection* pSection);

This function releases a specific section that the IAAEngine interface is keeping track of.

RETURN VALUES:

	S_OK			The function succeeded.

	E_INVALIDARG		The pointer passed is unknown to the IAAEngine interface

IAAEngine->ReleaseSong()

HRESULT ReleaseSong(IAASong* pSong);

This function releases a specific song that the IAAEngine interface is keeping track of.

RETURN VALUES:

	S_OK			The function succeeded.

	E_INVALIDARG		The pointer passed is unknown to the IAAEngine interface

IAAEngine->ReleaseMotif()

HRESULT ReleaseMotif(IAAMotif* pMotif);

This function releases a specific motif that the IAAEngine interface is keeping track of.

RETURN VALUES:

	S_OK			The function succeeded.

	E_INVALIDARG		The pointer passed is unknown to the IAAEngine interface

IAAEngine->ReleaseBand()

HRESULT ReleaseBand(IAABand* pBand);

This function releases a specific band that the IAAEngine interface is keeping track of.

RETURN VALUES:

	S_OK			The function succeeded.

	E_INVALIDARG		The pointer passed is unknown to the IAAEngine interface

IAAEngine->ReleaseTemplate()

HRESULT ReleaseTemplate(IAATemplate* pTemplate);

This function releases a specific template that the IAAEngine interface is keeping track of.

RETURN VALUES:

	S_OK			The function succeeded.

	E_INVALIDARG		The pointer passed is unknown to the IAAEngine interface

IAAEngine->ReleaseStyle()

HRESULT ReleaseStyle(IAAStyle* pStyle);

This function releases a specific style that the IAAEngine interface is keeping track of.

RETURN VALUES:

	S_OK			The function succeeded.

	E_INVALIDARG		The pointer passed is unknown to the IAAEngine interface

IAAEngine->ReleasePersonality()

HRESULT ReleasePersonality(IAAPersonality* pPersonality);

This function releases a specific personality that the IAAEngine interface is keeping track of.

RETURN VALUES:

	S_OK			The function succeeded.

	E_INVALIDARG		The pointer passed is unknown to the IAAEngine interface

IAAEngine->ReleaseAllSections()

HRESULT ReleaseAllSections();

This function releases all sections that the IAAEngine interface keeps track of.

RETURN VALUES:

	S_OK			The function succeeded.

IAAEngine->ReleaseAllSongs()

HRESULT ReleaseAllSongs();

This function releases all songs that the IAAEngine interface keeps track of.

RETURN VALUES:

	S_OK			The function succeeded.

IAAEngine->ReleaseAllMotifs()

HRESULT ReleaseAllMotifs();

This function releases all motifs that the IAAEngine interface keeps track of.

RETURN VALUES:

	S_OK			The function succeeded.

IAAEngine->ReleaseAllBands()

HRESULT ReleaseAllBands();

This function releases all bands that the IAAEngine interface keeps track of.

RETURN VALUES:

	S_OK			The function succeeded.

IAAEngine->ReleaseAllTemplates()

HRESULT ReleaseAllTemplates();

This function releases all templates that the IAAEngine interface keeps track of.

RETURN VALUES:

	S_OK			The function succeeded.

IAAEngine->ReleaseAllStyles()

HRESULT ReleaseAllStyles();

This function releases all styles that the IAAEngine interface keeps track of.

RETURN VALUES:

	S_OK			The function succeeded.

IAAEngine->ReleaseAllPersonalities()

HRESULT ReleaseAllPersonalities();

This function releases all personalities that the IAAEngine interface keeps track of.

RETURN VALUES:

	S_OK			The function succeeded.

IAABandIAABand->get_Name()

LPSTR get_Name();

This function returns the name of the band. If the band name has not been explicitly set (for a newly allocated band) the string returned will be "New". In case of an error, NULL will be returned.

IAAMotifIAAMotif->get_Name()

LPSTR get_Name();

This function returns the name of the motif. If the motif name has not been explicitly set (for a newly allocated motif) the string returned will be "New". In case of an error, NULL will be returned.

IAAPatternIAAPattern->get_Name()

LPSTR get_Name();

This function returns the name of the pattern. If the pattern name has not been explicitly set (for a newly allocated pattern) the string returned will be "New". In case of an error, NULL will be returned.

IAAPersonalityIAAPersonality->get_Name()

LPSTR get_Name();

This function returns the name of the personality. If the personality name has not been explicitly set (for a newly allocated personality) the string returned will be "New". In case of an error, NULL will be returned.

IAASectionIAASection->get_Name()

LPSTR get_Name();

This function returns the name of the section. If the section name has not been explicitly set (for a newly allocated section) the string returned will be "New". In case of an error, NULL will be returned.

IAASongIAASong->get_Name()

LPSTR get_Name();

This function returns the name of the song. If the song name has not been explicitly set (for a newly allocated song) the string returned will be "New". In case of an error, NULL will be returned.

IAAStyleIAAStyle->get_Name()

LPSTR get_Name();

This function returns the name of the style. If the style name has not been explicitly set (for a newly allocated style) the string returned will be "New". In case of an error, NULL will be returned.

IAATemplateIAATemplate->get_Name()

LPSTR get_Name();

This function returns the name of the template. If the template name has not been explicitly set (for a newly allocated template) the string returned will be "New". In case of an error, NULL will be returned.

IAAEngineIAAEngine->PlaySection()

HRESULT PlaySection(IAASection* pSection, long fFlags, long lStartTime)

This function plays the section referred to by pSection. Various flags sent via the fFlags parameter influence how the section is played. Each of these flags is mutually exclusive - combining them may get unpredictable results. In all cases if there is no currently playing section, the requested section begins playing immediately regardless of the fFlags parameter.

AAF_NEXT_MEASURE (default)

Usage of this flag stops the currently playing section (if any) at the next measure boundary to begin playing the requested section.

AAF_NEXT_BEAT

Usage of this flag stops the currently playing section (if any) at the next beat boundary to begin playing the requested section.

AAF_NEXT_CLICK

Usage of this flag stops the currently playing section (if any) at the next click boundary to begin playing the requested section.

AAF_IMMEDIATE

Usage of this flag stops the currently playing section (if any) immediately to begin playing the requested section.

AAF_QUEUE

Usage of this flag will queue the section to play when all currently pending sections have ended. It is safe to queue the same section more than once.

AAF_NEXT_SECTION

Usage of this flag will flush all pending sections queued to play so that the requested section will play as soon as the current one is finished. This does not affect any repeats that the current section has yet to play.

AAF_FAIL_IF_PLAYING

Usage of this flag will cause the function to fail (returning E_FAIL) if there is a section currently playing.

RETURN VALUES:

	S_OK			The function succeeded.

	E_POINTER		An invalid IAASection was passed.

	E_INVALIDARG	An invalid flag was passed.

	E_FAIL		Failed because a section is already playing.

IAAEngineIAAEngine->PlaySong()

HRESULT PlaySong(IAASong* pSong, long fFlags, long lStartTime)

This function plays the song referred to by pSong. A song is composed of a sequence of sections which are played in order until completion. Various flags sent via the fFlags parameter influence how the song is played. Each of these flags is mutually exclusive - combining them may get unpredictable results. In all cases if there is no currently playing section, the requested song begins playing immediately regardless of the fFlags parameter.

AAF_NEXT_MEASURE (default)

Usage of this flag stops the currently playing section (if any) at the next measure boundary to begin playing the requested song.

AAF_NEXT_BEAT

Usage of this flag stops the currently playing section (if any) at the next beat boundary to begin playing the requested song.

AAF_NEXT_CLICK

Usage of this flag stops the currently playing section (if any) at the next click boundary to begin playing the requested song.

AAF_IMMEDIATE

Usage of this flag stops the currently playing section (if any) immediately to begin playing the requested song.

AAF_NEXT_SECTION

Usage of this flag will flush all pending sections queued to play so that the requested song will play as soon as the current section is finished. This does not affect any repeats that the current section has yet to play.

AAF_FAIL_IF_PLAYING

Usage of this flag will cause the function to fail (returning E_FAIL) if there is a section currently playing.

RETURN VALUES:

	S_OK			The function succeeded.

	E_POINTER		An invalid IAASong was passed.

	E_INVALIDARG		An invalid flag was passed.

	E_FAIL			Failed because a section is already playing.

IAAEngineIAAEngine->PlayMotif()

HRESULT PlayMotif(IAAMotif* pMotif, long fFlags)

This function plays the motif referred to by pMotif. A motif will only play if music is already playing. A motif is very similar to a pattern - it may have variations and it plays transposed to the current key and chord. By default, a motif can not overlap itself. A playing motif must come to an end before the same motif may be played again.

The following flags are mutually exclusive. Combining them may yield unpredictable results.

AAF_NEXT_MEASURE (default)

Usage of this flag plays the motif at the next measure boundary.

AAF_NEXT_BEAT

Usage of this flag plays the motif at the next beat boundary.

AAF_NEXT_CLICK

Usage of this flag plays the motif at the next click boundary.

AAF_IMMEDIATE

Usage of this flag plays the motif immediately.

The following flags may be combined as necessary.

AAF_ALLOW_OVERLAP

Usage of this flag will allow the motif to overlap itself, i.e. multiple copies of the same motif may be playing at the same time.

AAF_PLAY_WITH_STYLE

Usage of this flag ignores the motif's band and plays the motif with the currently playing style's band. Also, instead of dynamically allocating unused MIDI channels, the channels of the style are used as well.

AAF_IGNORE_KEY

Usage of this flag plays the motif in the key it was designed in rather than the current key. The motif will still be transposed to fit the current chord in the motif's key.

AAF_IGNORE_CHORD

Usage of this flag plays the motif in the chord it was designed in rather changing to fit the current chord. The motif will still be transposed to fit the current key.

RETURN VALUES:

	S_OK				The function succeeded.

	AAE_NOMUSICPLAYING		The motif cannot play because there is no music playing.

	AAE_ALREADYPLAYING		The motif is already playing and the AAF_ALLOW_OVERLAP flag has not been set.

IAAEngineIAAEngine->Stop()

HRESULT Stop(long fFlags)

This function stops whatever music AudioActive is currently playing. Any sections queued to be played in the future are flushed from the queue.

AAF_NEXT_MEASURE (default)

Usage of this flag stops the currently playing section at the next measure boundary.

AAF_NEXT_BEAT

Usage of this flag stops the currently playing section at the next beat boundary.

AAF_NEXT_CLICK

Usage of this flag stops the currently playing section at the next click boundary.

AAF_IMMEDIATE

Usage of this flag stops the currently playing section immediately.

AAF_NEXT_SECTION

Usage of this flag will flush all pending sections queued to play. This does not affect any repeats that the current section has yet to play. This flag acts just like IAAEngine->FlushSectionQueue().

RETURN VALUES:

	S_OK			The function succeeded.

IAAEngineIAAEngine->FlushSectionQueue()

HRESULT FlushSectionQueue()

This function queues all pending sections that are queued but have not yet started. If the currently playing section has a fixed number of repeats, this function does not affect pending repeats.

RETURN VALUES:

	S_OK			The function succeeded.

IAAEngineIAAEngine->GetCurrentSection()

IAASection* GetCurrentSection()

This function returns a pointer to the interface describing the currently playing section. If no section is currently playing, a NULL is returned.

RETURN VALUES:

	NULL			No section is currently playing.

	non-NULL		pointer to interface describing the currently playing section

IAAEngineIAAEngine->AutoTransition()

HRESULT AutoTransition(IAASection* pToSection, long lCommand, long fFlags);

This function automatically transitions from the current position in the playing section to the section provided. Any pending sections will be flushed from the queue and the currently playing section (if any) will be set to stop at the next measure boundary.

Any one of the following commands may be passed in the lCommand parameter:

	AAC_FILL		Perform a musical Fill during the transition.

	AAC_BREAK		Perform a musical Break during the transition.

	AAC_END		Resolve the first section with an ending.

	AAC_INTRO		Play an intro before the next section.

	AAC_GROOVE_A		Perform in a very low activity groove.

	AAC_GROOVE_B		Perform in a low activity groove.

	AAC_GROOVE_C		Perform in a regular activity groove.

	AAC_GROOVE_D		Perform in a high activity groove.

These flags are valid for the fFlags parameter:

TRANS_CHANGE	The music should modulate in key and personality from the first to the second section. Otherwise, it should stay in the key and personality of the starting section.

TRANS_LONG	The transition should last two measures instead of one.

RETURN VALUES:

	S_OK			The function succeeded.

IAAEngineIAAEngine->AllocSection()

HRESULT AllocSection(IAASection** ppSection)

This function allocates a new blank section. The section's data must be set with SetData() or via the Load() function exposed via the IPersistStream interface.

RETURN VALUES:

	S_OK			The function succeeded.

	E_OUTOFMEMORY		The interface could not be allocated.

	E_INVALIDARG		An invalid pointer was passed to this function.

IAAEngineIAAEngine->ComposeSection()

HRESULT ComposeSection(IAAStyle* pStyle, IAAPersonality* pPersonality, IAATemplate* pTemplate, short nActivity, IAASection** ppSection)

This function uses the style, personality, and template to create an original section. The length of the section will correspond to the length of the template passed. If pPersonality is NULL, the default personality for the style is used. The nActivity parameter specifies amount of chord change activity; valid values are 0 through 3, where 0 represents many chord changes and 3 represents very little chord movement.

RETURN VALUES:

	S_OK			The function succeeded.

	E_OUTOFMEMORY		The interface could not be allocated.

	E_INVALIDARG		An invalid pointer was passed to this function or nActivity is out of range.

IAAEngineIAAEngine->ComposeSectionFromShape()

HRESULT ComposeSectionFromShape(IAAStyle* pStyle, IAAPersonality* pPersonality, short nActivity, ComposeShape shape, short nNumMeasures, long lCommand, IAASection** ppSection)

This function uses the style, personality, and shape to create an original section. The length of the section will correspond to the length of the template passed. If pPersonality is NULL, the default personality for the style is used. The nActivity parameter specifies amount of chord change activity; valid values are 0 through 3, where 0 represents many chord changes and 3 represents very little chord movement.

The shape parameter must be one of the following:

	SH_FALLING

	SH_LEVEL

	SH_LOOPABLE

	SH_LOUD

	SH_QUIET

	SH_PEAKING

	SH_RANDOM

	SH_RISING

	SH_SONG

Note that for SH_SONG to work the section must be at least 32 measures in length. If the section is less than 32 measures and SH_SONG is specified, SH_RISING will be used instead.

Valid values for the lCommand parameter include any combination of the following:

	AAC_END		Play an ending at the end of the section.

	AAC_INTRO		Play an intro at the beginning of the section.

RETURN VALUES:

	S_OK			The function succeeded.

	E_OUTOFMEMORY	The interface could not be allocated.

	E_INVALIDARG	An invalid pointer was passed to this function.

IAAEngineIAAEngine->AllocSong()

HRESULT AllocSong(IAASong** ppSong)

This function allocates a new empty song. The Load() function exposed via the IPersistStream interface may be used to further initialize the song.

RETURN VALUES:

	S_OK			The function succeeded.

	E_OUTOFMEMORY		The interface could not be allocated.

	E_INVALIDARG		An invalid pointer was passed to this function.

IAAEngineIAAEngine->AllocMotif()

HRESULT AllocMotif(IAAMotif** ppMotif)

This function allocates a new empty motif. The motif's data must be set with SetData() or via the Load() function exposed via the IPersistStream interface.

RETURN VALUES:

	S_OK			The function succeeded.

	E_OUTOFMEMORY		The interface could not be allocated.

	E_INVALIDARG		An invalid pointer was passed to this function.

IAAEngineIAAEngine->AllocBand()

HRESULT AllocBand(IAABand** ppBand)

This function allocates a new band with default settings for all instruments. The Load() function exposed via the IPersistStream interface may be used to further initialize the band.

RETURN VALUES:

	S_OK			The function succeeded.

	E_OUTOFMEMORY		The interface could not be allocated.

	E_INVALIDARG		An invalid pointer was passed to this function.

IAAEngineIAAEngine->AllocTemplate()

HRESULT AllocTemplate(IAATemplate** ppTemplate)

This function allocates a new empty template. The template's data must be set with SetData() or via the Load() function exposed via the IPersistStream interface.

RETURN VALUES:

	S_OK			The function succeeded.

	E_OUTOFMEMORY		The interface could not be allocated.

	E_INVALIDARG		An invalid pointer was passed to this function.

IAAEngineIAAEngine->ComposeTemplateFromShape()

HRESULT ComposeTemplateFromShape(ComposeShape shape, short nNumMeasures, IAATemplate** ppTemplate)

This function composes a new template based on a predefined shape.

The shape parameter must be one of the following:

	SH_FALLING

	SH_LEVEL

	SH_LOOPABLE

	SH_LOUD

	SH_QUIET

	SH_PEAKING

	SH_RANDOM

	SH_RISING

	SH_SONG

Note that for SH_SONG to work the section must be at least 32 measures in length. If the section is less than 32 measures and SH_SONG is specified, SH_RISING will be used instead.

RETURN VALUES:

	S_OK			The function succeeded.

	E_OUTOFMEMORY		The interface could not be allocated.

	E_INVALIDARG		An invalid pointer was passed to this function.

IAAEngineIAAEngine->AllocStyle()

HRESULT AllocStyle(IAAStyle** ppStyle)

This function allocates a new empty style. The style's data must be set with SetData() or via the Load() function exposed via the IPersistStream interface.

RETURN VALUES:

	S_OK			The function succeeded.

	E_OUTOFMEMORY		The interface could not be allocated.

	E_INVALIDARG		An invalid pointer was passed to this function.

IAAEngineIAAEngine->AllocPersonality()

HRESULT AllocPersonality(IAAPersonality** ppPersonality)

This function allocates a new empty personality. The personality's data must be set with SetData() or via the Load() function exposed via the IPersistStream interface.

RETURN VALUES:

	S_OK			The function succeeded.

	E_OUTOFMEMORY		The interface could not be allocated.

	E_INVALIDARG		An invalid pointer was passed to this function.

IAAEngineIAAEngine->AllocPattern()

HRESULT AllocPattern(IAAPattern** ppPattern)

This function allocates a new empty pattern. The pattern's data must be set with SetData() or via the Load() function exposed via the IPersistStream interface.

RETURN VALUES:

	S_OK			The function succeeded.

	E_OUTOFMEMORY		The interface could not be allocated.

	E_INVALIDARG		An invalid pointer was passed to this function.

IAAEngineIAAEngine->GetFirstStyleName()

HRESULT GetFirstStyleName(BSTR* ppszStyleName)

This function returns the first style name in the global style database.

RETURN VALUES:

	S_OK			The function succeeded.

	E_OUTOFMEMORY		The string could not be allocated.

	E_INVALIDARG		An invalid pointer was passed to this function.

IAAEngineIAAEngine->GetNextStyleName()

HRESULT GetNextStyleName(BSTR* ppszStyleName)

This function returns the next style name in the global style database after the name passed. The pointer passed is freed and a new one allocated.

RETURN VALUES:

	S_OK			The function succeeded.

	E_OUTOFMEMORY		The string could not be allocated.

	E_INVALIDARG		An invalid pointer was passed to this function.

IAAEngineIAAEngine->SetPrepareTime()

HRESULT SetPrepareTime(short nPrepareTime)

This functions sets the amount of time ahead that notes are composed and sent to the registered IAAEventSinkIAAEventSink. This time is in music time and defaults to the length of one measure.

RETURN VALUES:

	S_OK			The function succeeded.

	E_INVALIDARG		The prepare time specified is out of range.

IAAEngineIAAEngine->SetDebug()

HRESULT SetDebug(short nDebug)

This function sets the debug level. A value of 0 (the default) results in no debugging messages being printed. A value of 1 (fatal error) through 5 (informational message) indicates messages of thast severity or lower should be printed. Messages are displayed using OutputDebugString(). A debug value of greater than 0 also enforces very strict runtime data validation in all functions.

RETURN VALUES:

	S_OK			The function succeeded.

IAAEngineIAAEngine->GetEventSink()

IAAEventSink* GetEventSink()

This function returns the IAAEventSinkIAAEventSink interface registered with this interface. If this function returns NULL, no IAAEventSink interface has been registered.

IAAEngineIAAEngine->RegisterEventSink()

HRESULT RegisterEventSink(IAAEventSink* pEventSink)

This function registers a new IAAEventSinkIAAEventSink with the IAAEngine. If there is already an IAAEvenSink interface registered, it is released and the new one assigned.

This is where all composed events are funnelled to. In the simplest case, this interface is one of the ones exported by the IAARealTimeIAARealTime interface, so events are directly given to it. An application may choose to daisy chain IAAEventSink interfaces between IAAEngine and IAARealTime to perform whatever filter operations necessary.

RETURN VALUES:

	S_OK			The function succeeded.

IAAEngineIAAEngine->GetRealTime()

HRESULT IAARealTime* GetRealTime()

This function returns the IAARealTmeIAARealTime interface registered with this interface. If this function returns NULL, no IAARealTime interface has been registered.

IAAEngineIAAEngine->RegisterRealTime()

HRESULT RegisterRealTime(IAARealTime* pRealTime)

This function registers a new IAARealTimeIAARealTime with the IAAEngine. If there is already an IAARealTime interface registered, it is released and the new one assigned.

RETURN VALUES:

	S_OK			The function succeeded.

IAARealTimeIAARealTime->get_Tempo()

long get_Tempo()

This function returns the tempo in beats per minute as well as a fractional part of 0 to 65535 out of 65536. In most cases the factional part of the tempo is not necessary or desired and in this case a simple cast to a short or the usage of the TEMPO_BPM(x) macro will retrieve only the beats per minute portion of the tempo. The fractional portion of the tempo is stored in the upper 16 bits and may be retrieved using the TEMPO_FRACT(x) macro.

IAARealTimeIAARealTime->put_Tempo()

HRESULT put_Tempo(long lTempo)

This function sets the current tempo in beats per minute, including a fractional tempo that is a fraction from 0 to 65535 parts out of 65536. The fractional part of the tempo is stored as the upper 16 bits, so merely passing 120 (for example) to this function will set the tempo to 120 beats per minute. If a fractional tempo is desired there is a macro MAKE_TEMPO(bpm, fract) that will arrange the information properly. Note that the fractional tempo is optional and should only be required when a very high resolution is necessary.

RETURN VALUES:

	S_OK			The function succeeded.

	E_INVALIDARG		The tempo was out of range.

IAARealTimeIAARealTime->get_TimeSignature()

long get_TimeSignature()

This function returns both the numerator and denominator of the current time signature. The individual pieces may be retrieved by the use of the TIMESIG_NUMERATOR(x) and TIMESIG_DENOMINATOR(x) macros.

IAARealTimeIAARealTime->put_TimeSignature()

HRESULT put_TimeSignature(long lTimeSignature)

This function sets the current time signature. The time signature is built of two parts, a numerator (beats per measure) and a denominator (which note determines the beat). This value may be built using the macro MAKE_TIMESIG(numerator, denominator),

RETURN VALUES:

	S_OK			The function succeeded.

	E_INVALIDARG		The time signature is invalid.

IAARealTimeIAARealTime->get_RelTempo()

short get_RelTempo()

This function returns the current relative tempo, from 0 (half speed) to 200 (double speed) with 100 being the normal speed.

IAARealTimeIAARealTime->put_RelTempo()

HRESULT put_RelTempo(short nRelTempo)

This function sets the relative tempo. The relative tempo goes from 0 (half speed) to 200 (double speed) with 100 being normal speed. The relative tempo is always in effect until reset, even when the actual tempo is changed.

RETURN VALUES:

	S_OK			The function succeeded.

	E_INVALIDARG		The relative tempo passed was out of range.

IAARealTimeIAARealTime->get_RelVolume()

short get_RelVolume()

This function retrieves the current relative volume, where 100 is normal, 0 is off/quiet, and 200 is double the normal volume.

IAARealTimeIAARealTime->put_RelVolume()

HRESULT put_RelVolume(short nRelVolume)

This function sets the current relative volume, where 100 is normal, 0 is off/quiet, and 200 is double the normal volume.

RETURN VALUES:

	S_OK			The function succeeded.

	E_INVALIDARG		The parameter passed is out of range.

IAARealTimeIAARealTime->get_Mutes()

short get_Mutes()

This function returns a short where each bit represents an instrument in the band, one for each of the sixteen band members where the low bit is instrument 1 and the high bit instrument 16. If a bit is on, then that instrument is muted, otherwise it is not.

IAARealTimeIAARealTime->put_Mutes()

HRESULT put_Mutes(short nMutes)

This function sets the mutes for each of the sixteen instruments. Each bit in nMutes represents an instrument in the band where the low bit is instrument 1 and the high bit instrument 16. If a bit is on, then that instrument is muted, otherwise it is not.

RETURN VALUES:

	S_OK			The function succeeded.

IAARealTimeIAARealTime->get_MusicTime()

long get_MusicTime()

This function returns the current music time, based on the PPQN. If there is no music playing, this value will be whatever the last valid music time was, or 0 if music has never played.

IAARealTimeIAARealTime->ResetMusicTime()

HRESULT ResetMusicTime()

This function resets the music time to be 0.

RETURN VALUES:

	S_OK	The function succeeded.

IAARealTimeIAARealTime->GetNotifySink()

IAANotifySink* GetNotifySink()

This function returns a pointer to the registered IAANotifySinkIAANotifySink interface, or NULL if there is none registered.

IAARealTimeIAARealTime->RegisterNotifySink()

HRESULT RegisterNotifySink(IAANotifySink* pNotifySink)

This function registers an IAANotifySinkIAANotifySink interface with the IAARealTime interface. This interface is implemented by an application to receive callbacks on key events.

RETURN VALUES:

	S_OK			The function succeeded.

IAARealTimeIAARealTime->GetClock()

IClock* GetClock()

This function returns the pointer to the currently registered IClockIClock interface, or NULL if there is none.

IAARealTimeIAARealTime->RegisterClock()

HRESULT RegisterClock(IClock* pClock)

This function registers the IClockIClock interface with the IAARealTime interface. This interface is used to determine the current system time and may be overridden if there is an alternate timing source that is necessary to sync to.

RETURN VALUES:

	S_OK			The function succeeded.

IAAEventSinkIAAEventSink->GetEventSink()

IAAEventSink* GetEventSink()

This function returns the current IAAEventSink interface registered, or NULL if there is none.

IAAEventSinkIAAEventSink->RegisterEventSink()

HRESULT RegisterEventSink(IAAEventSink* pEventSink)

This function registers an IAAEventSink interface with this IAAEventSink. In this manner it is possible to daisy-chain IAAEventSinks to perform filtering or any other operation until they reach their ultimate destination.

RETURN VALUES:

	S_OK			The function succeeded.

IAAEventSinkIAAEventSink->QueueEvent()

HRESULT QueueEvent(AAEVENT* pEvent)

This function queues an event to be played.

RETURN VALUES:

	S_OK			The function succeeded.

IAAMIDISinkIAAMIDISink->GetMIDISink()

IAAMIDISink* GetMIDISink()

This function returns the currently regitered IAAMIDISink interface, or NULL if there is none.

IAAMIDISinkIAAMIDISink->RegisterMIDISink()

HRESULT RegisterMIDISink(IAAMIDISink* pMIDISink)

This function registers an IAAMIDISink interface with this IAAMIDISink interface. In this way, these interfacesmay be daisy-chained to perform filtering or other effects needed.

RETURN VALUES:

	S_OK			The function succeeded.

IAAMIDISinkIAAMIDISink->PlayMIDIEvent()

HRESULT PlayMIDIEvent(long lMIDIEvent, long lTimeInMils)

This function plays a MIDI event. The exact timestamp is passed when possible, although a 0 value in this field is valid and indicates that the event is coming in in realtime and should be played as soon as possible.

RETURN VALUES:

	S_OK			The function succeeded.

IAANotifySinkIAANotifySink->OnSongStarted()

HRESULT OnSongStarted(IAASong* pSong, long fFlags)

This function is called to notify an application whenever a song is started. There are currently no valid flags defined for the fFlags field.

RETURN VALUES:

	S_OK			The function succeeded.

IAANotifySinkIAANotifySink->OnSongEnded()

HRESULT OnSongEnded(IAASong* pSong, long fFlags, long lEndTime)

This function is called to notify an application whenever a song has ended.

Valid flags in the fFlags field are:

	AAF_ENDEDEARLY	This song was stopped before it was complete.

RETURN VALUES:

	S_OK			The function succeeded.

IAANotifySinkIAANotifySink->OnSectionStarted()

HRESULT OnSectionStarted(IAASection* pSection, long fFlags)

This function is called to notify an application whenever a section has started.

Valid flags in the fFlags field are:

	AAF_ISTRANSITION	This section is a transition.

RETURN VALUES:

	S_OK	The function succeeded.

IAANotifySinkIAANotifySink->OnSectionEnded()

HRESULT OnSectionEnded(IAASection* pSection, long fFlags, long lEndTime)

This function is called to notify an application whenever a section has ended.

Valid flags in the fFlags field are:

	AAF_ISTRANSITION	This section is a transition.

	AAF_ENDEDEARLY	This section was stopped before it was complete.

RETURN VALUES:

	S_OK			The function succeeded.

IAANotifySinkIAANotifySink->OnSectionChanged()

HRESULT OnSectionChanged(IAASection* pSection, long fFlags)

This function is called to notify an application whenever a section's data is changed in any way. There are currently no valid flags defined for the fFlags field.

RETURN VALUES:

	S_OK			The function succeeded.

IAANotifySinkIAANotifySink->OnNextSection()

HRESULT OnNextSection(IAASection* pSection, long fFlags)

This function is called to notify an application that a section is nearing completion and there are no more sections left in the queue. If the application wants to continue playing music, new sections should be composed and/or queued to play.

There are currently no valid flags defined for the fFlags field.

RETURN VALUES:

	S_OK			The function succeeded.

IAANotifySinkIAANotifySink->OnEmbellishment()

HRESULT OnEmbellishment(long lEmbellishment, long fFlags)

This function notifies the application that an embellishment has begun to play. The lEmbellishment parameter may be any ony of the following:

	AAC_FILL

	AAC_BREAK

	AAC_END

	AAC_INTRO

There are currently no valid flags defined for the fFlags field.

RETURN VALUES:

	S_OK			The function succeeded.

IAANotifySinkIAANotifySink->OnGroove()

HRESULT OnGroove(long lGroove, long fFlags)

This function notifies the application when a new groove begins to play. The lGroove parameter may be any one of the following:

	AAC_GROOVE_A

	AAC_GROOVE_B

	AAC_GROOVE_C

	AAC_GROOVE_D

There are currently no valid flags defined for the fFlags field.

RETURN VALUES:

	S_OK			The function succeeded.

IAANotifySinkIAANotifySink->OnMetronome()

HRESULT OnMetronome(short nMeasure, short nBeat)

This function notifies the application on every beat while music is playing. The nMeasure and nBeat parameters are relative to the current section only and start at 1.

RETURN VALUES:

	S_OK			The function succeeded.

IAANotifySinkIAANotifySink->OnMIDIInput()

HRESULT OnMIDIInput(long lMIDIEvent, long lMusicTime)

This function notifies the application every time an event is received by the IAAMIDISinkIAAMIDISink interface of IAARealTimeIAARealTime. The most common cause for this is MIDI input, although an application may send data to this interface as it sees fit.

RETURN VALUES:

	S_OK			The function succeeded.

IAANotifySinkIAANotifySink->OnNotePlayed()

HRESULT OnNotePlayed(AAEVENT* pEvent)

This function notifies the application every time an event is processed and played by the IAARealTimeIAARealTime interface. Only events that have been queued to the IAARealTime interface's IAAEventSinkIAAEventSink interface will cause this notification.

RETURN VALUES:

	S_OK			The function succeeded.

IAAMIDIInIAAMIDIIn->Activate()

HRESULT Activate()

This function will claim the MIDI input resource for the use of the current application. Typically, only one application may claim this resource at a time. Depending on the driver being used, it may also not be possible to perform other tasks simultaneously with MIDI Input, for example WAVE audio output.

RETURN VALUES:

	S_OK			The function succeeded.

	E_FAIL			The MIDI In resource is not available.

IAAMIDIInIAAMIDIIn->Deactivate()

HRESULT Deactivate()

This function releases the MIDI input resource so that other applications may use it.

RETURN VALUES:

	S_OK			The function succeeded.

IAAMIDIInIAAMIDIIn->SetDevice()

HRESULT SetDevice(short nDeviceID)

This function sets the current device being used for MIDI input.

RETURN VALUES:

	S_OK			The function succeeded.

	E_INVALIDARG		The nDeviceID is invalid.

IAAMIDIInIAAMIDIIn->GetMIDISink()

IAAMIDISink* GetMIDISink()

This function returns the IAAMIDISinkIAAMIDISink interface that is the recipient of the data generated by the MIDI input device.

RETURN VALUES:

	S_OK			The function succeeded.

IAAMIDIInIAAMIDIIn->RegisterMIDISink()

HRESULT RegisterMIDISink(IAAMIDISink* pMIDISink)

This function registers the IAAMIDISinkIAAMIDISink interface that will be the recipient of the data generated by the MIDI input device.

RETURN VALUES:

	S_OK			The function succeeded.

IAAMIDIOutIAAMIDIOut->Activate()

HRESULT Activate()

This function will claim the MIDI output resource for the use of the current application. Typically, only one application may claim this resource at a time.

RETURN VALUES:

	S_OK			The function succeeded.

IAAMIDIOutIAAMIDIOut->Deactivate()

HRESULT Deactivate()

This function releases the MIDI output resource so that other applications may use it.

RETURN VALUES:

	S_OK			The function succeeded.

IAAMIDIOutIAAMIDIOut->SetDevice()

HRESULT SetDevice(short nDeviceID)

This function sets the current device being used for MIDI output.

RETURN VALUES:

	S_OK			The function succeeded.

	E_INVALIDARG	The nDeviceID is invalid.

IClockIClock->GetTime()

long GetTime()

This function returns the current system time in milliseconds.

IAASectionIAASection->put_Name()

HRESULT put_Name(LPSTR pszName)

This function sets the name of the pattern.

RETURN VALUES:

	S_OK			The function succeeded.

	E_INVALIDARG		The name passed is NULL.

IAASectionIAASection->get_Tempo()

long get_Tempo()

This function returns the section's tempo in beats per minute as well as a fractional part of 0 to 65535 out of 65536. In most cases the factional part of the tempo is not necessary or desired and in this case a simple cast to a short or the usage of the TEMPO_BPM(x) macro will retrieve only the beats per minute portion of the tempo. The fractional portion of the tempo is stored in the upper 16 bits and may be retrieved using the TEMPO_FRACT(x) macro.

IAASectionIAASection->put_Tempo()

HRESULT put_Tempo(long lTempo)

This function sets the section's tempo in beats per minute, including a fractional tempo that is a fraction from 0 to 65535 parts out of 65536. The fractional part of the tempo is stored as the upper 16 bits, so merely passing 120 (for example) to this function will set the tempo to 120 beats per minute. If a fractional tempo is desired there is a macro MAKE_TEMPO(bpm, fract) that will arrange the information properly. Note that the fractional tempo is optional and should only be required when a very high resolution is necessary.

RETURN VALUES:

	S_OK			The function succeeded.

	E_INVALIDARG		The tempo was out of range.

IAASectionIAASection->get_Length()

short get_Length()

This function returns the length of the pattern in measures. If there is an error, 0 is returned.

IAASectionIAASection->put_Length()

HRESULT put_Length(short nLength)

This function sets the length in measures for this section.

RETURN VALUES:

	S_OK			The function succeeded.

	E_INVALIDARG		The nLength parameter is out of acceptable range.

IAASectionIAASection->get_LengthInMils()

long get_LengthInMils()

This function returns the length in milliseconds og the section. Changes in the relative tempo via the IAARealTimeIAARealTime interface are not reflected.

IAASectionIAASection->get_Style()

IAAStyle* get_Style()

This function returns a pointer to the style that the section is currently referencing.

IAASectionIAASection->put_Style()

HRESULT put_Style(IAAStyle* pStyle)

This function sets the section's style. The pointer reference is maintained until explicitly changed or until the section is released.

RETURN VALUES:

	S_OK			The function succeeded.

IAASectionIAASection->get_Personality()

IAAPersonality* get_Personality()

This function returns a pointer to the personality that the section is referencing.

IAASectionIAASection->put_Personality()

HRESULT put_Personality(IAAPersonality* pPersonality)

This function sets the section's personality. The pointer reference is maintained until explicitly changed or until the section is released.

RETURN VALUES:

	S_OK			The function succeeded.

IAASectionIAASection->get_Band()

IAABand* get_Band()

This function returns a pointer to the section's band. This pointer is guaranteed to remain the same throughout the lifetime of the section.

IAASectionIAASection->put_Band()

HRESULT put_Band(IAABand* pBand)

This function sets the section's band to be equal to the pBand passed. It will not maintain a reference to the passed pointer, so further operations on the passed band will not be reflected in the section's band.

RETURN VALUES:

	S_OK			The function succeeded.

IAASectionIAASection->get_Key()

short get_Key()

IAASectionIAASection->put_Key()

HRESULT put_Key(short nKey)

RETURN VALUES:

	S_OK			The function succeeded.

IAASectionIAASection->get_Repeats()

short get_Repeats()

IAASectionIAASection->put_Repeats()

HRESULT put_Repeats(short nRepeats)

RETURN VALUES:

	S_OK			The function succeeded.

IAASectionIAASection->get_UserData()

long get_UserData()

IAASectionIAASection->put_UserData()

HRESULT put_UserData(long lUserData)

RETURN VALUES:

	S_OK			The function succeeded.

IAASectionIAASection->Play()

HRESULT Play(long fFlags, long lStartTime)

This function plays the section. Various flags sent via the fFlags parameter influence how the section is played. Each of these flags is mutually exclusive - combining them may get unpredictable results. In all cases if there is no currently playing section, the requested section begins playing immediately regardless of the fFlags parameter.

AAF_NEXT_MEASURE (default)

Usage of this flag stops the currently playing section (if any) at the next measure boundary to begin playing the requested section.

AAF_NEXT_BEAT

Usage of this flag stops the currently playing section (if any) at the next beat boundary to begin playing the requested section.

AAF_NEXT_CLICK

Usage of this flag stops the currently playing section (if any) at the next click boundary to begin playing the requested section.

AAF_IMMEDIATE

Usage of this flag stops the currently playing section (if any) immediately to begin playing the requested section.

AAF_QUEUE

Usage of this flag will queue the section to play when all currently pending sections have ended. It is safe to queue the same section more than once.

AAF_NEXT_SECTION

Usage of this flag will flush all pending sections queued to play so that the requested section will play as soon as the current one is finished. This does not affect any repeats that the current section has yet to play.

AAF_FAIL_IF_PLAYING

Usage of this flag will cause the function to fail (returning E_FAIL) if there is a section currently playing.

RETURN VALUES:

	S_OK			The function succeeded.

	E_POINTER		An invalid IAASection was passed.

	E_INVALIDARG		An invalid flag was passed.

	E_FAIL			Failed because a section is already playing.

IAASectionIAASection->Stop()

HRESULT Stop(long fFlags)

This function stops the section playing. If the section is not currently playing, tis function has no effect. This function does not affect any additional queued copies of this section but does prevent any repeats from occuring.

 AAF_NEXT_MEASURE (default)

Usage of this flag stops the section at the next measure boundary.

AAF_NEXT_BEAT

Usage of this flag stops the section at the next beat boundary.

AAF_NEXT_CLICK

Usage of this flag stops the section at the next click boundary.

AAF_IMMEDIATE

Usage of this flag stops the section immediately.

RETURN VALUES:

	S_OK			The function succeeded.

	AAW_NOT_PLAYING	The section could not be stopped because it was not playing.

IAASectionIAASection->IsPlaying()

BOOL IsPlaying()

This function returns TRUE if the section is currently playing, otherwise it returns FALSE.

IAASectionIAASection->GetData()

HRESULT GetData(AASECTION* pSection)

This function fills in the AASECTIONCS_301200550021 structure passed with data appropriate for this pattern. Both the cbStructSize and the nSectionType fields must be filled in with valid values before this function is called.

RETURN VALUES:

	S_OK			The function succeeded.

	E_INVALIDARG		The structure passed is NULL or is not initialized correctly.

IAASectionIAASection->SetData()

HRESULT SetData(AASECTION* pSection)

This function sets the data of the IAASection to conform with the AASECTIONCS_301200550021 structure passed.

RETURN VALUES:

	S_OK			The function succeeded.

	E_INVALIDARG		The pointer passed is NULL or the structure has an invalid type or structure length.

IAASectionIAASection->Clone()

IAASection* Clone()

This function returns a new interface that is a duplicate of the current interface. If there is an error, NULL will be returned.

IAASectionIAASection->RemoveFromQueue()

HRESULT RemoveFromQueue()

This function removes the section from the queue of pending sections to play. If this section is queued multiple times, every reference to it in the queue is removed.

RETURN VALUES:

	S_OK			The function succeeded.

	AAW_NOTQUEUED		The section is not queued to be played.

IAASongIAASong->put_Name()

HRESULT put_Name(LPSTR pszName)

This function sets the name of the song.

RETURN VALUES:

	S_OK			The function succeeded.

	E_INVALIDARG		The name passed is NULL.

IAASongIAASong->get_Author()

LPSTR get_Author()

This function retrieves the author of the song. If no author has been defined, NULL will be returned.

IAASongIAASong->put_Author()

HRESULT put_Author(LPSTR pszAuthor)

This function sets the author of the song.

RETURN VALUES:

	S_OK			The function succeeded.

IAASongIAASong->get_Length()

short get_Length()

This function returns the length in measures of all of the sections that it owns.

IAASongIAASong->get_LengthInMils()

long get_LengthInMils()

This function retrieves the song's length in milliseconds. If there are no sections in the song, 0 is returned. This function does not take into account any relative tempo changes, only each section's base tempo and length.

IAASongIAASong->GetFirstSection()

IAASection* GetFirstSection()

This function returns the first section in the list. If the song contains no sections, NULL will be returned.

IAASongIAASong->GetNextSection()

IAASection* GetNextSection(IAASection* pSection)

This function returns the next section after pSection in the song's list of sections. If there are no more sections or if pSection is not a valid section in the song, NULL is returned.

IAASongIAASong->InsertSection()

HRESULT InsertSection(IAASection* pPrevSection, IAASection* pSection)

This function inserts pSection into the song's list of sections. If pPrevSection is NULL, then the section is inserted at the beginning of the list.

RETURN VALUES:

	S_OK			The function succeeded.

	E_INVALIDARG		The section is already part of the song or pPrevSection is not part of the song.

IAASongIAASong->AppendSection()

HRESULT AppendSection(IAASection* pSection)

This function appends the passed section to the end of the song's list of sections.

RETURN VALUES:

	S_OK			The function succeeded.

	E_INVALIDARG		The section is already part of the song.

IAASongIAASong->RemoveSection()

HRESULT ReleaseSection(IAASection* pSection)

This function releases the section from the song's list of sections.

RETURN VALUES:

	S_OK			The function succeeded.

	E_INVALIDARG		The section was NULL or does not belong to the song.

IAASongIAASong->Clone()

IAASong* Clone()

This function returns a new interface that is a duplicate of the current interface. If there is an error, NULL will be returned.

IAASongIAASong->Play()

HRESULT Play(long fFlags, long lStartTime)

This function plays the song. A song is composed of a sequence of sections which are played in order until completion. Various flags sent via the fFlags parameter influence how the song is played. Each of these flags is mutually exclusive - combining them may get unpredictable results. In all cases if there is no currently playing section, the requested song begins playing immediately regardless of the fFlags parameter.

AAF_NEXT_MEASURE (default)

Usage of this flag stops the currently playing section (if any) at the next measure boundary to begin playing the requested song.

AAF_NEXT_BEAT

Usage of this flag stops the currently playing section (if any) at the next beat boundary to begin playing the requested song.

AAF_NEXT_CLICK

Usage of this flag stops the currently playing section (if any) at the next click boundary to begin playing the requested song.

AAF_IMMEDIATE

Usage of this flag stops the currently playing section (if any) immediately to begin playing the requested song.

 AAF_NEXT_SECTION

Usage of this flag will flush all pending sections queued to play so that the requested song will play as soon as the current section is finished. This does not affect any repeats that the current section has yet to play.

AAF_FAIL_IF_PLAYING

Usage of this flag will cause the function to fail (returning E_FAIL) if there is a section currently playing.

RETURN VALUES:

	S_OK			The function succeeded.

	E_INVALIDARG		An invalid flag was passed.

	E_FAIL			Failed because a section is already playing.

IAASongIAASong->Stop()

HRESULT Stop(long fFlags)

This function stops the song if it is playing. If the song is not playing, it has no effect.

 AAF_NEXT_MEASURE (default)

Usage of this flag stops the currently playing section at the next measure boundary.

AAF_NEXT_BEAT

Usage of this flag stops the currently playing section at the next beat boundary.

AAF_NEXT_CLICK

Usage of this flag stops the currently playing section at the next click boundary.

AAF_IMMEDIATE

Usage of this flag stops the currently playing section immediately.

AAF_NEXT_SECTION

Usage of this flag will flush all pending sections queued to play. This does not affect any repeats that the current section has yet to play. This flag acts just like IAAEngine->FlushSectionQueue().

RETURN VALUES:

	S_OK			The function succeeded.

	AAW_NOT_PLAYING	The motif could not be stopped because it was not playing.

IAASongIAASong->IsPlaying()

VARIANT_BOOL IsPlaying()

This function returns TRUE if the song is currently playing, otherwise it returns FALSE.

IAASongIAASong->GetData()

HRESULT GetData(AASONG* pSong)

This function fills in the AASONGCS_301200550020 structure passed with data appropriate for this pattern. Both the cbStructSize and the nSongType fields must be filled in with valid values before this function is called.

RETURN VALUES:

	S_OK			The function succeeded.

	E_INVALIDARG		The structure passed is NULL or is not initialized correctly.

IAASongIAASong->SetData()

HRESULT SetData(AASONG* pSong)

This function sets the data of the IAASong to conform with the AASONGCS_301200550020 structure passed.

RETURN VALUES:

	S_OK			The function succeeded.

	E_INVALIDARG		The pointer passed is NULL or the structure has an invalid type or structure length.

IAAMotifIAAMotif->put_Name()

HRESULT put_Name(LPSTR pszName)

This function sets the name of the pattern.

RETURN VALUES:

	S_OK			The function succeeded.

	E_INVALIDARG		The name passed is NULL.

IAAMotifIAAMotif->get_Length()

short get_Length()

This function returns the length of the motif in measures. If there is an error, 0 is returned.

IAAMotifIAAMotif->put_Length()

HRESULT put_Length(short nLength)

This function sets the length in measures for this motif.

RETURN VALUES:

	S_OK			The function succeeded.

	E_INVALIDARG		The nLength parameter is out of acceptable range.

IAAMotifIAAMotif->get_Band()

IAABand* get_Band()

This function returns a pointer to the motif's band. This pointer is guaranteed to remain the same throughout the lifetime of the motif.

IAAMotifIAAMotif->put_Band()

HRESULT put_Band(IAABand* pBand)

This function sets the motif's band to be equal to the pBand passed. It will not maintain a reference to the passed pointer, so further operations on the passed band will not be reflected in the motif's band.

RETURN VALUES:

	S_OK			The function succeeded.

IAAMotifIAAMotif->get_BeatsPerMeasure()

short get_BeatsPerMeasure()

This function returns the number of beats per measure for this motif. This value is defined by the owning style and may not be changed directly.

IAAMotifIAAMotif->get_ClicksPerBeat()

short get_ClicksPerBeat()

This function returns the number of clicks per beat for this pattern. This value is defined by the owning style and may not be changed directly.

IAAMotifIAAMotif->Play()

HRESULT Play(long fFlags)

This function plays the motif. A motif will only play if music is already playing. A motif is very similar to a pattern - it may have variations and it plays transposed to the current key and chord. By default, a motif can not overlap itself. A playing motif must come to an end before the same motif may be played again.

The following flags are mutually exclusive. Combining them may yield unpredictable results.

AAF_NEXT_MEASURE (default)

Usage of this flag plays the motif at the next measure boundary.

AAF_NEXT_BEAT

Usage of this flag plays the motif at the next beat boundary.

AAF_NEXT_CLICK

Usage of this flag plays the motif at the next click boundary.

AAF_IMMEDIATE

Usage of this flag plays the motif immediately.

The following flags may be combined as necessary.

AAF_ALLOW_OVERLAP

Usage of this flag will allow the motif to overlap itself, i.e. multiple copies of the same motif may be playing at the same time.

AAF_PLAY_WITH_STYLE

Usage of this flag ignores the motif's band and plays the motif with the currently playing style's band. Also, instead of dynamically allocating unused MIDI channels, the channels of the style are used as well.

AAF_IGNORE_KEY

Usage of this flag plays the motif in the key it was designed in rather than the current key. The motif will still be transposed to fit the current chord in the motif's key.

AAF_IGNORE_CHORD

Usage of this flag plays the motif in the chord it was designed in rather changing to fit the current chord. The motif will still be transposed to fit the current key.

RETURN VALUES:

	S_OK				The function succeeded.

	AAE_NOMUSICPLAYING		The motif cannot play because there is no music playing.

	AAE_ALREADYPLAYING		The motif is already playing and the AAF_ALLOW_OVERLAP flag has not been set.

IAAMotifIAAMotif->Stop()

HRESULT Stop(long fFlags)

This function stops the playing the motif. It has no effect on any other playing motifs or sections.

 AAF_NEXT_MEASURE (default)

Usage of this flag stops the motif at the next measure boundary.

AAF_NEXT_BEAT

Usage of this flag stops the motif at the next beat boundary.

AAF_NEXT_CLICK

Usage of this flag stops the motif at the next click boundary.

AAF_IMMEDIATE

Usage of this flag stops the motif section immediately.

RETURN VALUES:

	S_OK			The function succeeded.

	AAW_NOT_PLAYING	The motif could not be stopped because it was not playing.

IAAMotifIAAMotif->IsPlaying()

VARIANT_BOOL IsPlaying()

This function returns TRUE if the motif is currently playing, otherwise it returns FALSE.

IAAMotifIAAMotif->Clone()

IAAMotif* Clone()

This function returns a new interface that is a duplicate of the current interface. If there is an error, NULL will be returned.

IAAMotifIAAMotif->GetData()

HRESULT GetData(AAMOTIF* pMotif)

This function fills in the AAMOTIFCS_301200550024 structure passed with data appropriate for this pattern. Both the cbStructSize and the nMotifType fields must be filled in with valid values before this function is called.

RETURN VALUES:

	S_OK			The function succeeded.

	E_INVALIDARG		The structure passed is NULL or is not initialized correctly.

IAAMotifIAAMotif->SetData()

HRESULT SetData(AAMOTIF* pMotif)

This function sets the data of the IAAMotif to conform with the AAMOTIFCS_301200550024 structure passed.

RETURN VALUES:

	S_OK			The function succeeded.

	E_INVALIDARG		The pointer passed is NULL or the structure has an invalid type or structure length.

IAAStyleIAAStyle->put_Name()

HRESULT put_Name(LPSTR pszName)

This function sets the name of the pattern.

RETURN VALUES:

	S_OK			The function succeeded.

	E_INVALIDARG		The name passed is NULL.

IAAStyleIAAStyle->get_BeatsPerMeasure()

short get_BeatsPerMeasure()

This function returns the number of beats per measure for this style.

IAAStyleIAAStyle->put_BeatsPerMeasure()

HRESULT put_BeatsPerMeasure(short nBeatsPerMeasure)

This function sets the number of beats per measure for this style.

RETURN VALUES:

	S_OK			The function succeeded.

	E_INVALIDARG		The argument passed is out of range.

IAAStyleIAAStyle->get_ClicksPerBeat()

short get_ClicksPerBeat()

This function returns the style's number of clicks per beat.

IAAStyleIAAStyle->put_ClicksPerBeat()

HRESULT put_ClicksPerBeat(short nClicksPerBeat)

This function sets the number of clicks per beat for this style. This is equivalent to grid resolution in SuperJAM.

RETURN VALUES:

	S_OK			The function succeeded.

	E_INVALIDARG		The argument passed is out of range.

IAAStyleIAAStyle->get_DefaultTempo()

long get_DefaultTempo()

This function returns the default tempo for this style in beats per minute as well as a fractional part of 0 to 65535 out of 65536. In most cases the factional part of the tempo is not necessary or desired and in this case a simple cast to a short or the usage of the TEMPO_BPM(x) macro will retrieve only the beats per minute portion of the tempo. The fractional portion of the tempo is stored in the upper 16 bits and may be retrieved using the TEMPO_FRACT(x) macro.

IAAStyleIAAStyle->put_DefaultTempo()

HRESULT put_DefaultTempo(long lTempo)

This function sets the default tempo for this style in beats per minute, including a fractional tempo that is a fraction from 0 to 65535 parts out of 65536. The fractional part of the tempo is stored as the upper 16 bits, so merely passing 120 (for example) to this function will set the tempo to 120 beats per minute. If a fractional tempo is desired there is a macro MAKE_TEMPO(bpm, fract) that will arrange the information properly. Note that the fractional tempo is optional and should only be required when a very high resolution is necessary.

RETURN VALUES:

	S_OK			The function succeeded.

	E_INVALIDARG		The tempo passed is out of range.

IAAStyleIAAStyle->GetFirstBand()

IAABand* GetFirstBand()

This function returns the first band in the style's list of bands. If the list is empty, NULL is returned.

IAAStyleIAAStyle->GetNextBand()

IAABand* GetNextBand(IAABand* pBand)

This function returns the next band in the list of bands that belong to the style after the one passed. If the end of the list has been reached, NULL is returned.

IAAStyleIAAStyle->AddBand()

HRESULT AddBand(IAABand* pBand)

This function adds a band to a style. This function will create a clone of the band passed to add to the styles list of bands.

RETURN VALUES:

	S_OK			The function succeeded.

	E_INVALIDARG		The argument is NULL.

	E_OUTOFMEMORY		The band could not be cloned.

IAAStyleIAAStyle->ReleaseBand()

HRESULT ReleaseBand(IAABand* pBand)

This function releases the band from the style, making it no longer associated with the style.

RETURN VALUES:

	S_OK			The function succeeded.

	E_INVALIDARG		The band passed is invalid or does not belong to this style.

IAAStyleIAAStyle->GetDefaultBand()

IAABand* GetDefaultBand()

This function returns the default band for the style. If the style has no associated bands or if no band has been designated to be the default, NULL is returned.

IAAStyleIAAStyle->SetDefaultBand()

HRESULT SetDefaultBand(IAABand* pBand)

This function designates the passed band to be the default for this style.

RETURN VALUES:

	S_OK			The function succeeded.

	E_INVALIDARG		The band passed is invalid or does not belong to this style.

IAAStyleIAAStyle->get_Band()

IAABand* get_Band(LPSTR pszName)

This function retrieves the band associated with this style with the requested name. If an appropriate band could not be found, NULL is returned.

IAAStyleIAAStyle->GetFirstPersonality()

IAAPersonality* GetFirstPersonality()

This function returns the first personality in the style's list of personalities. If the list is empty, NULL is returned.

IAAStyleIAAStyle->GetNextPersonality()

IAAPersonality* GetNextPersonality(IAAPersonality* pPersonality)

This function returns the next personality in the list of personality that belong to the style after the one passed. If the end of the list has been reached, NULL is returned.

IAAStyleIAAStyle->AddPersonality()

HRESULT AddPersonality(IAAPersonality* pPersonality)

This function adds a personality to a style.

RETURN VALUES:

	S_OK			The function succeeded.

	E_INVALIDARG		The argument is NULL.

IAAStyleIAAStyle->ReleasePersonality()

HRESULT ReleasePersonality(IAAPersonality* pPersonality)

This function releases the personality from the style, making it no longer associated with the style.

RETURN VALUES:

	S_OK			The function succeeded.

	E_INVALIDARG		The personality passed is invalid or does not belong to this style.

IAAStyleIAAStyle->GetDefaultPersonality()

IAAPersonality* GetDefaultPersonality()

This function returns the default personality for the style. If the style has no associated personalities or if no personality has been designated to be the default, NULL is returned.

IAAStyleIAAStyle->SetDefaultPersonality()

HRESULT SetDefaultPersonality(IAAPersonality* pPersonality)

This function designates the passed personality to be the default for this style.

RETURN VALUES:

	S_OK			The function succeeded.

	E_INVALIDARG		The personality passed is invalid or does not belong to this style.

IAAStyleIAAStyle->get_Personality()

IAAPersonality* get_Personality(LPSTR pszName)

This function retrieves the personality associated with this style with the requested name. If an appropriate personality could not be found, NULL is returned.

IAAStyleIAAStyle->GetFirstMotif()

IAAMotif* GetFirstMotif()

This function returns the first motif in the style's list of motifs. If the list is empty, NULL is returned.

IAAStyleIAAStyle->GetNextMotif()

IAAMotif* GetNextMotif(IAAMotif* pMotif)

This function returns the next motif in the list of motifs that belong to the style after the one passed. If the end of the list has been reached, NULL is returned.

IAAStyleIAAStyle->AddMotif()

HRESULT AddMotif(IAAMotif* pMotif)

This function adds a motif to a style. This function will fail if the motif passed already belongs to a style - it must be released from the original style before being added to a new style.

RETURN VALUES:

	S_OK			The function succeeded.

	E_INVALIDARG		The argument is NULL or already belongs to a style.

IAAStyleIAAStyle->ReleaseMotif()

HRESULT ReleaseMotif(IAAMotif* pMotif)

This function releases the motif from the style, making it no longer associated with the style.

RETURN VALUES:

	S_OK			The function succeeded.

	E_INVALIDARG		The motif passed is invalid or does not belong to this style.

IAAStyleIAAStyle->get_Motif()

IAAMotif* get_Motif(LPSTR pszName)

This function retrieves the motif associated with this style with the requested name. If an appropriate motif could not be found, NULL is returned.

IAAStyleIAAStyle->GetFirstPattern()

IAAPattern* GetFirstPattern()

This function returns the first pattern in the style's list of patterns. If the list is empty, NULL is returned.

IAAStyleIAAStyle->GetNextPattern()

IAAPattern* GetNextPattern(IAAPattern* pPattern)

This function returns the next pattern in the list of patterns that belong to the style after the one passed. If the end of the list has been reached, NULL is returned.

IAAStyleIAAStyle->AddPattern()

HRESULT AddPattern(IAAPattern* pPattern)

This function adds a pattern to a style. This function will fail if the pattern passed already belongs to a style - it must be released from the original style before being added to a new style.

RETURN VALUES:

	S_OK			The function succeeded.

	E_INVALIDARG		The argument is NULL or already belongs to a style.

IAAStyleIAAStyle->ReleasePattern()

HRESULT ReleasePattern(IAAPattern* pPattern)

This function releases the pattern from the style, making it no longer associated with the style.

RETURN VALUES:

	S_OK			The function succeeded.

	E_INVALIDARG		The pattern passed is invalid or does not belong to this style.

IAAStyleIAAStyle->get_Pattern()

IAAPattern* get_Pattern(LPSTR pszName)

This function retrieves the pattern associated with this style with the requested name. If an appropriate pattern could not be found, NULL is returned.

IAAStyleIAAStyle->Clone()

IAAStyle* Clone()

This function returns a new interface that is a duplicate of the current interface. If there is an error, NULL will be returned.

IAAStyleIAAStyle->GetData()

HRESULT GetData(AASTYLE* pStyle)

This function fills in the AASTYLECS_301200550019 structure passed with data appropriate for this pattern. Both the cbStructSize and the nStyleType fields must be filled in with valid values before this function is called.

RETURN VALUES:

	S_OK			The function succeeded.

	E_INVALIDARG		The structure passed is NULL or is not initialized correctly.

IAAStyleIAAStyle->SetData()

HRESULT SetData(AASTYLE* pStyle)

This function sets the data of the IAAStyle to conform with the AASTYLECS_301200550019 structure passed.

RETURN VALUES:

	S_OK			The function succeeded.

	E_INVALIDARG		The pointer passed is NULL or the structure has an invalid type or structure length.

IAAPersonalityIAAPersonality->put_Name()

HRESULT put_Name(LPSTR pszName)

This function sets the name of the pattern.

RETURN VALUES:

	S_OK			The function succeeded.

	E_INVALIDARG		The name passed is NULL.

IAAPersonalityIAAPersonality->Clone()

IAAPersonality* Clone()

This function returns a new interface that is a duplicate of the current interface. If there is an error, NULL will be returned.

IAAPersonalityIAAPersonality->GetData()

HRESULT GetData(AAPERSONALITY* pPersonality)

This function fills in the AAPERSONALITYCS_301200550022 structure passed with data appropriate for this pattern. Both the cbStructSize and the nPersonalityType fields must be filled in with valid values before this function is called.

RETURN VALUES:

	S_OK			The function succeeded.

	E_INVALIDARG		The structure passed is NULL or is not initialized correctly.

IAAPersonalityIAAPersonality->SetData()

HRESULT SetData(AAPERSONALITY* pPersonality)

This function sets the data of the IAAPersonality to conform with the AAPERSONALITYCS_301200550022 structure passed.

RETURN VALUES:

	S_OK			The function succeeded.

	E_INVALIDARG		The pointer passed is NULL or the structure has an invalid type or structure length.

IAABandIAABand->put_Name()

HRESULT put_Name(LPSTR pszName)

This function sets the name of the pattern.

RETURN VALUES:

	S_OK			The function succeeded.

	E_INVALIDARG		The name passed is NULL.

IAABandIAABand->get_Volume()

short get_Volume(short nInstrument)

This function retrieves the volume for the specified instrument. Valid values for nInstrument are 0 - 15, representing each of the 16 instruments.

RETURN VALUES:

	S_OK			The function succeeded.

	E_INVALIDARG		The instrument is out of range

IAABandIAABand->put_Volume()

HRESULT put_Volume(short nInstrument, short nVolume)

This function sets the volume for the specified instrument. Valid values for nInstrument are 0 - 15, representing each of the 16 instruments. Valid values for nVolume are 0 - 127.

RETURN VALUES:

	S_OK			The function succeeded.

	E_INVALIDARG		The instrument or patch number is out of range

IAABandIAABand->get_Pan()

short get_Pan(short nInstrument)

This function retrieves the pan value for the specified instrument. Valid values for nInstrument are 0 - 15, representing each of the 16 instruments.

RETURN VALUES:

	S_OK			The function succeeded.

	E_INVALIDARG		The instrument is out of range

IAABandIAABand->put_Pan()

HRESULT put_Pan(short nInstrument, short nPan)

This function sets the pan number for the specified instrument. Valid values for nInstrument are 0 - 15, representing each of the 16 instruments. Valid values for nPan are -64 (hard left) - 63 (hard right).

RETURN VALUES:

	S_OK			The function succeeded.

	E_INVALIDARG		The instrument or patch number is out of range

IAABandIAABand->get_Patch()

short get_Patch(short nInstrument)

This function retrieves the patch number for the specified instrument. Valid values for nInstrument are 0 - 15, representing each of the 16 instruments.

RETURN VALUES:

	S_OK			The function succeeded.

	E_INVALIDARG		The instrument is out of range

IAABandIAABand->put_Patch()

HRESULT put_Patch(short nInstrument, short nPatch)

This function sets the patch number for the specified instrument. Valid values for nInstrument are 0 - 15, representing each of the 16 instruments. Valid values for nPatch are 0 - 127.

RETURN VALUES:

	S_OK			The function succeeded.

	E_INVALIDARG		The instrument or patch number is out of range

IAABandIAABand->Clone()

IAABand* Clone()

This function returns a new interface that is a duplicate of the current interface. If there is an error, NULL will be returned.

IAABandIAABand->GetData()

HRESULT GetData(AABAND* pBand)

This function fills in the AABANDCS_301200550028 structure passed with data appropriate for this pattern. Both the cbStructSize and the nBandType fields must be filled in with valid values before this function is called.

RETURN VALUES:

	S_OK			The function succeeded.

	E_INVALIDARG		The structure passed is NULL or is not initialized correctly.

IAABandIAABand->SetData()

HRESULT SetData(AABAND* pBand)

This function sets the data of the IAABand to conform with the AABANDCS_301200550028 structure passed.

RETURN VALUES:

	S_OK			The function succeeded.

	E_INVALIDARG		The pointer passed is NULL or the structure has an invalid type or structure length.

IAATemplateIAATemplate->put_Name()

HRESULT put_Name(LPSTR pszName)

This function sets the name of the template.

RETURN VALUES:

	S_OK			The function succeeded.

	E_INVALIDARG		The name passed is NULL.

IAATemplateIAATemplate->get_Length()

short get_Length()

This function returns the length of the template in measures. If there is an error, 0 is returned.

IAATemplateIAATemplate->put_Length()

HRESULT put_Length(short nLength)

This function sets the length in measures for this template.

RETURN VALUES:

	S_OK			The function succeeded.

	E_INVALIDARG		The nLength parameter is out of acceptable range.

IAATemplateIAATemplate->Clone()

IAATemplate* Clone()

This function returns a new interface that is a duplicate of the current interface. If there is an error, NULL will be returned.

IAATemplateIAATemplate->GetData()

HRESULT GetData(AATEMPLATE* pTemplate)

This function fills in the AATEMPLATE structure passed with data appropriate for this pattern. Both the cbStructSize and the nTemplateType fields must be filled in with valid values before this function is called.

RETURN VALUES:

	S_OK			The function succeeded.

	E_INVALIDARG		The structure passed is NULL or is not initialized correctly.

IAATemplateIAATemplate->SetData()

HRESULT SetData(AATEMPLATE* pTemplate)

This function sets the data of the IAATemplate to conform with the AATEMPLATECS_301200550018 structure passed.

RETURN VALUES:

	S_OK			The function succeeded.

	E_INVALIDARG		The pointer passed is NULL or the structure has an invalid type or structure length.

IAAPatternIAAPattern->put_Name()

HRESULT put_Name(LPSTR pszName)

This function sets the name of the pattern.

RETURN VALUES:

	S_OK			The function succeeded.

	E_INVALIDARG		The name passed is NULL.

IAAPatternIAAPattern->get_Length()

short get_Length()

This function returns the length of the pattern in measures. If there is an error, 0 is returned.

IAAPatternIAAPattern->put_Length()

HRESULT put_Length(short nLength)

This function sets the length in measures for this pattern.

RETURN VALUES:

	S_OK			The function succeeded.

	E_INVALIDARG		The nLength parameter is out of acceptable range.

IAAPatternIAAPattern->get_BeatsPerMeasure()

short get_BeatsPerMeasure()

This function returns the number of beats per measure for this pattern. This value is defined by the owning style and may not be changed directly.

IAAPatternIAAPattern->get_ClicksPerBeat()

short get_ClicksPerBeat()

This function returns the number of clicks per beat for this pattern. This value is defined by the owning style and may not be changed directly.

IAAPatternIAAPattern->Clone()

IAAPattern* Clone()

This function returns a new interface that is a duplicate of the current interface. If there is an error, NULL will be returned.

IAAPatternIAAPattern->GetData()

HRESULT GetData(AAPATTERN* pPattern)

This function fills in the AAPATTERNCS_301200550023 structure passed with data appropriate for this pattern. Both the cbStructSize and the nPatternType fields must be filled in with valid values before this function is called.

RETURN VALUES:

	S_OK			The function succeeded.

	E_INVALIDARG		The structure passed is NULL or is not initialized correctly.

IAAPatternIAAPattern->SetData()

HRESULT SetData(AAPATTERN* pPattern)

This function sets the data of the IAAPattern to conform with the AAPATTERNCS_301200550023 structure passed.

RETURN VALUES:

	S_OK			The function succeeded.

	E_INVALIDARG		The pointer passed is NULL or the structure has an invalid type or structure length.

IAARealTimeIAARealTime->FlushEventsAfterTime()

HRESULT FlushEventsAfterTime(long lTime)

This function will flush all events in the queue that are timestamped later than lTime unless the event has the AAF_DONTFLUSH flag set.

RETURN VALUES:

	S_OK			The function succeeded.

Data Structures

AABAND

typedef struct AABAND

{

	struct AABAND* pNext;

	short cbStructSize;

	short nBandType;

*** TO BE DETERMINED

} AABAND;

AACHORD

typedef struct AACHORD

{

	struct AACHORD* pNext;

	short cbStructSize;

	short nChordType;

	long lTime;

*** TO BE DETERMINED

} AACHORD;

AACLICK

typedef struct AACLICK

{

	struct AACLICK* pNext;

	short cbStructSize;

	short nClickType;

*** TO BE DETERMINED

} AACLICK;

AACOMMAND

typedef struct AACOMMAND

{

	struct AACOMMAND* pNext;

	short cbStructSize;

	short nCommandType;

	long lTime;

*** TO BE DETERMINED

} AACOMMAND;

AAEVENT

typedef struct AAEVENT

{

	struct AAEVENT* pNext;

	short cbStructSize;

	short nEventType;

	long lTime;

*** TO BE DETERMINED

} AAEVENT;

AAMOTIF

typedef struct AAMOTIF

{

	struct AAMOTIF* pNext;

	short cbSize;

	short nMotifType;

*** TO BE DETERMINED

} AAMOTIF;

AAPATTERN

typedef struct AAPATTERN

{

	struct AAPATTERN* pNext;

	short cbStructSize;

	short nPatternType;

*** TO BE DETERMINED

} AAPATTERN;

AAPERSONALITY

typedef struct AAPERSONALITY

{

	struct AAPERSONALITY* pNext;

	short cbStructSize;

	short nPersonalityType;

*** TO BE DETERMINED

} AAPERSONALITY;

AASECTION

typedef struct AASECTION

{

	struct AASECTION* pNext;

	short cbStructSize;

	short nSectionType;

*** TO BE DETERMINED

} AASECTION;

AASONG

typedef struct AASONG

{

	struct AASONG* pNext;

	short cbStructSize;

	short nSongType;

*** TO BE DETERMINED

} AASONG;

AASTYLE

typedef struct AASTYLE

{

	struct AASTYLE* pNext;

	short cbStructSize;

	short nStyleType;

*** TO BE DETERMINED

} AASTYLE;

AATEMPLATE

typedef struct AATEMPLATE

{

	struct AATEMPLATE* pNext;

	short cbStructSize;

	short nTemplateType;

*** TO BE DETERMINED

} AATEMPLATE;

Recommendation Of Use

For applications that need a strong recurring theme, pre-composed sections are usually best. This is guaranteed to maintain the same pattern of chords and musical embellishments every time, while the style will still allow for some flexibility of the actual notes played.

For applications where a recurring theme is desired but also more flexibility, the best option is to keep around a template and compose new sections using the template. This allows for variations in the chords of a piece of music, but still maintains a definite shape to the overall piece of music.

For applications that desire even more variety in the music played, the application can just compose sections from scratch using IAAEngine->ComposeSectionFromShape().

For the best musical results, transitions should be played whenever a section is aborted early. Also, whenever possible, try to stop sections and play motifs on a beat or measure boundary. Playing them immediately can be musically awkward.

Sample Applications

The AudioActive Experimenter, previously described in the AudioActive 1.0 documentation, will be updated to use the new COM API. Otherwise, there are no tutorial changes from the AudioActive 1.0 tutorial.

Migration

If migrating from the AudioActive 1.0 DLL it should take into account that all convienience dialogs have been removed. It is now the responsibility of the application to perform such tasks as soundcard setup (if necessary).

Another major change is the file I/O. All file I/O is performed using IPersistStream interfaces and must be passed a pre-prepared Istream interface from which to read from. Files that reference other files (for example Styles reference Personalities, Sections reference Styles and Personalities) use the IAALoader interface which is registered with the IAAEngine. This interface may be overridden by an application that holds these files in special streams rather than the default behavior of loading from a file.

Several capabilities are planned for future releases and need to integrate as seamlessly as possible. Some of these include support for tempo change curves, enhanced transitions, and melody generation. Most of these changes will not affect the interfaces, but will definitely affect the data structures underlying them. When retrieving data of any type via the GetData() interface function make sure that the nType field is a type that is recognized by the application.

Glossary

Digital Music Stream (DMS): This is the path of how simple API calls turn into realistic-sounding interactive music. The path goes from a calling application, to AudioActive, to RenderActive, to AudioMan, to the output jack of a soundcard.

FM (Frequency Modulation): A very simple mathematical method of producing acoustic instruments. It never sounds convincing, and people associate the sound with that of the original Nintendos. FM is a technology patented by Yamaha very prevalent in many soundcards, including the original Sound Blasters. There are different complexity levels of FM, and soundcards contain the simplest implementation.

Interactive Music Architecture (IMA): This is the Blue Ribbon technology group’s interactive music delivery system. It covers all aspects including development tools for content creators (musicians), API’s for developers, and convincing quality sound, much like audio CD’s can.

MIDI (Musical Instrument Digital Interface): A networking protocol developed to allow synthesizers and computers to talk together in a musical way. Many people think MIDI sounds bad. Actually, MIDI doesn’t make any sound at all. This logic comes from the fact that people think MIDI and FM sound are the same, due to the fact that FM soundcards are in wide distribution, and that FM uses MIDI as a communication path to the computer. When MIDI is utilized by professionals with quality instruments, they have the ability to create professional CD quality soundtracks.

RenderActive: This is a soon to be developed technology that allows AudioActive music to produce sound that rivals audio CD soundtracks quality, even on FM soundcards (which are currently dominant in the market). Other terms used to describe this would be software synthesis, and software wavetable. RenderActive will work exclusively with AudioActive to round out the Interactive Music Architecture.

Sequencer: When referring to MIDI, a sequencer is a common tool to record musical passages and play them back. It is similar to a tape recorder, except a sequencer can let you change individual notes or sounds after the recording.

Wavetable: A sound playback technology that allows MIDI music to sound convincing. Unlike FM which uses simple mathematical algorithms to produce sound, wavetable uses snippets (samples) of real instruments, and plays those back at different pitches. This technology usually requires a wavetable hardware card, but that will change with the release of RenderActive.

Summary / In Closing

As stated in the beginning, the main goal of this API is to allow Microsoft developers to integrate AudioActive with their projects using a COM implementation.

With AudioActive now as a COM implementation, other programmers will be able to incorporate interactive music into their applications in no time.

Finally, since it is a COM implementation, it also allows for more flexible ways to add new features in the future with a minimum of effort and a maximum of compatibility, this includes an OCX interface, and future features like continuous controllers, and polychords.

Special Thanks

Special thanks to Laurie Clayton and the rest of the AudioMan team for letting us use their AudioMan 1.5 feature spec as a model.

By davmil and bthomas Version 2.12 3/14/96

Microsoft Confidential�� SAVEDATE * MERGEFORMAT �03/12/96 5:42 PM��Page � PAGE * MERGEFORMAT �55� of � NUMPAGES * MERGEFORMAT �59�

�

�

A

A

A

B

A

B

B

A

B

= data object A

= list of data objects of type A

= data object A owns an exclusive copy of data object B

= data object A references a single element in the list of B objects

= data object A references multiple elements in the list of B objects

A

= A calls/uses B

B

A

= data flows from A to B

B

A

= object A implements interface IFoo

IFoo

AAEngine

AARealTime

IAAEventSink

IAARealTime

IAAMIDISink

AAMIDIIn

AAClock

NotifySink*

AAMIDIOut

IAAMIDISink

IAANotifySink

IAAClock

AALoader

IAALoader

IAAEngine

IAAMIDIIn

IAAMIDIOut

AAEngine

Style

Personality

Section

Song

Template

Band

Motif

Section

Band

Band

Band

Band

Motif

Band

Pattern

