IceCAP Frequently Asked Questions

Last updated: � SAVEDATE \@ "d MMMM, yyyy" * MERGEFORMAT �25 June, 1996�

When REPORT.EXE is run, it displays: ReadRecords unknown record type 0; skipping remaining records.

This generally means that ICAP.DLL was unable to close the .MEA file properly at the end of the profile run. The resulting report should still be correct -- all that has happened is that REPORT has skipped the part of the .MEA file that did not contain real records.

This can happen if you terminate your application externally, or if your application calls TerminateProcess or TerminateThread to exit. ICAP.DLL closes (and truncates) the .MEA file when it receives a DLL_PROCESS_DETACH notification. A telltale sign that this has occurred is if your .MEA file is exactly 33,554,432 bytes long (32M), since ICAP.DLL creates a memory mapped file of that size and truncates it at the end of the profile run.

A separate utility TruncMEA can be used to truncate the unused records and fix this problem. Please see TruncMEA.DOC on the IceCAP share for more information on this utility.

Can IceCAP read PDBs created with VC 4.1?

Yes. Please note that IceCAP 3.1 no longer requires MSPDB4x.DLL. Instead it requires IMAGEHLP.DLL v 1242 or higher. IMAGEHLP.DLL understands both version 4.1 and 4.0 PDB files.

When REPORT.EXE is run, it displays: WARNING: Context switch during time delta calculation substituting 0 for delta. What does this warning mean?

What is happening here is that a context switch occurred while the portion of the code (in VCYCLE.VxD), where thread times are calculated, was being executed. It is easy to identify the functions where such context switch occurred, the times reported for such functions are reported as 0. The amount of code where such conflict occurs is minimal and number of functions that are impacted should be low.

When I profile my application on NT 4.0, the number of page faults is sometimes higher than when the application is profiled on NT 3.51. Does IceCAP report more page fault information for NT 4.0 than NT 3.51?

With NT 4.0, kernel faults in the context of the process are reported as working set changes along with the user-mode changes. These pages were probably being faulted on NT 3.51 as well, but not reported. It is simply a case of NT 4.0 providing more information than NT 3.51.

Reporting of system calls can be suppressed by using the -NOSYSTEM option.

When I run REPORT.EXE with -SORTBY:EXCLCODE switch, the REPORT.EXE GPFs.

There is a known bug in IceCAP 3.0 and 3.1 where using memory related switches (-INCLCODE, EXCLCODE, INCLDATA, etc.,) on a MEA file which does not have memory profiling data, can cause REPORT.EXE to crash.

What is the difference between Total time and Attributed time?

The sum of time that is attributed to functions listed in the body of the report is known as Total attributed time. The time that is used to calculate % calculations is called Total time. Total time and Total attributed time are rarely equal. It is best to explain this difference by using the following scenario.

Assuming profile=0 in ICAP.INI, and application consists of the following code:

main()

{

 preA();

 preB();

 StartCAP();

 .. other code

 A();

 B();

 ... other code

 C();

 .. other code

 StopCAP();

 postA();

 postB();

}

The body of the report will list functions A, B, and C (but not main). The time spent in A, B, and C is the total attributed time. The time spent from StartCAP() to StopCAP() is the total time. Just like total time is not same as total attributed time, total pages are not same as total attributed pages.

The total time and total code and data pages used to calculate the %s in the body of the report, and include all time and all page faults between the StartCAP and StopCAP calls. Everything before or after these calls is neither counted towards total time or total pages nor reported.

The trace output will include all time and all page faults between the StartCAP and StopCAP calls. The body of the report includes only the attributed time and page faults. The trace will not include anything before the StartCAP call or after the StopCAP call.

The un-attributed time and page faults at the beginning are listed in the trace output under the first trace point, i.e. call to first profiled function (A() in this example). The un-attributed time and page faults in the middle of profile run (other code between B() and C(), for example) are reported at the first next trace point (entry to C() in this case). The un-attributed time and page faults at the end of the profile (other code after return from C() and before StopCAP in the example) are listed at the trace point for entry to StopCAP().

If profiling is always ON (profile=1) and IceCAP APIs were not used then all page faults before the first profile event (un-att
