� TITLE * MERGEFORMAT �IceCAP�

�� SUBJECT * MERGEFORMAT �Internal Call Attributed Profiler�� � COMMENTS * MERGEFORMAT �For Windows 95 and Windows NT�

Version 3.1

User’s Guide

Last updated: � SAVEDATE \@ "MMMM d, yyyy" * MERGEFORMAT �May 12, 1996�

Table of Contents

� TOC \o "1-3" �Table of Contents	� GOTOBUTTON _Toc356562721 � PAGEREF _Toc356562721 �2��

Overview	� GOTOBUTTON _Toc356562722 � PAGEREF _Toc356562722 �3��

What is IceCAP?	� GOTOBUTTON _Toc356562723 � PAGEREF _Toc356562723 �3��

What is new in IceCAP 3.1?	� GOTOBUTTON _Toc356562724 � PAGEREF _Toc356562724 �3��

Restrictions	� GOTOBUTTON _Toc356562725 � PAGEREF _Toc356562725 �4��

Getting started	� GOTOBUTTON _Toc356562726 � PAGEREF _Toc356562726 �4��

Profiling an Application	� GOTOBUTTON _Toc356562727 � PAGEREF _Toc356562727 �5��

Preparing for Profiling	� GOTOBUTTON _Toc356562728 � PAGEREF _Toc356562728 �5��

Profiling Runs	� GOTOBUTTON _Toc356562729 � PAGEREF _Toc356562729 �6��

Diagnosing failures	� GOTOBUTTON _Toc356562730 � PAGEREF _Toc356562730 �7��

ICAP.INI option summary	� GOTOBUTTON _Toc356562731 � PAGEREF _Toc356562731 �7��

Report Generator	� GOTOBUTTON _Toc356562732 � PAGEREF _Toc356562732 �9��

Reading reports	� GOTOBUTTON _Toc356562733 � PAGEREF _Toc356562733 �11��

Report Headers.	� GOTOBUTTON _Toc356562734 � PAGEREF _Toc356562734 �12��

Summaries	� GOTOBUTTON _Toc356562735 � PAGEREF _Toc356562735 �12��

Caller/Callee function list	� GOTOBUTTON _Toc356562736 � PAGEREF _Toc356562736 �12��

Trace output	� GOTOBUTTON _Toc356562737 � PAGEREF _Toc356562737 �13��

Miscellaneous report topics	� GOTOBUTTON _Toc356562738 � PAGEREF _Toc356562738 �13��

Delimited reports	� GOTOBUTTON _Toc356562739 � PAGEREF _Toc356562739 �15��

Controlling data collection	� GOTOBUTTON _Toc356562740 � PAGEREF _Toc356562740 �16��

Thread specific APIs	� GOTOBUTTON _Toc356562741 � PAGEREF _Toc356562741 �16��

Process specific APIs	� GOTOBUTTON _Toc356562742 � PAGEREF _Toc356562742 �16��

Example	� GOTOBUTTON _Toc356562743 � PAGEREF _Toc356562743 �16��

ICAPCTRL Applet	� GOTOBUTTON _Toc356562744 � PAGEREF _Toc356562744 �17��

API counters	� GOTOBUTTON _Toc356562745 � PAGEREF _Toc356562745 �17��

Special Problems	� GOTOBUTTON _Toc356562746 � PAGEREF _Toc356562746 �18��

Assembly language	� GOTOBUTTON _Toc356562747 � PAGEREF _Toc356562747 �18��

Turning profiling off	� GOTOBUTTON _Toc356562748 � PAGEREF _Toc356562748 �18��

NT 4.0 Fibers	� GOTOBUTTON _Toc356562749 � PAGEREF _Toc356562749 �19��

Memory Profiling Notes	� GOTOBUTTON _Toc356562750 � PAGEREF _Toc356562750 �19��

Profiling for Memory “Out-of-process”	� GOTOBUTTON _Toc356562751 � PAGEREF _Toc356562751 �20��

Summary of Restrictions	� GOTOBUTTON _Toc356562752 � PAGEREF _Toc356562752 �21��

IceCAP Support, Aliases, and Web sites	� GOTOBUTTON _Toc356562753 � PAGEREF _Toc356562753 �21��

FAQ.DOC	� GOTOBUTTON _Toc356562754 � PAGEREF _Toc356562754 �21��

icapsup	� GOTOBUTTON _Toc356562755 � PAGEREF _Toc356562755 �21��

icapbug	� GOTOBUTTON _Toc356562756 � PAGEREF _Toc356562756 �22��

icapuser	� GOTOBUTTON _Toc356562757 � PAGEREF _Toc356562757 �22��

IceCAP web site	� GOTOBUTTON _Toc356562758 � PAGEREF _Toc356562758 �22��

Toolbox	� GOTOBUTTON _Toc356562759 � PAGEREF _Toc356562759 �22��

About Internal Tools	� GOTOBUTTON _Toc356562760 � PAGEREF _Toc356562760 �22��

��Overview

What is IceCAP?

The IceCAP profiler is designed to provide detailed call-attributed profiling with minimal overhead. One uses IceCAP to answer the question, "What time and memory resources did an application use as it went from point A to B?"

IceCAP provides the following key features:

Profiling for execution times and memory.

Support for Win32 applications running on Windows 95 and Windows NT.

Per-thread times on Windows 95 Pentium machines.

Support for applications that use exceptions, multi-threading, setjmp, and recursive calls.

Minimal steps for preparing an application for profiling.

Low overhead while the application is running.

Support for COFF and CV symbols.

Support for BBT’d (formerly Lego) binaries.

Same binaries for both Windows 95 and x86 Windows NT.

Documented time units and configuration.

Summary, call-attributed list, trace, and delimited report formats.

For every profiled function, IceCAP can report the following information:

Number of calls.

Minimum, maximum, average, inclusive, and exclusive times.

All or new(page faults) memory pages touched for CODE, DATA, and STACK.

�IceCAP and IceCAP technology is currently Microsoft Confidential and is for internal use at Microsoft only. Please do not discuss it outside of Microsoft.

What is new in IceCAP 3.1?

In-process memory profiling. No need to use ICECAP.EXE -- which slows profiling by running your application as a debugee process.

Improved TRACE output. Trace output now includes delta and attributed information for timing as well as memory.

Symbol support for BBT’d binaries. No more MODULE+OFFSET messages for MFC40.DLL functions, correct symbol resolution for BBT (previously known as LEGO) builds.

IceCAP API enhancements. Ability to start, stop, suspend, or resume profiling at thread or process (global) level.

ICAP.DLL performance improvements. Faster data gathering for applications that use multiple threads or setjmp.

More profiling and report options. Exclude import patching by function or module, for example.

Support for NT 4.0 Fibers, bug fixes, and more!

Restrictions

IceCAP will only run on 80486 and Pentium machines.

IceCAP may not work properly on some multi-processor machines. We are unable to get reliable timer information on 486 multi-processor machines. If you need to profile an application on a multi-processor system, we suggest that you use a Pentium machine with UseCycleCounter set to 1 (which is the default for Pentium machines). This will make IceCAP use Pentium on-chip cycle counter instead of the NT timer APIs.

When profiling multiple threads with elapsed time (as opposed to thread time), the elapsed time for a thread does not exclude profiling overhead of other threads. As a result, the elapsed time for a thread can be off significantly. However, thread time reports (only available on Windows 95 Pentium machines) will be correct, since both profiling overhead and time spent in other threads is ignored. Elapsed time reports for multiple threads can still be useful for analyzing individual sections of consecutive calls by a single thread (see -THREAD, -START, and -STOP report options, below).

Because page reference measurement APIs are process specific, IceCAP can not record memory reference data on per-thread basis. When profiling multiple threads for memory, IceCAP will record page reference data for the first thread that profiling was turned on. For all subsequent threads that profiling is turned on, only timing (execution) data is recorded and page reference data is ignored. Please see “Memory Profiling Notes” for more discussion on this topic.

The maximum size of the data file generated by IceCAP is fixed and set at initialization time. (See MaxMeaSize in ICAP.INI settings, below).

Getting started

Please read README.DOC file, available on IceCAP share, for instructions on installing IceCAP.

Profiling an Application

Preparing for Profiling

VC NOTE: You may wish to create a new Target (e.g. Win32 Profile) so that you can choose between profile and non-profile builds.

1.	Include “icapexp.h” in any file that will call the profiling API.

2.	Compile all source files with these options in addition to whatever is required by the project:

-Gh		Generates “_penter” calls in all function prologs; _penter collects performance data during a test run.

		VC NOTE: You can specify this option on the Project Settings/”C/C++” tab by adding /Gh to the “Project Options” field. For VC 4.x this tab is accessible via the Build/Settings menu option.

-Zi		Generates debugging information.

		VC NOTE: You can specify this option on the Project Settings/”C/C++” tab by selecting Category=General and then under “Debug Info” selecting “Program Database”.�For VC 4.x this tab is accessible via the Build/Settings menu option.

-MD	Generates a demand for MSVCRT.LIB and, thence, for MSVCRTxx.DLL. That is, runtime library routines will be resolved to the runtime DLL. This option is required if the application calls “setjmp”. It’s useful in other cases so you can profile runtime library calls.

		VC NOTE: You can specify this option on the Project Settings/”C/C++” tab by selecting Category=Code Generation and then under “Use Run-Time Library” selecting “Multithreaded DLL”�For VC 4.x this tab is accessible via the Build/Settings menu option.

		VC NOTE: When using MFC, specify “Use MFC in a shared DLL” (either when using the MFC app wizard or by accessing the Project Settings/General tab and under “Microsoft Foundation Classes” selecting “Use MFC in a shared DLL”)�For VC 4.x this tab is accessible via the Build/Settings menu option.

		NOTE! If you use “setjmp”, make sure to link with the runtime DLL. If you are explicitly linking with a runtime library, choose msvcrt.lib and not libc.lib or libcmt.lib.

3.	Link with ICAP.LIB and the -DEBUG:MAPPED option. If you are profiling on Windows 95, do not link with the optidata linker option (this is a new option that puts the import table in the same section as the code).

	VC NOTE: You can specify ICAP.LIB on the Project Settings/Link tab by adding icap.lib to the “Object/Library Modules” field. This tab is accessible via the Build/Settings menu option of VC 4.x.

	VC NOTE: You can specify -DEBUG:MAPPED on the Project Settings/Link tab by adding -DEBUG:MAPPED to the “Project Options” field. This tab is accessible via the Build/Settings menu option of VC 4.x.

IceCAP 3.1 does not require debug information to be in a .PDB file. If you want the debug information included in the binary instead, specify -PDB:NONE in the link options.

VC NOTE: VC automatically inserts a pdb setting in the link options. You can edit it to “pdb:none” on the Project Settings/Link in the “Project Options” field. This tab is accessible via the Build/Settings menu option of VC 4.x.

4.	If you don’t want profiling to start immediately, create or modify ICAP.INI in the Windows directory to have a section for your application (see ICAP.INI option summary, below).

5.	Ensure that the IceCAP files have been installed as described in the Setup Instructions (README.DOC), and the system has been rebooted.

Profiling Runs

Once an application has been built for profiling, it is ready for profiling. IceCAP allows you to profile an application for execution and memory.

To profile an application for execution, i.e., no memory profiling:

Use the Pages=Never (default) setting in the ICAP.INI file. See ICAP.INI option summary below for more information on this setting.

To record execution and memory profiling data:

Set Pages=New or the Pages=All setting in the ICAP.INI file. See ICAP.INI option summary below for more information on this setting.�NOTE: Execution data gathered with memory profiling is not a reliable indicator of application’s performance. See Memory Profiling Notes below for more information.

�Execute your application with ICAP.DLL in the path.

As the application executes, the profiling data is recorded into a measurement file. By default, this file is in the same directory as the application and has an MEA extension. You can override the default name in the INI file (see ICAP.INI option summary below).

The default maximum size of the MEA file is 32M. If desired, you can alter this default by setting a value in the ICAP.INI file (see ICAP.INI option summary, below).

NOTE! You must have free disk space equal to or greater than the maximum MEA size to profile your application, otherwise ICAP.DLL will fail to load.

After the application has finished executing, the MEA file is ready for analysis. You can run the report generator as described in the next section to analyze the test run.

Diagnosing failures

_adjust_fdiv

If you get a popup stating that the procedure entry point _adjust_fdiv could not be located in the dynamic link library MSVCRTxx.DLL, you need to get the MSVCRTxx.DLL from VC 2.x or VC 4.0. It has an extra entry point for the Pentium divide problem workaround.

pop ups

If ICAP.DLL encounters an error it will bring up a pop up window describing the error. You can disable this feature with a setting in ICAP.INI; see below.

general failures

If you get some failure which is not diagnosable, try running the application under the debugger. ICAP.DLL will send error messages to the debug port so you will see them there.

ICAP.INI option summary

You can use an optional ICAP.INI file to control various profiling options. This file can be placed in your Windows directory or the current directory. IceCAP looks for ICAP.INI file in the current directory first and then in the Windows directory.

Each of the following options can appear in either the general [settings] section of ICAP.INI or in application specific sections named by the application base name (e.g. foo.exe options would appear in section [foo]).

The precedence of options is: application specific values, general settings values, defaults, i.e., the application specific settings override the settings in the [settings] section. A sample ICAP.INI file is available in the \sample directory of IceCAP share.

Option�Values�Description��Cache�0�Per thread caching for recording timing data is not enabled (default). See Cache=1 setting for more explanation of this setting.��Cache�1�Per thread caching for recording timing data is enabled. This option is useful only if your application uses a high number of threads and an application is profiled on SMP machines. When this option is on, IceCAP caches the write requests to MEA file, thereby reducing contention for MEA (which is memory mapped) file memory.

The drawback of using this option is that you lose the sequential information in the trace output. Trace output, in this case, is sorted by threads.��CycleSpeed�n�Specifies clock cycle speed (n is in Mhz). This setting is purely for documentation purposes. IceCAP does not use this value for any computational purposes.��IcapCtrl�0�Disables ICAPCTRL applet support, eliminating shared memory usage.��IcapCtrl�1�Enables ICAPCTRL support (default).��Imports�0�Turns off import patching� for all DLLs (time will be attributed to calling function instead). See also NoImport setting.��Imports�1�Turns on import patching (default). See also NoImport setting.��MaxMeaSize�n�Maximum .MEA file size in megabytes (default is 32). You must have free disk space equal to or greater than n, otherwise ICAP.DLL will fail to load. ��MaxCallDepth�n�Maximum call stack depth (default is 256)��MessageBoxErrors�0�Prevents errors from bringing up a MessageBox��MessageBoxErrors�1�Allows errors to bring up a MessageBox (default)��NoImport�module[.DLL][:FunctionName]�Allows suppression of import patching at module or function level. The values enclosed in parentheses ‘[]’ are optional. Module name is case insensitive, Function name is case sensitive.

For example: NoImport=User32.DLL will suppress import patching for all functions in User32.DLL, and NoImport=User32.DLL:alloca will suppress import patching for alloca function in User32 module.

The time and pages for suppressed functions are reported as part of their caller function.

Multiple NoImport settings can be specified in both the application specific and the general [settings] sections. The settings from both sections are used.

See also Imports setting.��Output�path�Overrides the path for MEA file (default is same as the application directory).��Output�[path]filename�Overrides the path and/or name of the MEA file.��Pages�never�Memory profiling is disabled (default).��Pages�all�Memory profiling is enabled. Data for all referenced pages is recorded.��Pages�new�Memory profiling is enabled. Data for new pages (faults) touched by each function is recorded.

This is configuration dependent setting, i.e., new pages list will be dependent on amount of available memory on your system. This setting is useful when you want to profile an application on a specific configuration.��Profile�0�Sets profiling initially off. Use this option in conjunction with StartCAP() and StopCAP() APIs to profile specific sections of code.��Profile�1�Sets profiling initially on (default).��Profile�never�No profiling (no .MEA file generated).��Time�thread�Timings will be per thread time (default for Windows 95). Thread times are available on Windows 95 Pentium machines and when memory profiling is not enabled.��Time�elapsed�Timings will be elapsed time (default for Windows NT).��UseCycleCounter�0�Disables usage of Pentium on-chip clock cycle counter.��UseCycleCounter�1�Enables usage of Pentium on-chip clock cycle counter (default on Pentium machines).��

Report Generator

The report generator has the following syntax:

REPORT filename[.MEA] [options] [@response-file]

Option�Description��-ADDRESS�Display function addresses as well as function names.��-DELIMITED�Generate a tab-delimited report file suitable for use in a spreadsheet program like Excel.��-EXCEL�Synonym for -DELIMITED included for IceCAP 1.0 compatibility.��-IGNORE:name�Ignore time and pages used in and below the named function. This option lets you exclude uninteresting consumers of time like GetMessage. Calls to “ignored” functions show up in the report, but with zero time. The ICAP API functions (StartCAP, etc.) are automatically “ignored”.

Also, see -SUPPRESS option.��-MODULES�Display module and function names.��-NOATTRIBTRACE�Ignore call attribution (inclusive/exclusive times, pages touched) information in the trace output. IceCAP 3.1 added this information. This option was added for backward compatibility.��-NOFUNCLIST�Ignore caller/callee lists from the output. This option is useful, if you are only interested in summaries or trace output.��-NOHEADERS�Suppress the column headers in the report file. You don’t get headers if you specify �DELIMITED.��-NOINDENT�Suppress function name indentation in trace output (-DELIMITED output is never indented)��-NOSUMMARY�Suppress the “top-10 functions” reports at the start of the output file. Use this if you want one list of functions and you’re specifying the sort order.��-NOSYSTEM�Suppress reporting of system calls. This is like using the �SUPPRESS option to suppress calls to KERNEL32, USER32, and GDI32. The suppressed functions don’t show up in the report, but the time they consumed is included in the exclusive (non-attributed) time of their callers as well as in the inclusive (fully attributed) time.��-NOTIMES�Timing information is not included in the report. However, function names and the number of calls information is included. This option is useful when you have recorded memory reference data and do not want to see execution (timing) columns in the report.��-NOWARN�If you have ignored or suppressed functions, the report normally contains a series of warnings aimed at avoiding surprises in the report. Use this option to suppress the warnings.

This option will also suppress command line warnings about missing symbol files, etc.��-OVERHEAD:n�Specifies an additional overhead amount to be subtracted from each incoming time stamp. This is an escape valve to deal with incorrect calibration of the time stamp determination overhead. You can adjust this so that an empty function appears to consume just a few machine cycles.��-PAGELIST[:Section]�Includes detailed page list identifying each page as Code, Data, or Stack and if possible, resolving it’s symbol. Default for this option is OFF, i.e. page lists are not printed. This list consists of exclusive pages referenced by the corresponding function. Inclusive list of pages is not printed.

Possible values for [:Section] are:

TRACE, i.e., -PAGELIST:TRACE. The page list information is included in the trace output, but not in the caller/callee list.

BODY, i.e., -PAGELIST:BODY. The page list information is included for the caller/callee list, but not for the trace output.

None, i.e., -PAGELIST. This is the default value. The page list information is printed for both caller/callee list and the trace output.

�This option is valid only if memory page information was recorded by ICAP.DLL and the DELIMITED option was not used.��-PCVA�Include extra detail for Program Counter and Virtual Address. This option works with �PAGELIST option to provide extra information for each listed page. Default for this options is ON when �PAGELIST option is used. Please see “Page Lists” section for details on these columns. If PAGELIST option is not specified, then this option turns the PAGELIST option ON.��-REMOTE:drive�Specifies a drive letter to use instead of whatever is recorded in the MEA file. For example, if your test run loaded modules from a C: drive but you are running the report from a networked computer where that drive is now the X: drive, say “-REMOTE:X:”. (The last colon is optional.)��-SORTBY:how�Specifies how to sort the main section of the report. The choices are:��EXCLCODE�Sort by descending number of exclusive code pages.��EXCLDATA�Sort by descending number of exclusive data pages.��EXCLTIME�Sort by descending exclusive (non-attributed) time. Use this to identify functions that time consumers and may need to be re-coded.��CALLS�Sort by descending number of function calls.��INCLCODE�Sort by descending number of inclusive code pages.��INCLDATA�Sort by descending number of inclusive data pages.��INCLTIME�Sort by descending inclusive (fully attributed) time. Use this to identify algorithmic problems where the time spent in and below a function is of interest.��NAME�Sort alphabetically by function name (the default). Leading underscores aren’t used in the sort.��-START:n�Ignores all records whose cumulative time is less than n. Combining this option with �STOP option is a good way of reducing the size of report as well as identifying functions in a specific time frame.

Cumulative time for any function can be found in the trace output.��-STOP:n�Ignores all records whose cumulative time is greater than n. Combining this option with �START option is a good way of reducing the size of report as well as identifying functions in a specific time frame.��-SUPPRESS:name�Suppress calls to functions in a specified module. The time and pages referenced by suppressed functions do not show up in the report, but are included in the exclusive (non-attributed) time of their callers as well as in the inclusive (fully attributed) time.

See also the -IGNORE option.��-THREAD:n�Only process records for thread n��-TRACE�Generates a call/return trace from each of the data records in the MEA file. See “Trace output” section for more information.��

You can mix options and the MEA filename in any order. You can place any or all of the command-line options in a response file, and you can nest response files. This functionality is mostly meaningless generality, but you might want long lists of -IGNORE or -SUPPRESS options that won’t easily fit on a command line.

The output file is an ASCII file named “filename.RPT” in the same directory as the MEA file. You can’t currently change this. Use your favorite editor to view it, or specify -DELIMITED and use Excel.

NOTE! When running report.exe, you may get error messages such as:

 “ERROR: ReadRecords unknown record type 0” or “ERROR: CMEARecordEnum Unrecognized record type 0”. This message generally means that ICAP.DLL was unable to close the .MEA file properly at the end of the profile run.� ICAP.DLL closes the MEA file when it receives the DLL_PROCESS_DETACH message. The resulting report will still be correct - all that has happened is that REPORT has skipped the part of the .MEA file that did not contain real records.

Reading reports

IceCAP reports have four sections: Headers, Summaries, Caller/Callee lists, and the optional trace output.

Report Headers.

This section shows reference information useful for interpreting reports, e.g., the command line used to invoke report (handy for remembering which options were specified), configuration information about the machine used to generate the profile, and the profile options used. Key report header fields are explained below:

Time type: The choices are Elapsed or Thread times. Thread times are only available on Windows 95 Pentium machines.

Time method: The choices are Pentium cycle counter or the QueryPerformanceCounter. Pentium cycle counts are more granular than units returned by the QueryPerformanceCounter API.

Time frequency (units per millisecond): This value is taken from the CycleSpeed setting of the ICAP.INI file. IceCAP does not detect or use this value. This value could be helpful in interpreting the time units.

Time overhead: Default is 33. IceCAP excludes all the time that is spent in ICAP.DLL except for the minuscule portion where actual time stamp is taken. Report subtracts this value from each function to make this adjustment. You can change this value by using the -OVERHEAD option of Report.

Summaries

Following summaries are printed by default.

Top 10 functions by number of calls.

Top 10 functions by exclusive (non-attributed) time.

Top 10 functions by inclusive (fully attributed) time.

Top 10 functions by exclusive (non-attributed) CODE Pages.

Top 10 functions by exclusive (non-attributed) DATA Pages.

Top 10 functions by inclusive (fully attributed) CODE Pages.

Top 10 functions by inclusive (fully attributed) DATA Pages.

�Summaries related to time can be suppressed by specifying -NOTIMES option, and summaries related to memory (pages) are printed only if memory profiling was enabled.

Summaries section can be suppressed by using -NOSUMMARIES option.

Caller/Callee function list

In general, the report is a series of blocks like this:

Foo

 <Function that called Foo

 >Function called by Foo

Inclusive (fully attributed) time refers to time spent in Foo and in the functions which Foo may have called. Exclusive (non attributed) time refers to time spent in Foo excluding functions which Foo may have called. For example, If the exclusive time for Foo is 5 cycles and Foo calls only Bar whose exclusive time is 10 cycles then the inclusive time for Foo will be 15 cycles.

Similarly, inclusive pages refer to pages referenced by Foo and functions which Foo may have called. Exclusive pages refer to pages referenced by Foo excluding the pages referenced by functions which Foo may have called.

This section of the report can be suppressed by using the -NOFUNCLIST option.

Trace output

This section of the report prints profile information for every profile event in an application. The profile event is defined as every function entry and exit in the profiled section of the application. The function entry point is signified by a plus ‘+’ sign and an exit is signified by a minus ‘-‘ sign. The “Delta” columns represent time and/or pages since the last profile event. The “Cumulative” columns represent total time and/or pages.

While the function list output can answer a question like: “How many times function foo was called?”, the trace output is useful in answering the question: “How many timing and memory resources were used on the nth call to function Foo?”.

NOTE: Generating trace output is an intensive process and therefore takes considerably longer than when normal reports are produced.

You must use the -TRACE option to print this section.

Miscellaneous report topics

Symbols

If a function is listed as a module + offset, then IceCAP was unable to find the symbol name for that function. If the symbol information is in a PDB or DBG file, IceCAP uses the following algorithm to find the symbol file:

First, IceCAP looks for symbol files at the location stored in the .EXE or .DLL�.

Next, IceCAP looks for the symbol file in the same directory as the .EXE or .DLL.

NOTE: IceCAP is unable to report symbol names for static functions.

IceCAP will recognize (i.e. display module names and symbols for) DLLs that are either statically referenced or which are loaded with any flavor of LoadLibrary.

Times

IceCAP measures different times in different units based on the configuration used for profiling. You can control time types and units using ICAP.INI options (see “time” option and “UseCycleCounter” option. The defaults are:

Configuration�Time�Units��Pentium running Win95�thread�CPU cycles��486 running Win95�elapsed�QueryPerformanceCounter ticks��Pentium running NT�elapsed�CPU cycles��486 running NT�elapsed�QueryPerformanceCounter ticks��Page Lists

When memory profiling is ON, IceCAP reports CODE and DATA pages referenced by each profiled function. You can use -Pagelist option to get extra detail for each page.

CODE page list columns have the following meanings:

Column�Description��1�Address of the referenced code page��2�Module + Offset for the address in Column 1. This column is blank if the module for this address is not found.��3* �Program Counter, i.e., Address of the instruction on the Code page that first caused this code page to be referenced.��4*�Exact symbol, Nearest symbol + Offset, or Module + Offset for the address in Column 3. This column is blank, if the module for the address is not found.��*These columns can be suppressed by using the -NOPCVA option.

�In the page list output, DATA pages are further broken down into STACK pages and DATA pages. DATA and STACK page list columns have the following meanings:

Column�Description��1�Address of the data page which was referenced.��2�Module + Offset for the address in Column 1. This column is blank, if the module for this address is not found.��3*�Program Counter, i.e., Address of the instruction on the Code page which first caused this data page to be referenced.��4*�Exact symbol, Nearest symbol + Offset, or Module + Offset calculated for the address in Column 3. This column is blank if the module for this address is not found.��5*�Virtual Address, i.e., the address on the data page which first caused the data page to be referenced.��6* �Exact symbol, Nearest symbol + Offset, or Module + Offset for the address in Column 5. If the module for this address is not found then this column is blank.

NOTE: This column will mostly be blank because for dynamic data addresses, which is mostly the case, a symbol can not be found.��*These columns can be suppressed by using the -NOPCVA option.

Delimited reports

The -DELIMITED option is used to generate a tab-delimited report file for use in a spreadsheet program like Excel. To facilitate sorting and analyzing of report data, the delimited output fields are organized differently than the text output report.

Delimited output fields are ordered as follows:

1�Type�0 = total root function data, 1 = callee data, 2 = caller data��2�Function�Either root, callee, or caller (based on type)��3�Address�Function address (if -ADDRESS specified)��4�Module�Function module name (if -MODULES specified)��5�#Calls�Total number of root calls, root calls from function, or root calls to function (based on type)��6�%Calls�#Calls / total calls��7�Excl Time�Total time spent in function, when called by function, or in child function (based on type)��8�Min Excl�Minimum exclusive time for single call��9�Max Excl�Maximum exclusive time for single call��10�Avg Excl�Exclusive Time / # of Calls��11�%Total Excl�Exclusive Time / Total time��12�Incl Time�Total time spent in function and children, when called by function, or in child tree (based on type)��13�Min Incl�Minimum inclusive time for single call��14�Max Incl�Maximum inclusive time for single call��15�Avg Incl�Inclusive Time / # of Calls��16�%Total Incl�Exclusive Time / Total time��17�Excl Code Pages�Total number of exclusive code pages referenced by this function ��18�Excl Data Pages�Total number of exclusive data pages referenced by this function��19�Incl Code Pages�Total number of inclusive (function and children) code pages referenced by this function��20�Incl Data Pages�Total number of inclusive (function and children) data pages referenced by this function��21�Root Function�Root function��22�Root Address�Root function address (if -ADDRESS specified)��23�Root Module �Root function module name (if -MODULES specified)��24�Root #Calls�Total number of root calls ��25�Root Excl Time�Total time spent in root function��26�Root Incl Time�Total time spent in root function and children��27�Root Excl Code Pages�Total number of exclusive code pages referenced by the root function��28�Root Excl Data Pages�Total number of exclusive data pages referenced by the root function��29�Root Incl Code Pages�Total number of code pages referenced by the root function and its children��30�Root Incl Data Pages�Total number of data pages referenced by the root function and its children��Column 2 can be used as part of a sort sequence to relate lines together because it always contains the function name. For example, sorting on column 2 (function) and column 1 (type) gives an alphabetic sort, whereas sorting on column 24 (root #calls), column 2 (function), and column 1 (type) gives a by calls sort.

 Controlling data collection

ICAP exports two sets of APIs: Thread specific and Process specific. Both sets of the APIs can be used to control whether profiling data is collected or not.

Thread specific APIs

These APIs operate only on the thread in which they are called. For example, if you have two threads with profiling on and you call SuspendCAP in one thread, profiling is suspended only for that thread. Thread specific APIs are:

StartCAP()—Start profiling.

StopCAP()—Stop profiling

SuspendCAP()—Suspend profiling

ResumeCAP()—Resume profiling

These API’s manipulate two per thread counters within ICAP.DLL: Start/Stop counter and Suspend/Resume counter.

Process specific APIs

These APIs operate on all of the threads in an application, i.e., the profiling is started or suspended for all of the threads.

StartCAPAll()—Start profiling.

StopCAPAll()—Stop profiling

SuspendCAPAll()—Suspend profiling

ResumeCAPAll()—Resume profiling

These APIs manipulate two per-process counters within ICAP.DLL: Start/Stop counter and Suspend/Resume counter.

Example

This example shows how to use IceCAP APIs to profile certain functions and suspend profiling around un-interesting functions.

Consider the scenario as depicted in the following diagram:

�������������������

Call to function1 is enclosed in a StartCAP/StopCAP pair. If profiling is initially set off by including profile=0 setting in ICAP.INI, this turns profiling for function1 ON. Function1 calls function2. In function2, call to function3 is enclosed in another StartCAP/StopCAP pair. Profiling continues, because the StartCounter is still greater than 0. In function3, calls to a function like “waiting for user input” are enclosed in SuspendCAP()/ResumeCAP pair. This skips profiling for the “waiting for user input” function.

In this example, SuspendCAP()/ResumeCAP() pair can not be replaced with StartCAP()/StopCAP(). This is because the StartCounter will still be greater than 0 and profiling will continue.

ICAPCTRL Applet

The ICAPCTRL applet provides additional profiling control with its Start, Stop, Suspend, and Resume buttons. These buttons control a global start and suspend counter and work in conjunction with the thread and process specific counters. See API Counters below for more information on this topic.

� EMBED PBrush ���

If you are going to use the API or ICAPCTRL, you should have a “profile=0” entry in ICAP.INI. Otherwise, ICAP will start profiling the application from its very first function call anyway.

If you have added a “profile=0” entry to ICAP.INI that you later want to undo, you can either remove the entry or change the value to a nonzero numeric value such as “1”. This will cause profiling to commence when the application starts.

It is not necessary to run ICAPCTRL to profile applications.

API counters

IceCAP maintains three sets of Start/Stop and Suspend/Resume counters:

Per-thread counters. These counters are manipulated by the thread specific APIs as described above.

Per-process counters. These counters are manipulated by the process specific APIs as described above.

Global counters. These counters are system-wide counters and can be manipulated by using ICAPCTRL applet as described above.

The start/stop counter indicates the relative excess of StartCAP calls over StopCAP calls. This counter must be greater than zero for data to be collected.

The suspend/resume counter indicates the relative excess of SuspendCAP calls over ResumeCAP calls. This counter must be less than or equal to zero for data to be collected.

In tandem, these counters allow an application to temporarily suspend data collection by calling SuspendCAP even if someone should call StartCAP. An application can also call StartCAP and StopCAP in a naturally matching way without disabling profiling on behalf of a spawning application.

IceCAP uses the following algorithm to determine if profiling for a given thread is ON or OFF:

If ((thread-start-count + process-start-count + global-start-count) > 0 AND (thread-suspend-count + process-suspend-count + global-suspend-count) <= 0), then this thread is being profiled otherwise the profiling is suspended or OFF. The global counts never change per thread or per process counts and vice versa, but all are used to determine profiling state.

Special Problems

Assembly language

The assembly language functions can be profiled by putting a _penter call into the function prologue. This can be automatically done with code like this:

profile = 1�include prologue.inc�myfcn proc far c public uses edi, ...

Alternatively:�

include prologue.inc�myfcn proc far c public <profile> uses edi, ...

Turning profiling off

There are three ways in which profiling can be disabled:

By adding a section to ICAP.INI that includes a profile=never statement.

Relinking the application with PENTER.LIB instead of ICAP.LIB. This stubs out all of the ICAP calls. The application can always be linked later with ICAP.LIB to restore the profiling capability.

Recompiling everything without the -Gh option and with -DPROFILE=0.� This, of course, makes the application unprofilable.

NT 4.0 Fibers

NT 4.0 added support for a new execution context called fiber. Fiber is a lightweight execution context and has following characteristics:

Each Fibers contain a separate stack

Fibers run on top of native Win32 threads. Actually from the system's standpoint, a fiber assumes the identity of the Win32 thread it is running on.

Fiber shares the thread local storage of its parent thread.

Fibers are non-preemptive with respect to the thread they are currently running on i.e., they are switched manually.

�IceCAP 3.1 supports applications which use fibers. As noted above, fibers are only available on NT 4.0.

When an application uses fibers, the per-thread APIs (StartCAP, StopCAP, ResumeCAP, SuspendCAP) are treated as fiber specific. In fact, IceCAP assumes that each thread as at least one fiber. If an application does use Fibers and profile=0 in ICAP.INI then following will be true:

StartCAP will start profiling for the Fiber from which the StartCAP API call was made. Subsequent Fibers for the same thread will continue to have the profiling off. The user will have to issue StartCAP for each Fiber.

Similarly StopCAP will stop profiling for the Fiber from which the StopCAP was called.

IceCAP trace output includes the fiber number after the thread ID. For example, if an application creates three fibers from thread number 3, the thread ID for the first fiber will be printed as 3, the second fiber will be printed as 3.1, the third fiber as 3.2, and so on. Note that the id for the first fiber is not printed.

Memory Profiling Notes

When profiling an application for memory references, keep the following in mind:

Even though IceCAP allows you to profile an application for execution and memory at the same time, the timing information in such case is heavily skewed and should not be relied upon for performance tuning purposes. We recommend profiling your application for execution and memory separately.

Memory profiling will slow the execution of your application. Profiling for all pages (Pages=All setting) is slower than profiling for page faults (Pages=New setting). This is because, when Pages=All, ICAP.DLL will clear the working set for the application at every call entry and exit. Instead of gathering memory data for all of your application, we suggest that you start with profiling off (profile=0 in ICAP.INI) and use StartCAP(), StopCAP() APIs to record memory reference data for the critical portions of your application.

When memory profiling is ON, the amount of data that ICAP.DLL needs to record to MEA file is considerably larger than the execution profiling data. When memory profiling data is recorded, allow MEA file size to be 2 to 3 times larger than when only execution data is recorded.

When profiling multiple threads for memory, the IceCAP will record page reference data for the first thread that profiling was turned on. For all subsequent threads for which profiling is turned on, only timing (execution) data is recorded and page reference data is ignored. If an application has any background threads running while memory reference data is recorded, the page reference lists will be contaminated with pages belonging to background threads. Ideally, while doing memory profiling, all background threads should be turned off. However, if this is not possible we suggest that you minimize the number of background threads and be aware of such contamination.

When an application is profiled under Windows 95, the system pages information is not process specific. Under Windows 95, system pages are shared by all processes. Furthermore, some of the system pages are always locked. Therefore, under Windows 95 system pages report could include pages that were brought in by another process and some system pages (that are always locked) may never show up in the page reference list.

On Windows 95, when memory profiling is ON, IceCAP is not able to record thread times correctly. Therefore, on Windows 95, if memory profiling is ON, IceCAP defaults to the “time=elapsed” setting.

Profiling for Memory “Out-of-process”

When profiling for memory in-process, IceCAP excludes the pages used by ICAP.DLL. If the profiled application also uses any of the pages which are used by ICAP.DLL, then these pages will be incorrectly excluded from the report. Generally, this will only happen if your application was using the same working set or system APIs as ICAP.DLL – a rare case. If you are profiling for new pages (Pages=New setting), this is even a more trivial problem.

 If you are concerned about this IceCAP behavior, you can profile for memory “out-of-process”. This is where you run your application through ICECAP.EXE (provided on the IceCAP share). ICECAP.EXE then spawns the application as a debugee process and measures memory data out-of-process. To use ICECAP.EXE, enter the following as command line:

	ICECAP <your-app> <your-app-options>

For example, to profile “Sample -X”, you would run “ICECAP Sample -X”.

NOTE: Recording page reference data out-of-process requires that at every profile event there is a context switch to the parent application (ICECAP.EXE), which records the data and switches control back to ICAP.DLL. This means that gathering memory data “out-of-process” considerably slows your application.

When memory profiling data is gathered using ICECAP.EXE, the differences in the following ICAP.INI settings should be noted:

Setting�In-process memory profiling�Out-of-process memory profiling (ICECAP.EXE is used).��Pages=All�Memory profiling is enabled. All referenced pages for each function are recorded.�Memory profiling is enabled (default). All referenced pages for each function are recorded.��Pages=New�Memory profiling is enabled. Only page faults for each function are recorded.�Memory profiling is enabled. Only page faults for each function are recorded.��Pages=Never�Memory profiling is disabled (default).�Pages=All setting is assumed, i.e., memory profiling is enabled and all referenced pages for each function are recorded.��Summary of Restrictions

Free disk space equal to MaxMeaSize (default 32M) is required. (icap.dll creates a large memory mapped file during the profile run).

If an application calls setjmp, then the runtime library DLL must be used.

Code which directly modifies return addresses on the stack can not be profiled.

Do not use the optidata linker option when building for profiling on Windows 95 (as this prevents IceCAP from safely writing to the import table).

If function depth exceeds MaxCallDepth (default 256) the profiling is suspended.

Only public functions are listed in the reports.

Functions called through a GetProcAddress pointer can not be profiled, unless they were compiled with -Gh and linked with ICAP.LIB

Second instance of a profiled application can run but only the first one can be profiled.

Memory reference data is only recorded for the first thread that profiling is ON. For subsequent threads only execution (timing) data is recorded.

IceCAP Support, Aliases, and Web sites

FAQ.DOC

This file, available on the IceCAP share, includes answers to most frequently asked questions and is regularly updated.

icapsup

Use the icapsup alias for general support questions.

icapbug

Use the icapbug alias to send bug reports or suggestions. If reporting a bug, please include the usual fun details like operating system & version, processor type, ICAP.INI file (if any), steps to repro.

icapuser

Join the icapuser alias to receive information about subsequent releases and to share feedback with other IceCAP users.

IceCAP web site

The IceCAP home page can be accessed at http://pdrserve/IceCAP/

Toolbox

This is an internal web site which has collection of tools which are available for sharing across Microsoft. If you have a macro, utility, or applet that enhances the usability of IceCAP, please add it to this web site.

You can access the Toolbox web site at http://pdrserve/Toolbox/

About Internal Tools

"Our mission is to provide Microsoft with a competitive advantage by providing the best development tools and processes”.

If you have an idea for a development tool that can help us fulfill this mission, please contact GSRana. To view the current list of our projects visit our web site at http://pdrserve/Tooltown/

� Import patching allows IceCAP to report time and memory used by functions in DLLs which are not compiled for profiling, e.g., system, user32, etc.,

� See FAQ.DOC on the IceCAP share for more explanation on this topic.

� Run Link -dump -headers command, and look at the debug directory information to see this location.

� In this example, the “profile” option appears in the “macroarg” portion of the syntax specified in the MASM Programmer’s Guide.

� ICAPEXP.H assumes you mean PROFILE = 1 if you don’t define the symbol explicitly. Why else would you have included the file?

IceCAP 3.1 User’s Guide		m Confidential	Page �PAGE�2�

void main ()

{

StartCAP();

call to function1

StopCAP();

}

call function2

function1

StartCAP();

call to function3

StopCAP();

function2

SuspendCAP();

Wait for user input

ResumeCAP();

function3

