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0 Introduction

This is a functional spec that describes the new functionality added to Direct3D in the DirectX 8.0 release.  This includes updates to pixel processing and vertex processing, and the sprite point primitives

0.1 Market Justification for Procedural Shaders

In DX8, procedural models are used for specifying the behavior of the vertex transform and lighting pipeline, and the of pixel texture blending pipeline.  There are 4 key advantages to a program model-based syntax for specifying the behavior of the hardware

 1) A more general syntax for specifying common operations.

Fixed-function (as opposed to programmable) APIs must define modes, flags etc for an increasing number of operations that need to be expressed.  Further, with the increasing power of the hardware (more colors, more textures, more vertex streams, etc). the token space for the operations times the data inputs becomes combinatorically complex.  A programmability model allows even simple operations like getting the right color and right texture into the right part of the lighting model in a more direct fashion.  The user of the API does not have to search through all the possible modes, they just have to learn the machine and specify the desired algorithm to be performed.

For example, the following well-known features can be supported:


Basic geometry transformations


Simple lighting models


Vertex blending for skinning


Vertex morphing

e.g for tweening


Texture transforms


Texture generation


Environment mapping of various sorts

2) New operations:

There are many operations that developers find they need to do that are not supported in current APIs.  In most cases, this is not due to limitations in the capabilities of the hardware, but rather to restrictions in the APIs that interface to it.  In many cases these operations are also simpler and therefore faster than trying to extract the same behavior by contorting a fixed function API to an extent beyond its designers expectations.

Examples of such new features expected to  be commonly implemented include:

Matrix pallete skinning
-character animation with 8-10 bones per mesh.

Anisotropic lighting
-can only be done currently at the cost of textures for look-up tables.

Membrane shaders
-ie 1/cos(eye DOT normal): balloons, skin, etc.

Kubelka-Munk shaders
take into account light that penetrates the surface.

Procedural geometry
-compositing meshes with procedural ones (spheres) ie to simulate muscle moving under skin.

Displacement mapping
-modify a mesh with a wave pattern or hump that can be tiled/repeated.

It’s now up to the developers to see what they can discover by innovating here.  While someday more of the chip may be programmable, the vertex and pixel shaders are areas where innovation will be most perceptible and beneficial to end users. 

3) Scalability/Evolvability

The hardware capabilities are continuing to evolve rapidly.  Programmatic representations can help adapt the API to such evolution since they scale very well.  New features and capabilities can be easily exposed in an incremental way by the following operations


Add new instructions


Add new data inputs.


Add new capabilities from the fixed-function to the programmable portions.

Code is the representation that has the best scaling properties for representing complexity.  Further, the amount of code that must change inside D3D is very small for new features added to the shaders.

4) Familiarity

Software developers understand programming better than they do hardware.  An API that truly caters to software developers should map hardware functionality into the paradigm that programmers understand best: code.

5) Photo-Real Rendering Heritage

There has been a tradition of using programmable shaders in high-end photo-real rendering for many years.   This area is pretty much unconstrained by performance, so programmable shaders represent the ultimate no-compromise goal for rendering technologies.   Further, there is a large amount of support available for shader models like RenderMan and MentalRay, technologies used in many Hollywood movies, such as Jurassic Park, and Bugs Life.

6) Direct Mapping to Hardware

Most current 3D hardware (at the vertex processing stage at least) is actually fairly programmable.  The programmability through the API enables the application to map directly to this hardware.  This enables the app programmer to manage the hardware resources according to his requirements.  With a limited set of registers or instructions that can be executed it is very difficult to make a fixed-function implementation that can have all of its features enabled independently from each other.   If you turn on too many features at once that require a shared resource, they can stop working in unexpected (and unexpressable) ways.  The programmable API model follows DirectX’s tradition of eliminating this problem by letting the app developer talk directly to the actual hardware, making any such limitations transparent.

Note: it is expected that these procedural capabilities in hardware will only be accessible by DX8-class hardware running DX8 drivers.  There are no plans to expose these paradigms on existing DX7y or earlier hardware classes.  Software emulation of vertex processing will be available using KNI and 3DNow host-based processing, and emulation of pixel processing will be available (for prototyping and shader development) via the reference rasterizer.

1 Procedural Pixel Shaders

The DirectX8 API paradigm for defining pixel and texture blending operations is a procedural one.  The model includes a definition of a virtual machine architecture and instructions that can define its behavior.  Note that this does not necessarily imply a processor-based implementation.  (in fact, this style of syntax could have been used to define DX6/7 multi-texturing with no change in its operation).

This section outlines the update to the pixel processing operations supported by DX8, and the new syntax by which it is controlled

1.1 Evolution from DX6/7

As appropriate to advancing silicon capabilities and application requirements, the multitexture capabilities of DX6/7 have been extended and made more general in the following ways:

1) A set of general read/write registers has been added to enable more flexible expressions than can be supported by the serial cascade using only D3DTA_CURRENT.  This would have required the specification of a separate result register argument for each stage.

2) The 2x/4x operation modifiers have been broken out into separate flags applicable to any instruction orthogonally.


This eliminates the requirement for separate MODULATE, MODULATE2X ops.

3) The BIAS and UNBIAS operation modifiers are now orthogonal as well.


This eliminates the requirement for separate ADD, ADDBIAS ops.

4) An optional 3rd argument ARG0 has been added to enable 3 inputs for the following ops:


a) MODULATE_ADD now can do ARG1*ARG2 + ARG0



This eliminates the MODULATEALPHA_ADDCOLOR and vice versa ops.


b) BLEND now uses Arg0 as the blend proportion between Arg1 and Arg2



This eliminates all the separate BLENDXXXXX instructions.

5) Texture Address modifying operations such as BUMPENVMAP have been broken out from the ColorOp/AlphaOp, and defined as a separate third Operation type specifically for operating texture addresses.

In order to support this increased flexibility in a more efficient manner, the API syntax has been changed from DWORD pairs to an ascii assembly code syntax.  This exposes the functionality in a paradigm that is friendly towards application developers: Procedural Pixel Shaders.

When using pixel shaders, specular add is no longer specially controlled by a renderstate and is up to the pixel shader to implement if desired.  Fog blending is however, still applied via the fixed-function syntax, but will be completely incorporated into the pixel shader in a future release.

1.2 Pixel Shader Scope

The pixel shader completely replaces the pixel blending functionality specified by the DX6/7 multitexture blending APIs, specifically those operations defined by the D3DTSS_COLOROP, _ALPHAOP, and associated ARGs and modifiers.  When a procedural shader is set, these states are ignored.

1.2.1 Texture Stage States

The remaining texture states are still observed when pixel shaders are in operation

 typedef enum _D3DTEXTURESTATETYPE { 

    D3DTSS_BUMPENVMAT00   = 7,  

    D3DTSS_BUMPENVMAT01   = 8,  

    D3DTSS_BUMPENVMAT10   = 9,  

    D3DTSS_BUMPENVMAT11   = 10, 

    D3DTSS_TEXCOORDINDEX  = 11, 

    D3DTSS_ADDRESS        = 12, 

    D3DTSS_ADDRESSU       = 13, 

    D3DTSS_ADDRESSV       = 14, 

    D3DTSS_BORDERCOLOR    = 15, 

    D3DTSS_MAGFILTER      = 16, 

    D3DTSS_MINFILTER      = 17, 

    D3DTSS_MIPFILTER      = 18, 

    D3DTSS_MIPMAPLODBIAS  = 19, 

    D3DTSS_MAXMIPLEVEL    = 20, 

    D3DTSS_MAXANISOTROPY  = 21, 

    D3DTSS_BUMPENVLSCALE  = 22, 

    D3DTSS_BUMPENVLOFFSET = 23, 

    D3DTSS_TEXTURETRANSFORMFLAGS = 24,
// PROJECTED flag is in shader

This last setting contains a flag to indicate whether that texture is to be iterated as a projected texture.  In DX8, all quantities are assumed to be iterated in a perspective correct manner, but they may be projected or not based on the setting of this flag.


Because these states are not part of the pixel shader, they are not available at shader compile time so the driver can make no assumptions about them (eg differentiate between bilinear and trilinear filtering) at that time.  The application will be free to change these states without requiring the regeneration of the currently bound shader.

Further, calls to SetTexture to change the actual image data used cannot cause the pixel shader to stop being valid, so texture (in terms of bit depth) format is free to change.  SetTexture called with a 2-channel texture such as 88DuDv or 88LumAlpha must continue to work as though the 3rd channel were set to 0.

1.2.2 Post-Shader Pixel Processing:

In DX8, pixel processing such as fog blending, stencil operations and rendertarget blending to occur after execution of the shader.  Render target blending syntax has been updated to support new features as described below.

1.2.3 Pixel Shader Inputs

In DirectX 8.0, all colors (eg diffuse and specular) declared in the texture registers are assumed saturated (clamped) to 0-1 before use by the shader, since these are the valid inputs to pixel shader.

Position is assumed to be clipped before the pixel shader starts.

All iterated values are assumed by the API to be iterated perspective correct, but this is not guaranteed in all hardware.

1.2.4 Pixel Shader Outputs

The result emitted by the pixel shader is the contents of register r0.  Whatever it contains when the shader completes will be sent to the fog stage and render target blender

1.3 Pixel Shader Machine Architecture

The basic machine model is analogous to the vertex processing shaders, in that a set of registers are defined along with a set of operations that can be performed on them.  These operations are expressed as instructions comprised of an operator and one or more arguments (operands).

The virtual processor uses the registers defined by the following table:

	Register
	Source
	Min count
	Max#/instr
	i/o

	Vertex color registers (Dn)
	vertex colors
	 2
	1
	read-only

	Constant registers     (Cn) 
	API call
	 8 
	2
	read-only

	Texture registers       (Tn)
	textures
	 4
	1
	read/write

	Temporary registers   (Rn)
	written
	 2
	2
	read/write


Each register is a 4-component vector.  The precision of each component is required to be at least 8 bits of fraction with a range from –1.0 to 1.0.  Higher internal precisions such as +/-8 are indicated by a cap <<not present in headers yet>>.

No modifiable rounding modes or exceptions are supported.  Multiplication should be supported with “round-to-nearest” to minimize precision loss.

Pixel Precision Road Map


DX8 requires intermediate computations to maintain at least 8-bit precision for all surface formats, higher precision (12-bit) recommended for in-stage math, saturation to 8-bits between stages.


DX9 Will enable support for 12-bit or greater internal computations with integer range of +/-16, saturation between stages will be optional command modifier so it can be disabled.  12-bit per channel surface formats may be supported, and possibly 16-bit.


DX10 16-bit per channel surfaces, 16-bit internal computations for blending with 10-12 bits fractional, and some integer and sign bits.   >20-bit floating point color formats may be a possible implementation.

The “min count” column indicates the minimum number of such registers that the implementation must support in order to be able to expose DX8 shading capability.

4 texture address ops

6 blending ops (alpha/color combined)

for a total of 12 instructions, but cannot exceed 6 of either kind

1.3.1 Input Color Registers





vn
The input vertex Color Registers contain color values obtained by per-pixel Gouraud iteration of the color values emitted by the vertex shader (which may in turn receive them from the vertex stream).   A compliant DX8 implementation must support at least 2 of these.  They are read-only, and a maximum of 2 of these colors can be used in any one instruction.  To simulate flat shading, a constant color is more efficient, however, when shademode is FLAT, iteration of both colors is disabled (Note: fog should continue to be iterated).  Ideally, all color iteration should be perspective correct just as texture coordinate iteration is.  A cap will be provided to indicate those implementations that cannot perform perspective correct iteration of colors.

1.3.2 Texture Registers






tn
There are as many texture registers are there are simultaneous textures supported.  The texture registers are initialized to contain texture colors from the texture sampling units including filtering modes defined by that stage’s texture stage state.  The colors come from their corresponding textures as defined by SetTexture( i, tex ) and sampled at the corresponding texture coordinates. 

Any texture register that does not have a texture set will be sampled as opaque black (0,0,0,1).  A maximum of 3 texture registers can appear in any single shader instruction.  Texture registers are read/write so they may also be used as temporary registers

1.3.3 Temporary Registers





rn
The temporary registers are available for use in storing intermediate results.  They are read-write.  A maximum of 3 temporary registers can appear in any one shader instruction.  Shader preprocessing in the debug runtime will fail CreatePixelShader() on any shader that attempts to read from a temporary register that has not been written to by a previous instruction.

1.3.4 Constant Factor Registers





cn
Descended from the DX6/7 D3DRS_TEXTUREFACTOR constant, the Constant Factor Registers are loadable by the application only via the D3D device method SetPixelShaderConstant(), These are read only.  There are at least 8 constant factor registers defined for use by a pixel shader, but a maximum of 2 may be used in any one instruction.  

1.3.5 Pixel Shader Instruction Types

There are 2 types of instructions for the pixel shader: texture addressing operations and pixel blending operations.  The blending operations can be used for independent processing of RGB color and scalar alpha.

The DX8 virtual machine represents these operations using instructions.  Implementations must support programs of at least 4 address ops and 8 blending instructions to be compliant.  Texture addressing operations (see next section) each consume one slot, but pixel blending (color or alpha) operations can be paired to enable both a color and an alpha instruction in one slot.

In DX8, the texture addressing instructions must precede the color blending instructions.

The syntax for texture address perturbation operation is included within the shader program itself in the form of texture declarations.  These control how address perturbation operations are applied to the color values sampled from the textures during their pre-loading into the temp register file for use in the body of the pixel shader.

1.4 Pixel Shader Blending Instructions

This section outlines the syntax for color blending using Pixel Shaders.  See section 1.5 for Texture Address Instructions.

1.4.1 Pixel Shading Instruction Summary

The following pixel blending instructions are supported:

mov  d, s0




; copy


add   d, s0, s1


; sum


sub   d, s0, s1



; difference


mul   d, s0, s1


; modulate


mad  d, s0, s1, s2


; multiply accumulate s0 + s1*s2


lrp    d, s0, s1, s2


; blend s0*s1 + (1-s0)*s2

;
 = s2 + s0*(s1-s2)


dp3   d, s0, s1


; s0 dot s1 replicated to all channels


cmp  d, s0=r0.a, s1, s2

; d = ( r0.a>0.5 ? s1 : s2 )

For detailed descriptions of these instructions, please see the Pixel Shader Blending Instruction reference in section 2.0

1.4.2 Pixel Shader Input Argument Modifiers

The pixel shader instruction arguments (operands) can support modifier flags that affect the input argument before it is processed in the instruction.  These can include one or more of:


rn.a

ALPHA

replicates alpha channel to all colors


1-rn

INV

Complements y = 1.0 – x.  Unsigned x reqd.


-rn

NEG 

Negates the value y = -x.  Signed x reqd.


rn_bias

BIAS

Shifts value down by 1/2  
 y = (x-0.5)


rn_sgn

SIGNED
Shifts down and scales data x2  y = 2*(x-0.5) 


rn.b

BLUE

copies color blue channel into alpha

For example, the LRP instruction can also be implemented as shown:

; Using diffuse alpha to blend between r0 and t0


lrp r0, v0.a, r0, t0


; can be written (using more clocks) as:


sub r0, r0, t0


mad r0, t0, v0.a, r0

1.4.2.1 Alpha Replicate





rn.a

This input modifier replicates the alpha channel of the affected register to all of its color channels before processing the instruction.

Example:


mul r0, r0, r1.a

; modulate by alpha channel (grayscale)






; varies only the intensity of color

Note: this operator can be used in conjunction with invert or negate.  It is analogous to the D3DTA_ALPHAREPLICATE bit flag in the DirectX 6/7 multi-texture syntax.

1.4.2.2 Invert








1-rn
This input modifier complements the colors in each channel of the specified register.  It is only produces defined results when the input data is unsigned i.e. in the range [0 ..1]. This operation is performed AFTER any other modifiers present on the same argument.

Example:


mul r0, r0, 1-r1

; multiply by (1.0 – r1)

This argument modifier is analogous to the D3DTA_INV flag bit in the DirectX 6/7 multi-texture syntax.

Note:  This flag is for working with unsigned data only.  Its use is inconsistent with the _bias, _sgn, and negate modifiers, and so cannot appear on the same register with any of these.

1.4.2.3 Negate







-rn
Now that signed colors can be used in the pixel pipeline, changing their sign is important.  This input modifier performs a signed inverse (y = -x), or negates the value before it is used in this instruction.  This operation is performed AFTER any other modifiers present on the same argument.

Example:


mul r0, r0, -v1


; multiply by –specular color

Note:  1-Rn and –Rn are exclusive and cannot be applied to the same register.

1.4.2.4 Bias








     rn_bias

This input modifier shifts each channel down by 1/2.  ie performs y = (x-0.5) before the register is operated on.    This has the effect of modifying data that was in the range [0..1] to be in the range [-0.5 .. 0.5]. This is commonly used for applying detail textures.  It can also enable the input data to be processed as a signed quantity while reserving dynamic range before overflow clamping that can occur on implementations limited to [-1 .. 1]. 

Example:


add r0, r0, t0_bias

; shift down by 0.5

This example shows how to use add to performs the same operation as D3DTOP_ADDSIGNED in DirectX 6/7 multi-texture syntax.

Note:  This modifier is exclusive with Invert, and so cannot be applied to the same register: 1-r0_bias is illegal syntax.

1.4.2.5 Signed Scaling






    rn_sgn

This input modifier subtracts 0.5 from each channel and scales the result by 2.0 before the instruction is executed.  ie it performs y = (x-0.5)*2.  This has the effect of remapping data that was in the range [0 .. 1] to be in the signed range [-1 .. 1].   This allows subsequent processing of the data to use the full signed dynamic range of the implementation.  This can also be thought of as _biasx2.

Example:


dp3_sat r0, t1_sgn, v0_sgn
; per-pixel lighting/bump mapping


; assumes bump normals in t1 and light dir in diffuse color v0

This modifer is very commonly used on inputs to the dot product instruction dp3.

Note:  This modifier is exclusive with Invert, and so cannot be applied to the same register: 1-r0_sgn is illegal syntax.

1.4.2.6 Blue








rn.b

This input modifier can be used to copy the blue color channel from the rgb pipeline to the alpha pipeline.

Example


mul r0.a, r1.a, v0.b

;

exponent


1.4.3 Pixel Shader Instruction Modifiers

Pixel shader instructions can support two modifier flags that affect the output result generated.  These can effectively be considered additional instructions.

1.4.3.1 Shift/scale Modifiers






    _x2, _d2

xx_x2
scales output by 2x

xx_x4
scales output by 4x

xx_x8
scales output by 8x

xx_d2
scales output by 1/2

xx_d4
scales output by 1/4

1.4.3.2 Saturate








_sat

This modifier clamps the result of this instruction into the range (0.0 to 1.0) for each component.  This operator occurs AFTER the scaling instruction modifier.

This is most often used to clamp dot product results, but it also allows consistent emulation of multi-pass methods where the frame-buffer is always in range [0..1], and of DX6/7 -style multi-texture, in which saturation is defined to occur at every stage.

1.4.4 Pixel Shader Output Write Masks

The output masks are used to indicate whether this result should update either the color, or the alpha component of the result, and therefore use either the color or alpha pipelines for its processing.  These output masks are analogous to the separate COLOROP and ALPHAOP settings in DX6/7 multi-texture blending.

These flags are not as general as those used in the vertex shader because the rgb components are always grouped into a single flag, resulting in only 2 different masks, .a and .rgb

1.4.4.1 Color/Vector Write Mask 






.rgb

When specified on the output register, this flag indicates that the operation will update only the 3 color channels of the destination register, (and therefore should be performed in the color (vector) pipeline for this instruction).


mul r0.rgb, t0, v0


add r0.a    t1, v1

1.4.4.2 Alpha/Scalar Write Mask






.a

When specified on the destination register, this flag indicates that the operation will update only the alpha channel of the destination register, (and therefore should be performed in the alpha (scalar) pipeline for this instruction).


mul r0.rgb, t0, v0


add r0.a    t1, v1

1.4.4.3 Full Write Mask







.rgba

This mask requests that the same instruction be applied to both color and alpha channels.  This is the default ie no output mask need be specified at all to achieve the same result. 

For example:


mul r0, t0, v0

is equivalent to:

mul r0.rgba, t0, v0

is equivalent to:


mul r0.rgb, t0, v0

+
mul r0.a    t0, v0

Note that even this last syntax takes only one clock due to pairing between the scalar and vector pipelines.

1.4.5 Pixel Shader Instruction Pairing Rules 

The processor that executes the pixel shader has 2 parallel pipelines, one for color/vector processing, and one for alpha/scalar processing.  Using these pipelines in parallel results in substantially better processor utilization and performance by reducing the total number of clock cycles required.

The output masks can affect how the 2 pipelines are allocated, but there can be ambiguities in order of operations unless explicit pairing syntax is used.  Pairing is indicated by a + sign preceding the 2nd instruction of the pair.


mul r0.rgb, t0, v0
; component-wise multiply the colors

+
add r0.a    t0, v0
; but add the alpha components

Note: The dot product instructions are a special case.  They are fundamentally vector operations and always consume the color/vector pipeline.   Please refer to the descriptions of the dp3 and dp4 instructions below.

1.4.6 Pixel Blending Order of Operations

The order of operations for processing pixel instructions and modifiers is defined as follows:  First, the input modifiers are applied, then the core instruction is executed, then the output modifier is applied, then the results are written respecting the output mask.

Among the input modifiers, the ordering is as follows:  First any bias is applied, then any scaling, then the negate or complement step is performed.  Alpha replication is also performed at this stage.

Among the output modifiers, the scales/shifts have higher precedence than the saturation step.  They are applied first, and then any saturation is performed.

The net ordering is therefore the following:

     Input modifiers:


Replicate alpha


Bias


Scale


Negate/complement

     Instruction core is executed

     Instruction modifiers:


_2x, 4x, d2, d4


_sat

     Output mask

1.4.7 DirectX 8.0 Pixel Shader Blending Samples

The following samples outline common usage of pixel shading instructions.

1.4.7.1 Diffuse lighting

This shader modulates the texture color with the diffuse color from the input vertex.


tex t0


mul r0, t0, d0

1.4.7.2 Monochrome Light Map

This shader implements the monochrome light map technique:


tex t0



; declare base texture map


tex t1



; light map need only have an alpha channel


mul r0, t0, t1.a

; use only alpha channel

1.4.7.3 Colored Light Map

This shader implements the very basic colored light map technique.


tex t0



; declare base texture


tex t1



; declare light map


mul r0, t0, t1

1.4.7.4 Brightening Light Map

This shader doubles the output in order to improve the dynamic range of the result.  This enables the light map to both brighten and darken the base texture.


tex t0



; declare base texture


tex t1



; declare light map


mul_x2 t0, t0, t1

1.4.7.5 Gloss Map

This shader simulates variable reflectivity or shininess of the base surface.  It expects a glossiness factor in the alpha channel of base texture t0, and an environment map in t1.


tex t0


; base texture map has gloss factor in alpha


tex t1


; environment map


mul r0, t1, t0.a
; replicate gloss factor & scale env map by it


add r0, r0, t0
; add base texture to scaled reflection map

1.4.7.6 Diffuse Light Map and Gloss Map

Combine colored light map diffuse lighting and gloss/environment map for specular in one pass.  This shader requires >v0.5 as three textures are required.


tex t0



; base texture map has gloss factor in alpha


tex t1



; specular environment map


tex t2



; diffuse light map


mul r0, t1, t0.a

; replicate gloss term & scale envt map by it


mad r0, r0, t0, t2

; modulate by diffuse light map and add

1.4.7.7 Diffuse Bump Mapping

Perform per-pixel diffuse lighting.  This shader uses the iterated diffuse color (v0) as the light source direction vector, and an rgb texture to store the bump map normals.  These two vectors must have already been transformed into the same coordinate space.


tex t0




; normal map


tex t1




; base texture map (albedo)


dp3_sat r0, t0_sgn, d0_sgn

; expand both inputs to signed [-1..1]







; _sat clamps back side to black.


mul r0, r0, t1


; light base texture with bump shading

1.4.7.8 Diffuse Bump Mapping with Range Falloff

This shader extends the above with a range-term iterated via the specular color.  It would have to be generated by some vertex level operations.  Light direction is in diffuse.rgb, light intensity (range fall-off) is in diffuse.alpha.


tex t0




; normal map


dp3_sat r0, t0_sgn, d0_sgn

; expand both inputs to signed [-1..1]







; _sat clamps back side to black.


mul r0, r0, d
0.alpha

; multiply by range fall-off

1.5 Pixel Shader Texture Addressing Operations

Additional pixel shader instructions are provided to enable manipulations of texture address data (as opposed to texture color contents).

The textures set at the sampling stages are sampled from the corresponding textures using the sampling, filtering, and wrapping modes selected by the API texture stage states.

When these textures are sampled, some operations may be applied to the address used to sample them.  These operations are referred to as texture addressing operations.

These constitute a generalization of the texture address perturbation capability supported in DX6/7 via the BUMPENVMAP ColorOperator.

In DX8 the set of AddressOps has been extended with additional operators resulting in the following set:

1.5.1 Texture Address Op Instruction Summary

These are described in more detail in the instruction reference section below.


tex

the default, returns sampled texture at this stage


texcoord
converts corresponding texture coordinate to a color


texkill

skips this pixel if any texture coordinate is negative


texbem
performs DX6/7-style BUMPENVMAP operation (2 slots)


texbeml
performs DX6/7-style BUMPENVMAPLUMINANCE  (2 slots)


texreg2gr
uses green and red channels as texcoords for this stage


texreg2ab
uses alpha and blue channels as 2-D texcoords for sampling


texm3x2*
3x2 matrix multiply and sample using result (2 slots)


texdepth
Use g/a as z/w to update depth buffer (2 slots)


texm3x3*
3x3 matrix multiply and sample using result (3 slots)


texbrdf
Evaluate isotropic Bi-directional Reflectance Distribution Fn.

Texture address ops define an output argument (result) being the texture register they declare/define.  Some require an input operand to be specified.  This input operand must be a previously defined texture.

These can also be thought of as declarations of the texture colors emitted by the texture sampling units into the colorop/alphaop blending shader.  These texture registers can be declared in terms of previously declared textures, but not in terms of later textures, or other pixel color registers.

<<These shader declarations should be extended with flags to indicate whether the specified textures are cube maps, volumes, projected textures, etc.>>

As might be expected of declarations of the texture colors, there are restrictions on the use of the address op operators:

All texture address operations must be declared in the order of the texture they define.  No texture address operation can refer to another texture that is after it, ie of a higher stage number.

Precision note:

Texture addressing operations need to support sufficient precision for representing texture addresses.  Precision should be sufficient to represent perturbations in the elements of the BUMPENVMAT matrix (for example) that can perturb to a fraction of a texel in an environment map of the maximum texture dimensions supported by the device.  Further, all iterated quantities in these ops must be iterated with perspective correction.

1.5.2 Texture Address Input Argument Modifiers

The input arguments to texture register declarations can support modifiers that indicate additional processing that is performed during the execution of the  declaration/instruction for the dp3, texdepth, and texmat* operations.  The other texture addressing operators do not support input argument modifiers.

_sgn can be appended to the input register argument to indicate that it should be biased and scaled  before use.  This performs the operation y = 2(x-0.5) on the input register before using it in the specified operator.  This operation is commonly used to translate data that is intended to contain signed values in the range [-1..1], but does not because the source it comes from can’t support this.  Such data sources include textures tn, iterated colors vn, texture coordinates, or constant factor cn registers.

Example:

ps.1.1


; pixel shader version 1.1


tex t0


; read a texture color

texm3x2pad t1, t0_sgn
; note 3x2 instructions must be used


texm3x2tex t2, t0_sgn
; pairs – also note _sgn modifier


mov r0, t2
1.5.3 Texture Address Operator Modifiers

Texture address operations/declarations can support an output modifier like pixel blending ops support, specifically, the _sat modifier.

_sat  can be appended to the operator to indicate that the result of the operation should be clamped into the color range (0 to 1.0) upon completion of the operation.  This is commonly required for use in lighting operations.

Example:


tex t0


; read a texture color

dp3_sat t1, t0_sgn
; dotproduct with texcoords and clamp
1.5.4 Texture Address Write Masks

No destination/write masks are supported for pixel addressing ops in Pixel Shader model v1.0.  These operations always update all 4 components of the destination register.
1.5.5 DirectX8 Pixel Blending Example Syntax

This should show the BNF for the parser.

We need a syntax mechanism to explicitly indicate alpha/colorop instruction pairing in order to disambiguate dependencies.

1.5.6 Texture Sampling

Texture sampling and filtering operations are controlled by the standard Textures Stage States for min, mag, mip filtering, and the wrap addressing modes, LODBIAS, etc.  This information is not made available to the driver at shader compile time, so shaders must be able to continue operating when this state changes.

The texture type (cubemap, volume map, mipmap, etc). is specified explicitly in the shader syntax.  The application is responsible for setting only textures of the correct type during shader execution.

Setting a texture of the wrong type during shader execution will produce undefined results.

1.6 Pixel Shader Caps

Existing Caps flags

MaxSimultaneousTextures


Indicates the number of textures that can be used in a single pass.  In DX8, this therefore indicates the number of texture registers supported by pixel shaders on this part, and therefore also the number of texture declaration instructions that can be present.

MaxTextureBlendStages


Indicates the number of blenders available.  This should correspond to the number of instructions supported by pixel shaders on this implementation.  

Pixel Shader applications do not need to check the above caps, since they are covered by validation performed during CreatePixelShader() according to the pixel shader version specified (see below).

New Caps Flags

D3Dcaps8->MaxPixelShaderValue <DWORD>

A new cap flag has been added in DX8.  This parameter indicates the internal range of values supported for pixel color blending operations.  Implementations must allow data within the range they report to pass through pixel processing unmodified (unclamped).  

This is normally the ends of a signed range, ie an absolute value.

1 indicates the range is [-1.0 to 1.0]

8 indicates the range is [-8.0 to 8.0]

1024,

 etc.

However, the special value 0.0 indicates that no signed range is supported, and therefore the range is [0 .. 1.0] as in DirectX6/7.

1.6.1 Pixel Shader Version

D3Dcaps8->PixelShaderVersion <float>

There is one cap indicating the level of shader supported (only shaders with version numbers equal to or less than this will succeed CreatePixelShader().

The major version number is encoded in the 2nd byte.  The low byte contains a minor version number. 

Due to popular demand from both ISVs and ISVs, a version of the DirectX pixel shader model has been adapted in order to support some DirectX 7.0-class hardware.  This hardware in many cases exceeded the functionality that DX6/7 multitexture exposed, (such as allowing register-based operations), but still supports only a fraction of the DX8 feature set.  The shader version number is used to indicate the level of support that the shader requires.

Each implementation sets this cap to indicate the maximum level of shader version it can fully support.  This implies that implementations should never fail create of a valid shader of the version <= the one reported by the cap flag.

The currently supported Pixel Shader Versions are summarized in this table:

	P.S.

Ver.
	Target
	Instr.

count
	tn
	rn
	cn
	dn
	Instructions required 

(include preceding row)

	1.0
	DX8
	8+4
	4
	2
	8
	2
	

	1.1
	DX8+
	8+4
	4
	2
	8
	2
	texkill, texdepth

	2.0
	DX8.1
	20
	6
	2
	16
	2+
	dp4; texreg2rgb, texdp3, texdp3tex


Specifically, DirectX pixel shader version 1.0 has the following requirements:


The instruction and register counts as specified in table.


All pixel blending/shading operations specified.


The following texture addressing operations:



texture, texcoord, bumpenvmap, bumpenvmapluminance,



reg2AR, reg2GB, mat3x2, and mat3x3


The negate, complement, _bias, _sgn, and .a input modifiers.


The _sat, _x2, _x4, _d2 output modifiers.


And both the .rgb and .a output masks.

Data Types:

v1.0 and 1.1 must support minimum 9 bits (s8) for color components, and 16 bits for texture coordinate addresses.

v2.0 or greater must support at least [-8..8] dynamic range


and arbitrarily interleaved color and address ops, and the dp4 instruction.

1.7 Pixel Shader API Methods:

HRESULT IDirect3DDevice8::SetTextureStageState(DWORD dwStage, D3DTEXTURESTAGESTATETYPE dwState, DWORD dwValue);

This is used for the legacy style and the new style. For the legacy, this continues to be as before. For the DX8 style, this programs only the TIS. The COLOROP, ALPHAOP, COLORARG1, COLORARG2, ALPHAARG1 and ALPHAARG2 are ignored if a PixelShader is set. This is analogous to the material and light parameters being ignored by the vertex pipe when a vertex shader is set.

HRESULT IDirect3DDevice8::SetTexture(DWORD dwStage, LPDIRECTDRAWSURFACE8 pTexture);

 This is used for the legacy style and the new style. In the legacy style this is as before. In the new style, it is used to set the texture in the TIS.

HRESULT IDirect3DDevice8::CreatePixelShader(LPDWORD pdwFunction, LPDWORD pdwHandle);

This is used only in the DX8 style programming. The user passes in a declaration which are the address ops, and the Function which are the blending ops. D3D returns the Shader handle. The shader validation is done here. It is an error to have either the declaration or the function to be null.

A given shader may fail creation due to constraints of the DX8 hardware model.  The following error return values are supported:


D3DERR_EXCEEDEDINSTRUCTIONCOUNT


D3DERR_INVALIDOPERATION


D3DERR_INVALIDOPERAND

The above 2 errors can occur at any instruction including within shader “declarations”, such as texture address ops.

HRESULT IDirect3DDevice8::SetPixelShader(DWORD dwHandle);

This is the handle obtained from the CreatePixelShader. If the handle is null, it means that the legacy pipeline be used.
HRESULT IDirect3DDevice8::DeletePixelShader(DWORD dwHandle);

Deletes the pixel shader from its internal entry.
HRESULT IDirect3DDevice8::SetPixelShaderConstant(DWORD dwRegisterAddress,LPVOID lpvConstantData,DWORD dwConstantCount);

2 Pixel Shader Color and Alpha Blending Instruction Reference

These are the instructions for color blending.  All of these operations are performed component-wise. 

2.1 Move/Copy








mov

Copies the source register to the destination register.


mov   d, s


; copy s to d ( d = s )

2.2 Addition








add

Loads the result register with the sum of the two colors in the source operands.


add   d, s1, s2

; sum d = s1 + s2

2.3 Subtraction








sub

Loads the result register with the difference of the two colors in the source operands.


sub   d, s1, s2

; difference

2.4 Multiply/Modulate







mul

Loads the destination register with the component-wise product of the two colors in the source operand registers. 


mul  d, s1, s2

; modulate d = s1*s2

2.5 Multiply-Add








mad

Performs a multiply-accumulate operation.  Takes the last 2 arguments, multiplies them together, and adds them to the remaining input/source argument, and places that into the result register. 


mad  d, s0, s1, s2

; d = s0 + s1*s2

2.6 Linear Interpolation Blend





lrp

Linearly interpolates between the 2nd and 3rd source registers by the proportion specified in the 1st source register.


lrp d, s0, s1, s2

; d = s0*s1 + (1-s0)*s2 = s2 + s0*(s1-s2)
2.7 Conditional








 cnd

In DX8, the conditional instruction can only compare r0.alpha vs 0.5.  If the r0.alpha  is > 0.5, then the 1st source is returned as a result, otherwise the 2nd source is returned.  Again, s0 can only be r0.a in DirectX Pixel Shader Version 1.0.


cnd d, r0.a, s1, s2

; d = ( r0.a >0.5 ? s1 : s2 )

2.8 3-Dimensional Dot Product 





dp3

Loads the destination register with the 3-element vector dot-product of the two colors in the source operand registers.  Generates a scalar result, but replicates it to all specified output channels.


dp3 r, s1, s2


; s1 dot s2 replicated to all channels

NOTE: The dp3 instruction is a fundamentally a vector operation, and is therefore always performed in the vector pipeline.  Using it with the .a modifier just indicates that its result should be propagated to the alpha channel as well. In other words dp3 can be specified as an alpha-op only when it is also the color op, and must use the same arguments.  

dp3 r0.rgb, t0, v0

dp3 r0.a,   t0, v0

or equivalently,


dp3 r0, t0, v0

will cause the grayscale result of the dp3 operation to be copied into both the color and alpha channels of r0.


A different instruction can be specified in the alpha channel of the result, but <<may also need the same arguments>>??
dp3 r0.rgb, t0, v0

; is legal

mul r0.a,   t0, v0
but

mul r0.rgb, t0, v0

; Is not legal and 

dp3 r0.a,   t0, v0

; may produce undefined results.

This instruction usually benefits from the _sgn modifier applied to it’s input arguments if they have not already been expanded to signed dynamic range.  When used for lighting, the _sat instruction modifier is often used to clamp the negative values to black.  For example:


dp3_sat r0, t0_sgn, v0_sgn
; t0 is bumps, v0 is light dir

2.9 4-Dimensional Dot Product 





dp4

Loads the destination register with the 4-element vector dot-product of the two input source operand registers.  Generates a scalar result and replicates it to all specified output channels.


dp4 r, s1, s2


; s1 dot s2 replicated to all 4 channels

Since this instruction uses all 4 channels of its input data, it consumes both the 3-vector and scalar pipelines.  Therefore, no different operation can be paired with it.

For example:


tex     t0



; sample normal from normal map


dp4     r0, t0_sgn, v0_sgn

; dot with light direction v0

will replicate the result to all 4 channels of r0.

Output masks still work, so specifying an alpha output mask as in:


tex     t0



; sample normal from normal map


dp4     r0.a, t0_sgn, v0_sgn
; dot with light direction v0

is legal, and will update only the alpha channel of r0, leaving the rgb components unaffected, but NO .rgb instruction can be specified.  (except dp4).

Conversely, 

dp4 r0.rgb, t0, v0

is also legal.  The Alpha of r0 is unmodified, but no other alpha op can be specified.

3 Pixel Shader Texture Addressing Instruction Reference

3.1 Texture








tex


This operator samples a color from the texture and copies it into the corresponding register.

tex r0

; Declare register 0 as color from the

 


;     texture currently set at stage 0.

3.2 Texture Coordinate





               texcoord


Converts the iterated texture coordinate assigned to this stage to a color for use in blending.  Allows use of that texture coordinate as an additional gouraud iterated (guaranteed perspective correct) color.  The example shows this.

texcoord, t0

; Declare register 0 as a color from it's texcoords

Since any quantity can be mapped by the vertex shader into a texture coordinate, this can be used to feed arbitrary data to the pixel shader.  Position, normal, light source direction, etc. are obvious examples.

sgn

3.3 BUMPENVMAP






texbem


Takes color defined by the input argument register as DuDv perturbation data.  It transforms it's U and V components by the 2D bumpenvmat matrix, adds them to the current stage's texture coordinates and samples the current stage's texture there.


tex  t0


; read texture t0 as DuDv bumpmap





; computes
u = u1 + mat00*t0.r + mat01*t0g


texbem t1, t0

;

v = v1 + mat10*t0.r + mat11*t0g




; and then samples at u,v    t0.b is ignored

This operation always interprets Du and Dv as signed quantities, so that the input modifier _sgn is not required to be specified on the input argument. 

Applications: This instruction can be used for a variety of techniques based on address perturbation, including per-pixel environment mapping, diffuse lighting (bump mapping), environment matting, etc. 

3.4 BUMPENVMAPLUMINANCE




texbeml


Takes color sampled by the preceding stage as DuDvL perturbation data with luminance information.  ie transforms it's red and green components by the 2D bumpenvmat matrix, and adds them to the current stage's texture coordinates and samples this texture at the resulting 2D address.  Then it applies a luminance correction using L, and the API-specified LUMINANCE and BIAS texture stage values.


tex     t0

; define t0 to get a 3-tuple DuDvL





; computes
u’ = u + mat00*t0.r + mat01*t0.g


texbeml t1, t0
;

v’ = v + mat10*t0.r + mat11*t0.g

 


; and then samples at u’,v’  t0.b is ignored





; then applies luminance correction

This example shader defines the color in temp register 1 as the color from the texture map set at stage 1 indexed by an address perturbed by the values of the red and green channels sampled from the map set on stage 0.

3.5 Remapping Red/Green





reg2gr


Samples this stage's texture at the 2-D coordinates specified by the red and green components of the specified input color.  Can be used for color space remapping operations.

3.6 Remapping Alpha/Blue





reg2ab


Samples this stage's texture at the 2-D coordinates specified by the blue and alpha components of the specified input color.  Can be used for color space remapping operations.

3.7 Remapping RGB






reg2rgb


Samples this stage's texture at the 3-D coordinates specified by the RGB components of the specified input color.  Can be used for color space remapping operations using cube maps or volume textures.

3.8 3-Dimensional Dot Product




texdp3


Computes the dot product between the input color argument, and the texture coordinate vector of this stage.  Replicates scalar result to all four color channels.  This can be used for per-pixel lighting computations as shown:


tex t0



; Define t0 as a std 3-vector,  ie a normal


texdp3_sat t1, t0_sgn
; Define t1 to be dot of t0 and t1's texcoords


The texture set at stage 0 should be a 2-D texture using RGB components to store surface normal vectors.  Note that these are rescaled to signed data range by the _sgn arg modifier.


Texcoords for t1 should be set to normalized light direction vector in surface local coords.


Note that no texture is sampled from stage 1.  Any texture set there will be ignored.

3.9 4-Dimensional Dot Product




texdp4


Computes the 4-D dot product between the input argument and the texture coordinate vector of this stage.  This instruction takes over the alpha pipe, so a different operation may not be specified there.


tex t0



; Define t0 as a 4-component vector


texdp4 t1, t0_sgn

; Define t1 to be dot of t0 and t1's texcoords

3.10 Bi-directional Reflectance Distribution Function

texbrdf

Takes as input the results from the two previous texture stages (t0,t1). Treating both 32-bit results as two unsigned 16-bit numbers on 0.0 .. 1.0,  (h0,l0, h1,l1), perform a 3D texture lookup using texture coordinates ( h0, h1, (signed)(l0 - l1) ). When the two previous texture stages contain angular coordinates of the eye and normal vectors, this mode can be used to calculate Isotropic BRDF’s.

3.11 Texture Coordinate-Based Clipping



  texkill

This instruction can be used to implement arbitrary clip planes in the rasterizer.

When using vertex shaders, the application is responsible for applying the perspective transform.  This can cause problems for the arbitrary clipping planes, since if it contains anisomorphic scale factors, the clip planes would need to be transformed as well.  Therefore, it is best to provide an un-projected vertex position for use in the arbitrary clipper, which is the texture coordinate set identified by the TEXKILL operator.

3.12 3x2 Matrix Multiply





texm3x2

Performs a 2x3 matrix multiply on an input color vector.  Takes the specified input color (r0), and dot products it with that stage's texcoords (u,v,w) in (r1) to produce a u coordinate.  Takes that same input color (r0) dot products it again by the texture coordinates of this stage (r2) to compute v.  Then this stage's texture is sampled at (u,v) to produce the final color.  No texture is sampled (or need be set at) the preceding stage (r1), and any operator assigned to it is overridden by this one.


tex t0



; Define t0 as a std 3-vector for later use


texm3x2pad t1, t0

; perform 1st row of matrix multiply


texm3x2tex t2, t0

; perform 2nd row of matrix mult. to get a

 




; 2-vector to sample texture 2 with.

A bump (normal) map should be set on stage 0, and a standard 2-D texture should be set on stage 2.  Any texture set at stage 1 is ignored.

For example, in the following shader, a base texture is lit by modulating with a diffuse bump map, and adding an exponentiated specular.

Stage0 gets the base texture set, stage1 gets the normal map, stage 2 gets the normal map again.

 




; texture map
texcoords
op


tex     t0


; base texture
map coords


texm3x2 t1, t0_sgn
; n map

L-vector
n.L


texm3x2 t2, t0_sgn
; n map

H-vector
n.H


tex2rg  t3, t2

; 1-D exp map
none

lookup

3.13 Depth Update






texdepth

Operates as above, but instead of using the resulting u,v values to perform a read of the texture, it divides to compute u/v, which can be interpreted as z/w = perspective correct depth, and then stores that value as z the coordinate for the pixel. This is used for image-based rendering operations.  It returns opaque black (0,0,0,1) as the result color (t1 and t2 below), but applications should not rely on this (ie should consider this result “undefined”).  The texture coordinates used at stages 1 and 2 should be the transform applied to the displacement value.  These are used to transform the displacement from tex t0 into eye-space z/w to perturb the z-buffer to obtain realistic intersections between bump-mapped surfaces.


tex t0



; Define t0 as a std 3-vector for later use


texm3x2pad t1, t0

; perform 1st row of matrix multiply = Z


texdepth   t2, t0

; perform 2nd row of matrix multiply = W

 




; divide 1st row by 2nd row (Z/W). 






; Use result as depth for this pixel. 






; clear t1,t2

3.14 3x3 Matrix Multiply





texm3x3_*

The API supports a number of methods to perform a per-pixel 3x3 matrix multiply on the vector sampled from a texture.  The 3x3 matrix is comprised of the texture coordinates from 3 consecutive texture declaration stages.  These matrix multiply operations are constructed from multiple texture address ops instructions/declarations. 

In all the examples below, texture coordinate set 0 positions the bump map.  Texture coordinate sets 1, 2, and 3 are the rows of the 3x3 matrix.

NOTE: for all of the following, a bump (normal) map should be set on stage 0, and cubemap texture should be set on stage 3.  

Texm3x3pad is used in combination with other texture address op declarations to perform matrix multiples.  It is used to represent stages where only the texture coordinate is used.  These corresponding stages have no textures bound, and no sampling will occur.  The input argument t0 should still be specified.  The following cases show examples of the use of this instruction.  

Texm3x3tex Is used in combination with PAD ops to perform very basic matrix multiplies.  It is used as the last of the 3 steps comprising the multiply, and accesses the texture bound at the 4th stage using the 3-D result.


tex t0



; Define t0 as a std 3-vector for later use.


texm3x3pad t1, t0_sgn
; 1st row of matrix multiply


texm3x3pad t2, t0_sgn
; 2nd row of matrix multiply


texm3x3tex t3, t0
_sgn
; 3rd row of matrix multiply





; and then sample texture using 3-D result

mov r0, t3

; emit result dir.

texm3x3spec is for specular reflection/environment mapping.  It takes the resulting post-transformed vector, and uses it as the normal to reflect an eye-ray vector.   [This eye-ray vector is always constant color c0.]   It then uses the result as an address to look up in a cube map texture set at that stage, which should contain a specular environment map.  In this case, any textures set at stages 1 or 2 are ignored.

tex t0



; Define t0 as a std 3-vector for later use.


texm3x3pad t1, t0

; 1st row of matrix multiply


texm3x3pad t2, t0

; 2nd row of matrix multiply


texm3x3spec t3, t0, c0
; 3rd row of matrix multiply, do reflection






; calculation, and sample texture 3


mov r0, t3


; copy final result to output color

TEXM3x3VSPEC is for specular reflection/environment mapping where the eye-vector is not constant.  It works just as TEXM3x3SPEC, except that the eye-ray is taken from the w-components of the 3 sets of texture coordinates used as rows of the matrix, instead of from a special register.

tex t0



; Define t0 as a std 3-vector for later use.


texm3x3pad t1, t0

; 1st row of matrix multiply


texm3x3diff t2, t0

; 2nd row of matrix multiply 


texm3x3vspec t3, t0
; 3rd row of matrix multiply and sample






; texture2, then do reflection calculation






; using eye ray using eye-ray in w’s






; and sample texture 3 specular map


mov r0.rgb, t3

; put specular color into result


mov r0.a,   t2

; put diffuse color into alpha channel



; use with SRCBLEND = ONE, DESTBLEND = SRCALPHA



; on diffuse texture applied in preceding pass



; to modulate by the monochrome diffuse and add the specular

4 Frame-Buffer Blending Update

The render target (usually the frame-buffer) blending syntax has been updated to support new operations, as well as separate frame-buffer operations for alpha and color

4.1 Additional RenderTarget Blending Operations

Many implementations can now support other operations on the results of the products in the frame-buffer blenders.  A new renderstate is defined to select some alternative operations.


D3DRS_DESTBLENDOP

New frame-buffer blending operations

The new frame-buffer blending operations are as follows


D3DDESTOP_ADD 

// <the default>


D3DDESTOP_SUBTRACT
// difference between them


D3DDESTOP_REVSUBTRACT
// swap the order, then subtract


D3DDESTOP_MIN

// select min of the two


D3DDESTOP_MAX

// select the max of the two

There is a cap bit defined for this:

D3DPRIMCAPS.MiscCaps | D3DPMISCCAPS_DESTBLENDOPS = 0x00000080L

An implementation must support all 4 of the new ops in order to set the cap bit.  Support only for ADD is insufficient.

4.2 Render Target Blending Factor

There is a new operand available in the render target (destination) blending stage.  It is a separate constant color defined by the new renderstate:


D3DRS_DESTFACTOR, <dword>

This accepts a 4-byte RGBA color value (like TSS_TFACTOR does).

It is accessed in the rendertarget blenders as two new operands available for the SRCBLEND and DESTBLEND.

    D3DBLEND_FACTOR         = 14,

    D3DBLEND_FACTORALPHA    = 15,

Caps:

There is a cap bit defined for this. 

D3DPRIMCAPS.dwMiscCaps | D3DPMISCCAPS_DESTBLENDFACTOR = 0x00000200L
4.3 Separate RenderTarget Blending for Alpha Channel

Some implementations can support separate operations in the alpha and color channel of the frame-buffer blender.  This capability is enabled by the renderstate

D3DRS_SEPARATEDESTALPHAENABLE

When set to false (ie, by default) the render target blending factors and operations applied to alpha are forced to be the same as those defined for color.  This mode is effectively hardwired to false on implementations that don’t set the cap.

Two new renderstates are defined to control the factors in the alpha channel of the render target blenders:


D3DRS_SRCBLENDALPHA, and


D3DRS_DESTBLENDALPHA

Like the D3DRS_SRCBLEND and D3DRS_DESTBLEND, these can each take one of the following values:


D3DBLEND_ZERO


D3DBLEND_SRCCOLOR


D3DBLEND_DESTCOLOR


D3DBLEND_SRCALPHA


D3DBLEND_DESTALPHA

Plus the new states


D3DBLEND_FACTOR


D3DBLEND_FACTORALPHA
and the INV of all of the above.

D3DRS_SRCBLENDALPHA

Defines a factor multiplying input alpha in render target blending.  This value is ignored unless D3DRS_RTSEPARATEALPHAENABLE is true, since the op defined for color is used for alpha also in that case.

D3DRS_DESTBLENDALPHA

Defines a factor multiplying input alpha in render target blending.  This value is ignored unless D3DRS_RTSEPARATEALPHAENABLE is true, since the op defined for color is used for alpha also in that case.

An additional renderstate is also provided to control the operation used with the alpha channel of the blender.

D3DRS_DESTBLENDOPALPHA

The render-target blending operation that applies to the alpha channel.  This value is ignored unless D3DRS_RTSEPARATEALPHAENABLE is true.  This can take any of the values defined above for D3DRS_DESTBLENDOP

Caps:

There is a cap bit defined for this. 

D3DPRIMCAPS.dwMiscCaps | D3DPMISCCAPS_RTBLENDSEPARATEALPHA = 0x00000100L

Implementations must be able to support at the full set of factors for alpha channel operations to set this cap bit.

If an implementation sets both this cap and the _DESTBLENDOPS cap it must support the new operations on the alpha channel independently.

Summary:

The complete algorithm applied is:

CRT = Cin*SRCBLEND  (DESTBLENDOP)  CRT*DESTBLEND

ART = Ain*SRCBLENDALPHA  (SRCBLENDOPALPHA)  ART*DESTBLENDALPHA

Where:

CRT is the RGB color value currently in the render target surface.

CIN is the RGB color value currently in the render target surface.

ART is the alpha channel value currently in the render target surface.

AIN is the alpha channel value currently in the render target surface.

DirectX9 Notes

In DX9, fog blend, stencil, and rendertarget blending operations will be assumed to be incorporated into the shader language itself.  The current fixed-function hardware specular, fog, and framebuffer alpha blenders will be assumed to have been generalized to support the full set of instruction operations on arbitrary registers by that timeframe.  Applications in that timeframe will be responsible for using these blenders to apply any desired fog, specular add, or alpha blending effects via the shader program.  However, they need to be aware that the render target color may only be available to the last 2 instructions in the shader on most hardware.

In DX9, Z-buffer current value and current iterated z (as a position register?) will be made available to any stage of the pixel pipeline.  It is expected that hardware should flush the pixel pipeline if there are commands in it that update the z-buffer that is currently being read.  This will happen only rarely (once per frame) in most usage scenarios.  The most common use for z is to scale the transparency of a sprite to account for volumetric density effects.  At this point, z-writes will most likely be disabled, as the opaque objects should already have been drawn.

Stencil operations will be performed as compare operators.

Additional texture sampling operations are expected in future hardware to include at least a 3x3 kernel with programmable weights.

Other features below indicated with grey background are cut from DX8 and will appear in DX9 or later release.  The DDI protocol is still designed to handle these, and future hardware should be designed with them in mind.

5 Programmable Vertex Processing

5.1 Introduction

5.1.1 Application Usage Scenarios:

The following are examples of algorithms that may be implemented on procedural vertex shaders.

5.1.1.1 Matrix Palette Skinning

A set of  8-10 matrices can be loaded into the constant registers as a palette.  Each processed vertex can be transformed by a subset of these matrices, and blended into a final result using a vertex-level weight.  One convenient implementation is to use a packed 4-byte integer array to store the matrix palette addresses of 4 matrices that the vertex is influenced by.  A standard 4-D component (like a DX7 texcoord set) can contain the 4 weights that those matrices are blended by.

5.1.1.2 Procedural Geometry

A muscle moving under skin can be simulated by an ellipsoid computed from a sphere with scaling along 3 axes.  This can be evaluated, and used to perturb the position of incoming mesh vertices.  The muscle ellipsoid can be scaled and tranlated by updating the constant registers containing it’s relative position and scale factors.

5.1.1.3 Wave Modeling

A shape such as a quadratic hyperboloid can be generated in the unit square and mapped repeatedly onto incoming geometry.  Take input vertex x,y values, map them into unit square using the FRC macro, compute local hyperboloid elevation, and add to input vertex z value.  This can be used to simulate waves on an ocean, etc.

5.1.2 Integration of the Vertex Shader into the Vertex Pipeline:

When in operation, the programmable vertex shader replaces the functionality of transformation and lighting.  D3D state information regarding transformation and lighting is ignored in this case.  When the shader is disabled and conventional processing is returned, all current states will apply again.

The programmable shader is assumed to be invoked on data that has already been tessellated by any higher-order surface tessellation scheme operating.  Implementations that perform surface tessellation post shader processing must do so in a way that is not apparent to the application and shader code.  Since no semantic information is normally provided before the shader, a special token is used to identify which input stream component represents the base position relative to which all other components are interpolated.  No non-interpolable data channels are supported. 

On output, the vertex shader must generate vertex position in homogeneous clip space. Additional data that could be generated includes texture coordinates, colors, fog factor and so on.

The standard graphics pipeline processes vertices output by the shader. This processing includes such tasks as:

· Primitive Assembly

· Clipping against the frustum and user clipping planes

· Homogeneous divide

· Viewport scaling

· Backface and viewport culling

· Setup

· Rasterization

Programmable geometry is a mode within the API. When enabled, it partially replaces the vertex pipeline and when disabled, the API has normal control. Execution of vertex shaders does not change the internal D3D state, and no D3D state is available for shaders. CreateVertexShader() with pdwFunction equal to NULL is used to create a shader for fixed-function pipeline. When pdwFunctionis not NULL, the shader is programmable. SetVertexShader() call is used to set the current active shader, which defines to use programmable or fixed-function pipeline.

Any tessellation of higher-order surface primitives is logically before execution of the vertex shader.

While it is not supported in DX8, displacement mapping is considered a tessellation step for purposes of future discussion. 

Arbitrary clip planes note


DX8 will support a mode in which the graphics system should cull against, but need not clip against the arbitrary clip planes.  This is for use when the application knows that the z-buffer will end up handling clipping operations due to rendered geometry.  It enables the hardware to avoid potentially expensive computations in the vertex engine that could be handled by the z-compare in the rasterizer.


5.2 Vertex Shader Machine Architecture

5.2.1 Resource Summary:

The registers available for use by a DX8 vertex shader are guaranteed to be at least the following:

	Name
	count
	#per inst
	i/o

	Input Vertex Registers  vn
	16 vectors
	    1
	read-only

	Constants Registers     c[n]
	96 vectors
	    1
	read-only

	Temporary Registers    rn
	12 vectors
	    3
	read/write

	Address Registers        an
	1 scalar
	    1
	write/use only


Instruction Storage

128 instructions

The Output Registers are defined by the register model of the raster shader, which must support the following minimum counts.


Position

oPos

1 4-vector


Colors


oDn

2 4-vectors


TextureCoords
oTn

4 4-vectors


Fog


oFog

1 scalar float


Point size

oPts

1 scalar float

All registers are 4 component floating-point vectors. Vector elements are designated as x, y, z and w in this document, but no semantics are implied.

When using vertex shaders on an implementation without pixels shaders (ie that supports only the DX6/7 pixel processing model), the available output registers are:


Position

oPos

1 vector
required for clipping


Color


oDn

2 vectors
diffuse, specular


Texcoords

oTn

2 vectors
dwMaxSimultaneousTextures

5.2.2 Vertex Input Registers






vn

Each vertex from the input vertex stream(s) is loaded into the Vertex Input Registers before the shader is executed. The Vertex Input Registers are a register file consisting of 16 4-component floating-point vectors are designated as v0 – v15. These are read only.

Any single instruction may only access one Vertex Input Register, however, each source in the instruction may independently swizzle and negate that vector as it is read.

A declaration passed to CreateVertexShader() call, defines mapping between source vertex stream and Vertex Input Registers.  For the fixed-function pipeline, the input registers have the following fixed mapping:

D3DVSDE_POSITION    

0

D3DVSDE_BLENDWEIGHT
 
1

D3DVSDE_BLENDINDICES

2

D3DVSDE_NORMAL    
  
3

D3DVSDE_DIFFUSE     

4

D3DVSDE_SPECULAR   
 
5

D3DVSDE_TEXCOORD0 
  
6

D3DVSDE_TEXCOORD1 
  
7

D3DVSDE_TEXCOORD2   

8

D3DVSDE_TEXCOORD3   

9

D3DVSDE_TEXCOORD4   

10

D3DVSDE_TEXCOORD5   

11

D3DVSDE_TEXCOORD6   

12

D3DVSDE_TEXCOORD7   

13

5.2.3 Constant Registers







c[n]

There are 96 4-component floating-point vectors comprising the Constant Register file. These Constant Registers are designated as c[offset] or c[offset + A0.x].

The constant register file is read-only from the perspective of the vertex shader.

Any single instruction may only access one Constant Register, however, each source in that instruction may independently swizzle and negate that vector as it is read.

It may be read via an absolute address, or addressed relative to an address register see 2.2.5.  Reads from out-of-range registers return (0.0, 0.0, 0.0, 0.0).

The constant register file has its data loaded by calling the API functions SetVertexShaderConstant() or SetVertexShaderConstants() . Alternatively, when creating a shader, user can specify what constants should be loaded during SetVertexShader() call. 

5.2.4 Temporary Registers






rn

The temporary registers are grouped into a file of 12 4-D floating point vectors.

These have single write and triple read access.  Therefore, an instruction can have as many as 3 temporary registers in its set of input source operands.

No values in temp registers that may remain from preceding invocations of the shader can be used.  Shaders that read a value from a temporary register before writing to it will fail CreateVertexShader().

5.2.5 Address Registers







an

There is only 1 scalar address register in DX8.

The address register (designated as A0.x) may be used as signed integer offset in relative addressing into the Constant Register File.

Reads from out of the legal range will return (0.0, 0.0, 0.0, 0.0).

Address registers may be a destination only for the MOV instruction.

Address registers cannot be read by the shader, just used in relative addressing of the constant register file.

Addresses read from outside the range of constant registers supported will return garbage.

Shaders that attempt to use the address register before setting it will fail CreateVertexShader().

5.2.6 Output Registers







oXxx

Output Registers are defined as the inputs to the rasterizer.  

Generated data is written into the Output Register File. It has write-only access.

These are indicated by the preceding lower case “o” to make it clear these are write-only.

oPos
- position in homogeneous clipping space (Must be written by the vertex shader).  

oFog
- fog factor to be interpolated and then fed to fog table (only scalar fog.x is used)

oPts
- point size (only scalar psize.x is used)

oDn
- array of output data registers that will iterated and fed directly to the pixel shader.  Typically used for colors 

oTn
- texture coordinates, an array of output data registers that will be iterated and used as texture coordinate by the sampling stages feeding the pixel shader.   Otherwise these are the same as the above.

Writes to other destinations are ignored.

5.2.7 Instructions

The vertex shader program can consist of up to 128 instructions.

Instructions can have a maximum of three input arguments (source register operands). 

Each source operand may be arbitrarily swizzled on read, including broadcast/replicate.

Each source operand may be negated.

Writes to the destination registers can include masking of individual components, i.e. only the specified components (x,y,z,w) are updated.  No swizzling or negation is supported on writes; therefore the output masks must be in the x-y-z-w order.

The software emulated front-end will use the masks on the output register writes to detect what parts of the output vertex a shader modifies and compute an output FVF accordingly for submission to hardware for rasterization-only use.

Here is the list of supported instructions.  These each consume one instruction slot from the instruction count limit.

mov
copy inputs to outputs

add
add

mad
multiply and add

mul
multiply

rcp
multiplicative inverse of source.w (21-bit)

rsq
inverse square-root of source.w  (21-bit precise)

dp3
3-element dot-product

dp4
4-element dot-product

min
returns min of both args for each component

max
returns max on per component basis

slt
returns 1.0 if <  else 0.0 for each component

sge
returns 1.0 if >= else 0.0 for each component

expp
exponential for specular lighting 10-bit precision

logp
inverse of above   (10-bit precision)

lit
lit colors given diffuse and specular dot

dst
(1, x, x^2, 1/x) given 1/x and x^2  For distance attenuation
Here is the list of supported macro instructions

These are comprised of multiple of the preceding instructions and are provided for convenience.  They consume more than one instruction slot from the instruction limit with the amount listed in parentheses.
m44(4)

m43(4)

m34(3)

m33(3)

m32(2)

frc(3)
fractional portion [0.0 to 1.0) of each component

exp(12)

log(12)

Differences vs pixel shader.

In DX8, the LRP operator is not supported in the vertex language, and the DP3 operator does not automatically clamp negative results to 0.0.

5.3 Example Programming Syntax:

For the purpose of presenting sample code, example syntax is defined here.  This syntax is parsed by a utility routine above the API in order to generate the standard tokens transmitted to the driver.  Alternative syntaxes may be supported by other parsing utilities, or the tokens may be specified directly.

The conventions for this syntax are shown below, followed by a grammar representation.

Registers are named as follows:

r4

- temporary register r4 vector

r4.x

- x component of register r4 vector

r5.xyz

- xyz component of register r5 vector

v0.y

- y component of vertex source position

The Constant Registers can be accessed as c[offset] (absolute) or c[A0.x+offset] (relative). In the relative case, a 32 bit signed address register is added to the offset. Reads from out of range addresses are recommended to return a result of  (0,0,0,0) in all hardware and software implementations, but as this cannot be relied on, applications must assume that such results are “undefined”.  Writes to such addresses are ignored.

Writes to the temporary data and output Registers can be masked. Each component is written only if it appears as a subscript.

Source operands may be swizzled before use via four subscripts (from xyzw):

.xyzw
means source (x, y, z, w) -> input(x, y, z, w)

.zzxy
means source (x, y, z, w) -> input(z, z, x, y)

.xxxx
means source (x, y, z, w) -> input(x, x, x, x)

Omitting all components is the same as specifying all components.

R6 is the same as R6.xyzw

.x is the same as .xxxx

.y is the same as .yyyy

.z is the same as .zzzz

.w is the same as .wwww

Any source operand may be negated by putting a “-“ sign in front.

add r4,   r1, r4

; result goes into r4

add oPos, r1, r2

; result goes into the output buffer
Colors are mapped into xyzw as rgba respectively.

Example Vertex Shader Syntax Grammar

Vertex Shader Examples

The following examples are shown in a representative syntax that would be parsed by a utility routine above the API in order to generate the token bit pattern transmitted to the driver.


; Skinning with copying texture coordinates from vertices


;


; c[0] – c[3]   Transformation matrix 1


; c[4] – c[7]   Transformation matrix 2


;


; v0   - position


; v1.x - weight


; v2   - diffuse


; v3   - texture


;


dp4 r0.x, v0, c[0]          ; transform using first matrix


dp4 r0.y, v0, c[1]


dp4 r0.z, v0, c[2]


dp4 r1.x, v0, c[4]          ; transform using second matrix


dp4 r1.y, v0, c[5]


dp4 r1.z, v0, c[6]


add r2, r0, -r1             ;


expp oPos.w,r0              ; pos.w = 1.0


mad oPos.xyz, v1.x, r2, r1  ; pos.xyz = weight*(r0-r1) + r1


mov texture[0], d3

5.4 Caps

D3Dcaps8->MaxPrimitiveCount

max prims in drawprim call

D3Dcaps8->MaxVertexIndex

for 32-bit indices since 4G is too high

D3Dcaps8->MaxStreams


max streams usable at one time

D3Dcaps8->MaxStreamStride

max stride for SetStreamSource

D3Dcaps8->VertexShaderVersion

Vertex Shader Version Number

D3Dcaps8->MaxVertexShaderConst
Number of Vertex Shader constant registers

There is one cap indicating the level of shader supported (only shaders with version numbers equal or less than this will succeed CreateVertexShader().  This level of shader is specified to CreateVertexShader as the 1st token in the shader token stream.

Devcaps->dwVertexShaderVersion

DX7 functionality is 0.0

DX8 is 1.0

DX9 is 2.0

Etc.

5.5 Error handling

Out of range address causes undefined read behavior.

5.6 Vertex Shader API Methods:

HRESULT IDirect3DDevice8::CreateVertexShader(LPDWORD pdwDeclaration,LPDWORD pdwFunction,LPDWORD pdwHandle);

This is used only in the DX8 style programming. The user passes in a declaration which defines the parallel DMA streams used, and the function which are the blending ops. D3D returns the Shader handle. The shader validation is done here. It is an error to have both the declaration and the function null.

A given shader may fail creation due to constraints of the DX8 hardware model.  The following error return values are supported:


D3DERR_EXCEEDEDINSTRUCTIONCOUNT


D3DERR_INVALIDOPERATION


D3DERR_INVALIDOPERAND

The above 2 errors can occur at any instruction including within shader “declarations”, such as texture address ops.

HRESULT IDirect3DDevice8::SetVertexShader(DWORD dwHandle);

This is the handle obtained from the CreateVertexShader().  The handle passed can also be a valid FVF code, which means that the legacy pipeline is to be used.
HRESULT IDirect3DDevice8::DeleteVertexShader(DWORD dwHandle);

Deletes the Vertex Shader from its internal entry.
HRESULT IDirect3DDevice8::SetVertexShaderConstant(DWORD dwRegisterAddress,LPVOID lpvConstantData,DWORD dwConstantCount);

6 Vertex  Shader Instruction Set Reference
6.1.1 Add









ADD

Format:

ADD
destination, source0, source1

Description:

Add sources into destination

Operation:

Register s0 = EvalSource(source0)

Register s1 = EvalSource(source1)

Register r;

r.x = s0.x + s1.x;

r.y = s0.y + s1.y;

r.z = s0.z + s1.z;

r.w = s0.w + s1.w;

Write(r, destination)

Examples:

ADD
R6, R5, c[10]

add
r4, r6, v2.w

6.1.2 3-D  Dot Product







DP3

Format:

DP3
destination, source0, source1

Description:

Compute three-component dot product of the sources into destination.

Operation:

Register s0 = EvalSource(source0)

Register s1 = EvalSource(source1)

Register r;

r.x = r.y = r.z = r.w = s0.x * s1.x + s0.y * s1.y  + s0.z * s1.z ;

Write(r, destination)

Examples:

dp3
r6, r3, r4

6.1.3 Four Component Dot Product





DP4

Format:

DP4
destination, source0, source1

Description:

Compute four-component dot product of the sources into destination.

Operation:

Register s0 = EvalSource(source0)

Register s1 = EvalSource(source1)

Register r;

r.x = r.y = r.z = r.w = s0.x * s1.x + s0.y * s1.y  + s0.z * s1.z + s0.w * s1.w ;

Write(r, destination)

Examples:

dp4
r6, r3, r4

6.1.4 Distance Vector







DST

Format:

DST
destination, source0, source1

Description:

Calculate distance vector. First source operand is assumed to be (ignored, d*d, d*d, ignored) and second source operand is assumed to be (ignored, 1/d, ignored, 1/d). Destination result vector is (1, d, d*d, 1/d).

Operation:

Register s0 = EvalSource(source0)

Register s1 = EvalSource(source1)

Register r;

r.x = 1.0;

r.y = s0.y * s1.y;

r.z = s0.z

r.w = s1.w;

Write(s, destination)

Examples:

6.1.5 Exponential Base 2 Partial Precision




EXPP

Format:

EXPP
destination, source

Description:

Provides exponential 2x partial support. Generate approximate answer in destination.z and allows for a more accurate answer of destination.x*FUNC(destination.y). Where FUNC is some user approximation to 2Destination.y  over the limited range of (0.0 <= destination.y < 1.0). Accepts a scalar source from the .w channel of the input register.  Reduced precision arithmetic is acceptable in evaluating destination.z.  However, approximation error must be < 1/(211) absolute error and over the range  0.0 <= t.y < 1.0.  Also, returns 1.0 in .w.

Operation:

Register s = EvalSource(source);

Register t;

t.x = 2**TruncateToMinusInfinity(s.w);

t.y = s.x - TruncateToMinusInfinity(s.w);

// frac()

t.z = t.x * approximation(t.y);
// Approximation error must be < 1/(211)

t.w = 1.0

Write(t, destination)

Examples:

6.1.6 Logarithm Base 2 Partial Precision




LOGP

Format:

LOG
destination, source

Description:

Provides log2(x) partial precision support.  Generates an approximate answer in destination.z and allows for a more accurate answer of destination.x + FUNC(destination.y), where FUNC is some user approximation to log2(destination.y) over a limited range (1.0 <= destination.y < 2.0).  Accepts a scalar source from the .w channel of the input.  The sign bit of the inpu is ignored.  Reduced precision arithmetic is acceptable in evaluating destination.z.  A zero source generates (-inf,1.0,-inf,1.0).

Operation:

Register s = abs(EvalSource(source));

Register t;

if(s.x != 0)

{


t.x = exponent(s.w);


// -128 <= exponent < 127


t.y = mantissa(s.w);


// 1.0 <= mantissa < 2.0

t.z = t.x + approximation(t.y);
// Approximation error must be < 1/(211)

t.w = 1.0;

}

else

{


t.x = -inf; 

t.y =  1.0; 

t.z = -inf; 

t.w =  1.0;

}

Write(t, destination)
Approximation error must be < 1/(211) in absolute error, and over the range  1.0 <= t.y < 2.0. Zero source generates (-inf,1.0,-inf,1.0).

Examples:

6.1.7 Light Coefficients







LIT

Format:

LIT
destination, source

Description:

Provides lighting partial support. Calculates lighting coefficients from two dot products and a power. The source vector is assumed to contain:


source.x  = N*L (dot product between normal and direction to light)


source.y  = N*H (dot product between normal and half vector)


source.z  = ignored


source.w = power.  This is clamped to the range  (–128.0 and 128.0)





noninclusive ie not [-128.0 .. 128.0].

Reduced precision arithmetic is acceptable in evaluating destination.z. An implementation must support at least 8 fraction bits in the power.  Dot products are with normalized vectors.  Clamp limits are –128 to 128.  Error should correspond to LOGP, EXPP combination or approximately 1 LSb worst case for a 8 bit color component.

Operation:

Register s = EvalSource(source);

Register t;

if ( s.x < 0.0 ) s.x = 0.0;

if ( s.y < 0.0 ) s.y = 0.0;

if ( s.w < (-128.0 + e) ) s.w = -128.0 + e;

if ( s.w > ( 128.0 – e) ) s.w =  128.0 – e;

// where e is epsilon ~= 1 least significant bit

t.x = 1.0;








// Ambient

t.y = s.x;








// Diffuse

t.z = ( (s.x>0.0) ? EXPP(s.w*LOGP(s.y)) : 0.0 )


// Specular

t.w = 1.0;

Write(t, destination)

Examples:

6.1.8  Multiply And Add







MAD

Format:

MAD
destination, source0, source1, source2

Description:

Multiply and add sources into destination

Operation:

Register s0 = EvalSource(source0)

Register s1 = EvalSource(source1)

Register s2 = EvalSource(source2)

Register r;

r.x = s0.x * s1.x + s2.x;

r.y = s0.y * s1.y + s2.y;

r.z = s0.z * s1.z + s2.z;

r.w = s0.w * s1.w + s2.w;

Write(r, destination)

Examples:

MAD
R6, R5, c[10]

MAD
R4, R6, v[2].w

6.1.9 Maximum








MAX

Format:

MAX
destination, source0, source1

Description:

Minimum of sources into destination

Operation:

Register s0 = EvalSource(source0)

Register s1 = EvalSource(source1)

Register r;

r.x = (s0.x  >= s1.x) ? s0.x : s1.x;

r.y = (s0.y  >= s1.y) ? s0.y : s1.y;

r.z = (s0.z  >= s1.z) ? s0.z : s1.z;

r.w = (s0.w >= s1.w) ? s0.w : s1.w;

Write(r, destination)

Examples:

MAX
r2, r3, r4

6.1.10 Minimum








MIN

Format:

MIN
destination, source0, source1

Description:

Minimum of sources into destination

Operation:

Register s0 = EvalSource(source0)

Register s1 = EvalSource(source1)

Register r;

r.x = (s0.x < s1.x) ? s0.x : s1.x;

r.y = (s0.y < s1.y) ? s0.y : s1.y;

r.z = (s0.z < s1.z) ? s0.z : s1.z;

r.w = (s0.w < s1.w) ? s0.w : s1.w;

Write(r, destination)

Examples:

MIN
r2, r3, r4

6.1.11 Move









MOV

Format:

MOV
destination, source

Description:

The contents of source are moved into destination.

Only MOV command can access A0 register.

Source float is truncated towards –infinity and converted to a signed integer for use in address registers A0.x.

Operation:

Register s = EvalSource(source)

Write(s, destination)

Examples:

mov
r5, -r4

; Move negative r4 into r5.  All components are copied.

mov
r5, v[0].w
; Move w component of v[0] into xyzw of r5.

mov
a0.x, r4.x
; Put r4’s x-component in the address register’s x-component.

6.1.12 Multiply








MUL

Format:

MUL
destination, source0, source1

Description:

Multiply sources into destination

Operation:

Register s0 = EvalSource(source0)

Register s1 = EvalSource(source1)

Register r;

r.x = s0.x * s1.x;

r.y = s0.y * s1.y;

r.z = s0.z * s1.z;

r.w = s0.w * s1.w;

Write(r, destination)

Examples:

MUL
R6, R5, c[10]

MUL
v5, R6, v2.w

6.1.13 Reciprocal








RCP

Format:

RCP
destination, source

Description:

Places reciprocal of source scalar into destination.   This is a scalar operation that takes its input from the  .w component of the input register.  The .w extension is required in DX8 shader syntax.  The output must be exactly 1.0 if the input is exactly 1.0.  The result precision should be at least 1.0/(2**22) absolute error over the range 1.0,2.0.  Since common implementation will separate mantissa and exponent.

A source of 0.0 yields infinity.

Operation:

Register s = EvalSource(source)

Register r;

r.x = r.y = r.z = r.w =  1/s.w;

Write(r, destination)

Examples:

rcp
r2, c[14].w

rcp
oTex2, r1.w

6.1.14 Reciprocal Square Root






RSQ

Format:

RSQ
destination, source

Description:

Places reciprocal square root of source scalar into destination.  This is a scalar operation and takes its input from the .w or scalar channel.  The .w must be specified in DX8 shader syntax.  The absolute value of this input is taken before processing, ie the sign bit is ignored.  The precision should be at least 1.0/(2**22) absolute error over the range (1.0,4.0), since common implementations will separate mantissa and exponent.

Output must be exactly 1.0 if the input is exactly 1.0.

A source of 0.0 yields infinity.

Operation:

Register s =Abs(EvalSource(source))

Register r;

r.x = r.y = r.z = r.w =  1/sqrt(s.w);

Write(r, destination)

Examples:

RSQ
r2, c[14].w

RSQ
oTex3, r1.w

6.1.15 Set On Greater Than or Equal To





SGE

Format:

SGE
destination, source0, source1

Description:

Sets destination to 1.0 if s0 is greater than or equal to s1. Set it to 0.0 otherwise.

Operation:

Register s0 = EvalSource(source0)

Register s1 = EvalSource(source1)

Register r;

r.x = (s0.x >= s1.x) ? 1.0 : 0.0;

r.y = (s0.y >= s1.y) ? 1.0 : 0.0;

r.z = (s0.z >= s1.z) ? 1.0 : 0.0;

r.w = (s0.w >= s1.w) ? 1.0 : 0.0;

Write(r, destination)

Examples:

sge r0, r1, r2

6.1.16 Set On Less Than







SLT

Format:

SLT
destination, source0, source1

Description:

Set destination to 1.0 if S0 is less than S1. Set it to 0.0 otherwise.

Operation:

Register s0 = EvalSource(source0)

Register s1 = EvalSource(source1)

Register r;

r.x = (s0.x < s1.x) ? 1.0 : 0.0;

r.y = (s0.y < s1.y) ? 1.0 : 0.0;

r.z = (s0.z < s1.z) ? 1.0 : 0.0;

r.w = (s0.w < s1.w) ? 1.0 : 0.0;

Write(r, destination)
Examples:

slt r1, r2, r3

6.2  Vertex Shader Macro Instructions

The following instructions are "macro instructions" which are provided for application convenience in performing common simple operations.  They are typically implemented as a series of the above core instructions.

These are guaranteed to expand to no more than the number of actual instructions listed (for the purpose of figuring out if you exceed the maximum instruction count limit):

Since these are passed to the implementation in the same manner as true instructions, the implementation is free to optimize them.  Therefore no assumptions can be made about actually cycle counts required.

6.2.1 4x4 Vector-Matrix Multiply





M44

Format:

M44
destination, source0, source1

Description:

Performs a product of the input vector and a 4x4 matrix.  The matrix is stored at source1 and the 3 subsequent registers in the same file.

This operation is commonly used to transform an position by a projection matrix.

This operation is implemented as a series of dot products.

Expansion (4 slots)

M44, r5, v[0], c[3]

Expands to:

DP4, r5.x, v[0], c[3]

DP4, r5.y, v[0], c[4]

DP4, r5.z, v[0], c[5]

DP4, r5.w, v[0], c[6]

This macro therefore consumes 4 instruction slots from the instruction count.

6.2.2 4x3 Vector-Matrix Multiply





M43

Format:

M43
destination, source0, source1

Description:

Performs a product of the input vector source0 and a 4x3 matrix.  The matrix is stored at source1 and the 2 next higher registers in the same register file.

This operation is commonly used for transforming a position vector by a matrix that has no projective effect, such as occurs in model-space transformations.

This operation is implemented as a series of dot products.

Expansion (3 slots)

M43, r5, v[0], c[3]

Expands to:

DP4, r5.x, v[0], c[3]

DP4, r5.y, v[0], c[4]

DP4, r5.z, v[0], c[5]

This macro therefore consumes 3 instruction slots from the instruction count.

Note that the last element w in each of c[3], c[4], and c[5] is ignored in this computation unless the input vector has a w value of 1.0.  If this w-value is 0.0, then no translation of the input vector will occur.  (ie the translation elements of the matrix will not be applied).

6.2.3 3x4 Vector-Matrix Multiply





M34

Format:

M34
destination, source0, source1

Description:

Performs a product of the input vector source0 and a 3x4 matrix.  The matrix is stored at source1 and the 2 subsequent registers in the same register file.

This operation is commonly used for transforming a position vector by a matrix that has a projective effect, but applies no translation.

It is no faster to execute than 

This operation is implemented as a series of dot products.

Expansion (4 slots)

m34, r5, v[0], c[3]

Expands to:

dp3, r5.x, v[0], c[3]

dp3, r5.y, v[0], c[4]

dp3, r5.z, v[0], c[5]

dp3, r5.w, v[0], c[6]

This macro therefore consumes 4 instruction slots from the instruction count.

Note that the last element w in each of c[3], c[4], and c[5] is ignored in this computation.

6.2.4 3x3 Vector-Matrix Multiply





M33

Format:

m33
destination, source0, source1

Description:

Performs a product of the input vector source0 and a 3x3 matrix.  The matrix is stored at source1 and the 2 subsequent registers in the same register file.

This operation is commonly used for transforming normal vectors during lighting computations.

This operation is implemented as a series of dot products.

Expansion (3 slots)

M33, r5, v0, c[3]

Expands to:

DP3, r5.x, v0, c[3]

DP3, r5.y, v0, c[4]

DP3, r5.z, v0, c[5]

This macro therefore consumes 3 instruction slots from the instruction count.

Note that the last element w in each of c[3], c[4], and c[5] is ignored in this computation.

6.2.5 3x2 Vector-Matrix Multiply





M32

Format:

M32
destination, source0, source1

Description:

Performs a product of the input 3-vector source0 and a 3x2 matrix.  The matrix is stored at source1 and the next higher register in the same register file.  A 2-D result is produced, leaving the other elements of dest (z and w) unaffected.

This operation is commonly used for 2-D transforms.

This operation is implemented as a pair of dot products.

Also available in the pixel shader instruction set.

Expansion (2 slots)

M32, r5, v0, c[3]

Expands to:

DP3, r5.x, v0, c[3]

DP3, r5.y, v0, c[4]

This macro therefore consumes 2 instruction slots from the instruction count.

Note that the last element w in each of c[3] and c[4] is ignored in this computation.

The output result register’s .z and .w elements are unaffected.
6.2.6 Fraction







FRC

Format:

FRC
destination, source

Description:

Returns fractional portion of each input component.   Each component of the result is in the range [0.0  ..  1.0).

Operation:

Register s = EvalSource(source);

Register t;

t.x =  s.x - TruncateToMinusInfinity(s.x);

t.y =  s.y - TruncateToMinusInfinity(s.y);

t.z =  s.z - TruncateToMinusInfinity(s.z);

t.w = s.w - TruncateToMinusInfinity(s.w);

Write(t, destination)

Expansion:

exp r0, s0, s1

exp

exp

Examples:

Map x,y position of a point into unit square to add tiled displacement map.

6.2.7 Exponential Base 2    Full Precision



EXP

Format:

EXP
destination, source

Description:

Provides exponential 2x support with full precision (at least 1/(220).  This is a scalar operation and takes its input from the .w channel, which must be specified.  It always replicates the result into all output 4 channels.

Operation:

Register s = EvalSource(source);

Register t;

t.x = t.y = t.z = t.w = 2**(s.w);

Write(t, destination)

Expansion:

This macro takes 12 instruction slots and even more clock cycles.

Examples:

6.2.8 Logarithm Base 2     Full Precision



LOG

Format:

LOG
destination, source

Description:

Provides log2(x) support with full float precision of at least 1/(220). Accepts a scalar source .w of which the sign bit is ignored.  Result is replicated to all 4 channels.

The input exponent must be in the range –128 to 128.

Operation:

Register s = abs(EvalSource(source));

Register t;

if(s.x != 0)

{


t.x = exponent(s.w);


// -128 <= exponent < 127


t.y = mantissa(s.w);


// 1.0 <= mantissa < 2.0

t.z = t.x + approximation(t.y);
// Approximation error must be < 1/(211)

t.w = 1.0;

t.w = 

}

else

{


t.x = t.y = t.z = t.w = -Inf; 

}

Write(t, destination)

Approximation error must be < 1/(220) in absolute error, and over the range  1.0 <= t.y < 2.0. Zero source generates (-Inf,-Inf,-Inf,-Inf).

Examples:

6.3 Vertex Shader Sample Utilities

These represent common usages of the above instructions, and are provided as examples of their implementation.

6.3.1 Linear Interpolation Blend (LERP)



LRP

Format:

LRP
destination, source0, source1, source2

Description:

Performs a linear interpolation blend between source1 and source2, where source0 is the proportion of the blend to use.

Destination = source0*source1 + (1.0 – source0)*source2


       = source1 + source0*(source2 – source1)

Expansion (2 slots)

SUB destination, source2, source1

MAD destination, source1, source0, destination

LRP r5, r0, r1, r2

ADD r5, r2, -r1

MAD r5, r1, r0, r5

Operation:

Register s0 = EvalSource(source0)

Register s1 = EvalSource(source1)

Register s2 = EvalSource(source2)

Register r;

r.x = s1.x + s0.x*(s2.x – s1.x)

r.y = s1.y + s0.y*(s2.y – s1.y)

r.z = s1.z + s0.z*(s2.z – s1.z)

r.w = s1.w + s0.w*(s2.w – s1.w)

Write(r, destination)

Note if this were a macro instruction, the result register would be required to be in a read-able bank since it is used for an intermediate result.

6.3.2         Cross Product







CP3

Format:

CRS
destination, source0, source1

Description:

Performs the 3-D cross product of two input vectors.

Destination = source0 CROSS source1

Expansion (2 slots)

MUL destination0, source0.yzxw, source1.zxyw

MAD destination1, destination0, source0.zxyw, -source1.yzxw

Operation:

Register s0 = EvalSource(source0)

Register s1 = EvalSource(source1)

Register s2 = EvalSource(source2)

Register r;

r.x = s0.y*s1.z – s0.z*s1.y

r.y = s0.z*s1.x – s0.x*s1.z

r.z = s0.x*s1.y – s0.y*s1.x

r.w = 0.0

Write(r, destination)

Note if this were a macro instruction, the result register would be required to be in a read-able bank since it is used for an intermediate result.

Examples:

6.3.3         Reflection






RFL

Format:

RFL
destination, source0, source1

Description:
Performs the 3-D reflection calculation of source0 by the plane defined normal to source1.

Destination = s0 – 2.0*( s0 dot s1 )*s1

Expansion A  (3)

DOT3 t, s0, s1

MAD  r, s0, -t, s1

MAD  r, s0, -t, s1

Takes 3 slots but needs an additional temp register t.

Expansion B  (4)

DOT3 r, s0, s1

MUL  r, r, s1

MUL  r, r, c2222

ADD  r, s0, -r
Needs only 1 temp register (the output result register), but takes 4 slots.

Note if this were a macro instruction, the result register would be required to be in a read-able bank since it is used for an intermediate result.

6.3.4 Normalize 







NM3

Format:


nm3
d, s0

Description:

Normalizes a vector.  Writes the result to all 4 components of the destination.   Note that if this operator is used

Expansion:

dp3  d.w, s0, s0

rsq  d.w, d.w

mul  d.xyzw, s0, d.w

Examples:

6.4  Other Common Algorithms

        OUTER(4)

// not common

        DETERMINANT(3)

        PROJECT (2)

PRJ

A dot b * a


DOT3 r, s0, s1


MUL  r, s0

Perp

Find a perpendicular to a in the plane of b


DOT3 r, s0, s1


MAD r, s1, s0, -r

Why don’t these all broadcast to all 4 elements?

        EXP (8)

        LOG (8)

        POW   (8)

Uses EXPP and LOGP to compute y^x

        POWP (2)

        SIN    (10)


// only in the range –PI/2 to PI/2

        COS    (10)

        TAN    (10)

        ATAN   (16)

        MODULO (10)

        ...etc

Color values are clamped to the range supported by the pixel shader.

7 Shader Language

7.1.1 Debugging Support

This section describes debugging support built in to the Direct3D runtime and reference device for DirectX 8.0.

Direct3D debugging support is based on making the internal state of the reference device queriable by an application, and enabling a single-step functionality to allow the application to access this state at processing points between primitives, pixels, or individual shader instruction execution.

The debugging support at the Direct3D API and runtime consists of a data messaging method and callback which allows the application and reference device to exchange data.  There is also a special renderstate, D3DRS_DEBUG, which has bits to control items such as causing the runtime to immediately flush all driver commands.

The data messaging is supported by two API calls: the first to send a message to the reference device, and the second to install a callback which the reference device uses to send a message to the application.  The callback message also allows the application to immediately return a message to the reference device at the end of each callback (so, for example, the reference device can be told to step to the next primitive instead of making a callback for each subsequent pixel or shader instruction).  

The runtime does not know (or care about) the format of these messages - the message content is determined by the reference device and the application.  The messaging protocol for the reference device shipped with the SDK will be well defined.  Different messaging protocols can be defined for different versions of reference device (which is in a separate DLL and can be replaced independent of the runtime core).

Debugging support is only available for the Direct3DRefDevice, and under the debug build of the runtime.

-----------------

7.2 Hardware Requirements

Direct3D for DX8 has well defined sets of required and optional features for the hardware that implements it.

Required features are verified by WHQL  Feature cross-dependencies are not allowed – features which do not function as specified in combination with other features are defined as unsupported.

Support for optional features are broadly characterized by capability queries.  Fine grained capability characterization for optional features is done via Validate() mechanisms.

An example of expected hardware definition is included in Appendix 1.

8 Sprite Points

Sprite points were cut late from DX7, but are present in DX8.  They are not supported in the “fixed-function” geometry pipeline, only in the programmable vertex processing model.

8.1 Description

This feature enables the rendering of points.  

Generic points:  enabled by D3DPRIMTYPE_POINT, respects D3DRS_POINTSIZE


As per opengl.  Not a reqt.

Point sprites are generalizations of these that enable arbitrary shapes to be rendered as defined by textures.

This is OK as an extension because:

   There is little benefit in supporting this feature in d3d run-time since bandwidth is not saved.

   Even drivers for non-t&l parts can do better at this than the DirectX run-time can.

   The only remaining justification is increased availability to ISVs, but this can be addressed via sample code.

8.2 Market Justification

Support for particle system rendering is required by both technical and entertainment class applications/APIs.

Entertainment:

Particle system rendering is used by most game ISVs,

Entertainment applications are very interested in particle systems.  These can be rendered by the current API, but if implemented in the driver or chip result in a 4x reduction in bandwidth requirements up to that point.  This substantially increases the number of particles that can be rendered in a given scene.

Particles are used for: sparks, explosions, snow, flares, etc.

Alternative techniques for some of these include line lists, especially when antialiased.

Technical:

Required by all CAD apps.

This feature enables D3D to be used efficiently for technical applications that require screen-space points to mark positions in diagrams, etc.

8.3 CAPS:

D3DPRIMCAPS?

8.4 API:

D3DRS_POINTRADIUS (float) 

Allows app to specify desired radius of points for next DrawPrim call.

Defaults to 1.0 indicating that point is 1 screen pixel in width.

D3DRS_POINTSCALEENABLE, bool

Controls whether point size is specified in screen space pixels (false) or in world-space units that are scaled by 3-D distance from the eye (true).

Specifying values less than 1.0 as point radius results in 1 integer pixels that may be fainter if  antialiasing is enabled

Is this fall-off a fn of depth or range?  Does it need a separate fall-off function?

D3DRS_SPRITEPOINTENABLE, bool

Generates screen-space sprites from any rendered points when true.  This causes the points to be rendered as textured quads.

8.5 DDI:

The above new renderstate tokens are added into the DP2 command stream.


D3DRS_POINTSIZE, (float)


D3DRS_SPRITEPOINTENABLE (bool)

8.6 Usage:


Set up desired texture for sprite/billboard


Set point size with D3DRS_POINTSIZE


Set D3DRS_SPRITEPOINTENABLE to enable textured points


Turn on POINTSCALEENABLE to enable variation of size with distance


Call DrawPrimitive( D3DPT_POINTLIST, pts );

Typical particle system would be rendered with a few calls, allowing multiple point sizes or textures or colors.

8.7 Implementation:

A variety of implementations can be supported:

1) Some T&L parts may be able to build sprites off-host by using geometry hardware on the far end of the bus.  The primary benefit is 3x reduction in vertex data sent.

2) Some parts should be able to take advantage of the fact that they are regular in screen-space and generate them at the setup stage.  This is the encouraged implementation.  This should enable point-sprites to be rendered 4x faster than 2 triangles, since there is only one, and there are no divisions required.

Sprite point size is specified in screen coordinates assuming a distance of 1.0.

Some older implementations may have upper limits on the size of point that can be generated.  This should be at least 32 for std points and have no upper limit for sprite points.

When enabled via D3DRS_SPRITEPOINTENABLE,


Driver takes all points rendered via DrawPrimitive,


projects them into screen space as sprite centers


scales current POINTRADIUS by z depth for perspective.


adds this radius value to screen space point to create 4 corners of quad


sets 2-D u,v texcoords of 4 quad corners to range (0,0) .. (1,1)


renders as 2 triangles using current pixel pipeline state.

The resulting quad should obey current polygon rendering state including:


diffuse color (constant across polygon, etc)


fog and alpha blending state


any multitexture enabled.

Except that:


cull mode is completely ignored.


FILLMODE is ignored


perspective correction and therefore rhw not reqd unless w-buffering

Note:


Depth compare disable support is absolutely required to work since it is common case.

8.7.1 Caps:

Point size Pmax (default = 1.0f; range >= 0.0F)

dvMaxPointSize is added to D3DDeviceDesc7 struct

8.7.2 RenderStates

Point size d (default = 1.0f)

D3DRENDERSTATE_POINTSIZE

These 3 renderstates control the fall-off of point size with distance.  Setting these to ( A, B, C) = (0, 0, 1) results in linear fall-off with distance.  This is the usual case for geometric objects, and is the default.

Point size param a (default = 1.0f)

D3DRENDERSTATE_POINTATTENUATION_A

Point size param b (default = 0.0f)

D3DRENDERSTATE_POINTATTENUATION_B

Point size param c (default = 0.0f)

D3DRENDERSTATE_POINTATTENUATION_C

Point size minimum Pmin (default = 1.0f; range >= 0.0F)

D3DRENDERSTATE_POINTSIZEMIN

Sprite Point Mode: on / off (default = off)

D3DRENDERSTATE_POINTSPRITEENABLE

8.7.3 FVF Code

Per-Vertex Point Size d
D3DFVF_S
8.7.4 Input Point Size

If input vertex FVF has D3DFVF_S set, then per-vertex d is used, else renderstate d is used.

8.7.5 Computation of Final Point Size

Let Pe = (Xe, Ye, Ze) be an eye space point

r = sqrt (Xe2 + Ye2 + Ze2)

d' = d * sqrt(1/(a + b*r + c*r2))

Note that ( 0, 0, 1 ) is linear fall off needed for geometric objects.

Final point size s =
Pmax 

if d' > Pmax


    
Pmin

if d' < Pmin


    
d'

otherwise

8.7.6 Frustum Clipping

When clipping is enabled, points are clipped as follows.  If the vertex is outside the view frustum in Z (either near or far), then the point is culled.  If the point, taking into account the point size, is totally outside the viewport in x or y, then the point is culled.  Remaining points are rendered.  Note that it is possible for the point vertex to be outside the viewport (in x or y) and still be partially visible.

The driver must handle frustum clipping of any partially visible points of any radius < Pmax

8.7.7 Arbitrary Plane Clipping

Implementations that perform point sprite quad generation in the setup phase yet implement arbitrary plane clipping in the vertex engine (such as the SW geometry pipeline) will not be able to perform exact clipping of point-sprites against arbitrary clip planes.  In this case point sprites will be culled against arbitrary clip planes and therefore may pop.  Applications may prevent this by adding a border geometry to such portals that is as wide as the particle radius.

8.7.8 Sprite Point Rendering

A screen space point P = (X, Y, Z, W) of size s is rasterized as a square of the following 4 vertices:

(X - s/2, Y - s/2, Z, W)
(X + s/2, Y - s/2, Z, W)
(X - s/2, Y + s/2, Z, W)
(X + s/2, Y + s/2, Z, W)
If Sprite point mode is off, all vertex attributes of the point are copied for each vertex of the square.  If Sprite mode is on, the texture coordinates at the vertices are:

(0,0)


(SPRITETEXCOORDMAX,0)

(0, SPRITETEXCOORDMAX)
(SPRITETEXCOORDMAX, SPRITETEXCOORDMAX)

#define SPRITETEXCOORDMAX (4095.75F/4096.F)

All other vertex attributes are copied at each corner of the square.

8.7.9 Non-TnLHal - input FVF is untransformed:

Final point size computations are done in runtime library.  Points are clipped such that those which are outside the Z near/far and totally outside the viewport in x and y are culled prior to sending to the driver.  The output point size s is sent on a per vertex basis to the driver using D3DFVF_S.

Driver uses D3DRS_POINTSPRITEENABLE to render sprite.  All other point-related renderstates are ignored by driver.

8.7.10 Non-TnLHal - input FVF is transformed:

Runtime just passes vertices directly to driver.  No clipping or point-size computations are done.  For final point size, driver uses per-vertex size if D3DFVF_S is set, else D3DRENDERSTATE_POINTSIZE.

Driver clamps point size to between D3DRENDERSTATE_POINTSIZEMAX and dvMaxPointSize, and uses D3DRENDERSTATE_POINTSPRITE_ENABLE to render sprite.  All other point-related renderstates are ignored by driver.

8.7.11 TnLHal:

TnLHal devices are required to fully support both the per-vertex point size computations and the point rendering.  Device must achieve same result as non-TnLHal for both untransformed and transformed input vertices.

Driver uses all point-related renderstates to process and render point list.

8.7.12 Programmable Vertex Processing

Sprite point radius is an output value that may be emitted by the vertex shader.  The vertex shader code can implement whatever processing is desired to generate this radius including none, or arbitrarily complex range-attenuation models.  The results of writing into this output registers are ignored when SPRITEPOINTENABLE is false.

Where we differ from OpenGL spec:

We do not automatically do a circle when antialiasing is on.

We allow a complete texture per point. (with Point sprite mode on)

We do not modify the alpha when diameter is < threshold.

9 Higher-Order Primitives

Direct3D now supports points, lines, triangles, and grid primitives.  These have been extended to support higher-order interpolation beyond linear.

9.1 Description

The current primitives supported by Direct3D are points, lines, and triangles.  While triangles and lines have spatial extent, they were until now both rendered using linear interpolation.  In DirectX 8.0 Direct3D supports rendering of these primitive types using higher order (up to cubic) interpolation.

Further, a new quad primitive type is now supported, that can also admit higher-order interpolation during rendering.

These primitives support such higher-order interpolation when transmitted to the API as lists, strips, fans, or indexed meshes.

This is achieved by using additional information encoded in the vertices themselves.  For example, normal vectors can be used define tangent planes at the vertices to enable cubic interpolation.

Most implementations will support higher-order interpolation by tessellation into planar triangles.  The tessellation step is applied logically before the vertex shader stage.  Since the shader API does not impose semantics on its input data, a special mechanism is provided to identify the vertex stream component that represents position, and optionally normal vector.  All other components will be interpolated accordingly.

9.1.1 Future Features:

In DX8 there is no support for curved lines

There is currently no support for specifying crease edges.  The authoring tool must create any sharp edges either as (crack-prone) boundaries between patches, or by inserting very small interpolating patches.

In later releases, support will be added for tangent smooth crease edges, and sharp points.

9.2 Market Justification

There are two primary justifications for interest in higher-order surfaces, improving rendering quality, and supporting HO technologies in common DCC authoring tools.

9.2.1 Improved Quality via Resolution Enhancement

Current primitives are not ideal for representing smooth surfaces.  Higher-order interpolation methods, such as cubic polynomials allow more accurate rendering of curved shapes.  This provides increased realism by reducing or eliminating faceting artifacts visible on silhouette edges or on specular surface lighting.  Further, when tessellation occurs on the chip, the tessellated triangles do not impact bus bandwidth.

In many cases a small amount of tessellation can provide good improvements in image quality with minimal performance impact.

Direct3D for DX8 provides a simple way to apply resolution enhancement to content created by existing polygon-oriented tools and art pipelines.  The application need only provide a desired level of tessellation, and transmit the data using standard triangle syntax that includes normal vectors.

9.2.2 Direct Mapping from Spline-based Tools

Many current authoring tools support higher-order primitives to enable more powerful modeling operations than are commonly provided for planar triangle meshes.

When used efficiently, ie so that the number of patches generated is reasonable, such tools can produce content that can be rendered directly by the API.

To meet this requirement, a new entry point has been added that interprets the incoming vertex data stream as a 2-D array of control points and tessellates it to the desired resolution.

9.2.3 Supported/Required By:

This feature is primarily driven by requirements for animation and rendering of characters.  It can also be used for other surfaces such as terrain or water.

9.3 Caps:

dwMaxPrimitiveOrder

9.4 API

The following new renderstates are supported to render higher-order primitives.

9.4.1 D3DRS_NUMSEGMENTS <float>

Identifies the number of segments that each edge of the primitive should be divided into when tessellated.

Provided as a float, allowing the fractional part to be gradually introduced to minimize popping artifacts.  However, implementations are free to round down to the nearest integer in the DX8 time frame.

Implementations should support an upper limit of at least 8 segments per edge and can silently truncate to this limit if it is exceeded.

Affects all primitives rendered.  Defaults to 0, which is the same as 1 indicating 1 segment per edge, or no subdivision applied.

If this parameter is set to a negative value, the tessellation is adaptive, and based on other criteria that are TBD.

9.4.2 D3DRS_PRIMITIVEORDER

Independent primitive orders can be specified for position and normals.  This enables linear planar surfaces with higher-order normals for lighting, or cubic surfaces with lower-precision normals for improved performance.

An integer indicating the order of polynomial used to interpolate subdivided segments for the position components of primitives rendered by the API.  The values map as follows

  1  linear
<default>  corresponding to planar triangles

  2  quadratic
Not supported in DX8 for position data

  3  cubic
cubic polynomial defined by D3DRS_HOBASIS.

  4 or more
Not supported in DX8.

Values of 1(linear) and 3  (cubic) are required by the implementation to claim HO support in DX8.

When the order is set to 1, the basis type is ignored.

In the future, other values may be supported.  Even values are uncommon.

Defaults to 1 even when set to 0.

This parameter affects all primitives rendered, and is independent of the HOBASIS specified.

This parameter governs the interpolation order for all vertex data specified, whether it be position, texture coordinates, normals, etc.

More specific controls for interpolating this data may be provided in later releases. (such as a per-stream parameter)

9.4.3 D3DRS_NORMALORDER <int>

An integer indicating the order of polynomial used to interpolate normal vectors for the primitives rendered by the API.  This parameter allows independent control of the precision used in generating normal vectors from that used in generating position values.

  The values map as follows:

  0  default     <use D3DRS_PRIMITIVEORDER>

  1  linear
<default> corresponding to Gouraud shading.

  2  quadratic


  3  cubic
cubic polynomial defined by D3DRS_HOBASIS

9.4.4 D3DRS_HOBASIS

A parameter specifying the formulation to be used in evaluating the HO surface primitive during tessellation.

D3DBASIS_TYPE

{
    D3DHO_NORMAL  = 1,
// use normals to define splines

    D3DHO_BSPLINE = 3,
// B-Spline

    D3DHO_BEZIER  = 4,
// Bezier polynomial

    D3DHO_INTERP  = 5,
// Catmull-Rom interpolating spline

}

Only cubic forms of these are supported in DX8.  When order is linear, the basis is ignored and the input vertices are interpolated.

NORMAL uses normals to define cubics where triangles are submitted using any of the API primitive types for Draw, or DrawGrid.

BSPLINE treats the input vertices as control points of a b-spline surface.  The number of apertures rendered is 2 less than the number of apertures in that direction.  The surface generated does not in general contain the control vertices specified.

BEZIER treats the input vertices as a series of bezier patches.  The number of vertices specified must be divisible by 3 +1.  Portions of the mesh beyond this criterion will not be rendered.  Full continuity is assumed between sub-patches in the interior of the surface rendered by each call.  Only the vertices at the corners of each sub-patch are guaranteed to lie on the resulting surface. 

INTERP uses an interpolating basis to define the surface so that it goes through all the input vertices specified.

9.4.5 D3DDevice::DrawGrid()

A new entry point is defined that is analogous to D3DDevice::Draw(), but specifically for use with grid primitives.

D3DDevice::DrawGrid( dwPitch, rect subrange, BASIS, float*NumSegments

Interprets the input vertex stream as a 2-D grid of pitch dwPitch vertices.

This call respects the D3DRS_PRIMITIVEORDER.  When set to 1, it will render a mesh of triangles exactly as though they were a series of D3DPT_TRIANGLESTRIPs.

Subrange

4 integers defining a subrect region of the grid

NumSegments

When null, the tessellation level is defined by D3DRS_NUMSEGMENTS, otherwise this must be an array of 4 floats defining number of segments to be generated along each edge of the primitive.  The interior tessellation is implementation defined, but should not be coarser than the lower of the two opposing values.

To obtain adaptive tessellation, 

9.5 Usage:

9.5.1 Resolution Enhancement

Check content with authoring tool plugin

Set NumSegs based on LOD (2 or 3 is often sufficient), and can be used on a user-settable quality slider for example.

Set D3DRS_PRIMITIVEORDER to 3

Set D3DRS_HOBASIS to NORMAL

Render triangles using D3DPT_TRIANGLEXXX as usual.

9.5.2 Direct Rendering of Spline Content

Set D3DRS_PRIMITIVEORDER to 3.0

Set D3DRS_HOBASIS to that which the authoring tool emitted

Call DrawGrid()

9.6 Test Procedure

9.7 Implementation

Triangle algorithm is as follows:

 for each edge

    Project edge vector onto each end’s normal, scale by 1/3 to obtain the two interior control pts for representing a cubic bezier patch.

 Compute patch center control vertex by reflecting corner pts into interior and averaging.

This provides a standard cubic bezier patch that can be rendered using any desired algorithm.

Interpolate normal vectors to match.

DrawN_Patch(



float NumSegs
// nr of segs each edge gets divided into



DWORD dwGeometryOrder,



DWORD dwNormalOrder )

{

     for each triangle( v0, v1, v2)


for each edge


    ComputeEdgeInteriorControlPoints


ComputePatchInteriorControlPoint()


load them all into a cubic triangle bezier patch


tessellate it using cubic triangle routine to level specified by NumSegs


If normal interpolation order > 1


  ComputeNormalInteriorControlPts()
// one per edge


  Load them into a quadratic triangle patch and


  tessellate it using quadratic triangle routine to level specified by NumSegs


Linearly interpolate any other parameters like color/texcoords, etc.


Call real DrawPrimitive passing in new data.


Should be a series of strips.

}

ComputeEdgeInteriorControlPoints()

// no error return, cannot fail

{


float Tension = 1.0/3.0 

// for now. Should be a renderstate.


edge = v1 - v0


Cv01 = v0 + (edge - (edge dot N0)*N0)*Tension


edge = v0 - v1


Cv10 = v1 - (edge - (edge dot N1)*N1)*Tension


edge = v2 - v1


Cv12 = v1 + (edge - (edge dot N1)*N1)*Tension


edge = v1 - v2


Cv21 = v2 + (edge - (edge dot N2)*N2)*Tension


edge = v0 - v2


Cv20 = v2 + (edge - (edge dot N2)*N2)*Tension


edge = v2 - v0


Cv02 = v0 + (edge - (edge dot N0)*N0)*Tension

}

// yes you can avoid half of the above subtracts by swapping end for end,

// but I wanted to be clear

ComputePatchInteriorControlPoint()
// std result for single interior pt

{


Cv = (Cv01 + Cv02 + Cv12 + Cv10 + Cv21 + Cv20)/4.0;
// edge control pts


Cv -= (v0 + v1 + v2 )/6.0;




// corner pts

}

// this routine would be used for quadratic interpolation of normals

// ala vanOverVeld.

ComputeNormalInteriorControlPts()

{


Navg = (N0 + N1)*0.5;

// average the normals at both ends


enorm = Normalize( v1 - v0 );

// normalize edge vector (wah)


Nproj = (enorm dot Navg)*Navg;
// project onto edge vector


Nmid = Navg - 2*Nproj;


// reflect it

}

The 2-segment-per-edge tessellation case will probably be the most common usage.  It can be reduced down to 9-10 clocks per edge using algebraic simplification of deCastlejau.  This is 30 clocks per triangle, assuming 4-vector code. 

The midpoint is v0/8 + v1*3/8 + v2*3/8 + v3/8 using decastlejau for 0.5

but v1 = v0 + k/3 where k is (e - (n0.e)*n0) so we get

midpt = v0/2 + k/8

plus the contribution from the other end of that edge

 += v3/2 + k'/8 where k’ = ((n3.e)*n3 – e) and e = v3 – v0

9.8 DDI:

9.8.1 Structures

The primitive type is extended by new types, the quadgrid.

This struct is DDI-visible only. 

typedef enum _D3DPRIMITIVETYPE {

    D3DPT_POINTLIST     =  1,

    D3DPT_LINELIST      =  2,

    D3DPT_LINESTRIP     =  3,

    D3DPT_TRIANGLELIST  =  4,

    D3DPT_TRIANGLESTRIP =  5,

    D3DPT_TRIANGLEFAN   =  6,

    D3DPT_QUADLIST      =  8,

    D3DPT_QUADSTRIP      = 10,

    D3DPT_FORCE_DWORD   = 0x7fffffff,

} D3DPRIMITIVETYPE;

9.8.2 State Information

See above renderstates.

9.8.3 Vertex Data

No change to vertex data is required in DX8.

10 Full-Screen Anti-Aliasing and Multi-Sample Rendering Support

The full-scene anti-aliasing support provided in DX7 and earlier releases has been extended with related functionality to support multi-sample rendering techniques.  The previous functionality still works as before.

10.1 Description

Current hardware is beginning to support full-scene anti-aliasing and other effects such as depth-of-field focus blur, and motion blur.  In most cases, this is accomplished by updating the render target using multiple samples per frame-buffer pixel.  This hardware can be used in two different ways, one for antialiasing, and the other for multisample rendering.

When used for full-scene anti-aliasing, all sub-samples of a pixel are updated in one pass, but when used for other effects that involve multiple rendering passes, the application can specify that only some of the sub-samples are to be affected by a given rendering pass.  This latter approach enables simulation of motion blur, depth of field focus effects, reflection blur, etc.

In both cases, the various samples recorded for each pixel are blended together and output to the screen.  This enables the improved image quality of anti-aliasing or other effects.

The technique described here is a limited form of accumulation buffers that enables the majority of their applications with much reduced hardware and API complexity.

Currently there is too much variation in the hardware formats for rendertargets that support antialiasing to allow Lock() on such Surfaces.

10.2 Market Justification

Effective antialiasing is an important capability in bringing 3D rendered image quality up to the level seen in television and movies.  Up until now, only ray-tracers and other high-end (non-real-time) renderers used in special effects could support it easily.  Other anti-aliasing schemes used in the real-time space such as edge-antialiasing, and sort-dependent schemes impose significant effort on the application developer.  Full-scene schemes require only a small amount of setup effort.

Other techniques enabled by multisample techniques such as motion blur are becoming important in enabling the next level of realism in racing games.  Focus blur, and other blur effects may also be useful in some applications.

10.2.1 Supported/Required By:

Applications interested in using effects like antialiasing, motion blur, depth of field focus blur, reflection blur, drunken blur, etc.

10.3 API Usage:

Driver exposes a list of sampling qualities it can support as integers { 1 2 4 8…}, defining the quality levels (expressed as number of samples) it can support.

The application then requests a level of quality of AA on RenderTarget creation via a flag.  This quality level is expressed as the number of samples a given pixel should support.

If this succeeds then the application queries the device to fine out the number of samples that were actually allocated.  It then knows the number of bits that are valid in the mask flags, and how many separate passes could be made.

Existing flags for CreateSurface should still work, except for the HINT part.

D3D

D3DRS_ANTIALIASENABLE, bool
to turn it on/off

D3DRS_ANTIALIASMASK, DWORD with bits to set for each mask.

D3DRS_ANTIALIASSAMPLECOUNT
suitable only for get.

Returns actual buffer sample count available.  This may vary even on the same HW implementation as a function of the resolution requested for the render target.  The driver may limit total number of samples in low-memory, hi-res mode conditions.

The application should expect changes in quality to be analogous to a mode-change as far as memory allocation goes.  Apps must destroy and recreate the render target surface to change sampling quality.

It is still required to support the ability to enable/disable antialiasing completely in response to the enable state.  This is required for support of objects that may already have been antialiased.  It is effectively accomplished by setting all sub-samples of a pixel to the same value.

10.4 Caps:

DwMultiSampleQuality

10.5 Test Procedure

10.6 Implementation

10.7 DDI:

Uses current DX6/7 DP2 DDI tokens

Namely HINTANTIALIAS

D3DRS_AA

10.7.1 Structures

10.7.2 State Information

10.7.3 Vertex Data

11 Other Features

11.1 Technical Market Features

These features are intended for technical applications and will neither be required or recommended in the MPC spec.  WHQL will still test for these if they are exposed, using tests designed to meet key technical market ISVs certification requirements.

Polymode line

dashed lines

stippled lines

Ability to disable antialiasing of lines and points.

11.2 Proposed Features

This is a list of features found in earlier APIs that are not planned for incorporation into the core.  Please notify us immediately of any requirements for these features.

Many can be provided by higher-level software components.

Direct enumeration of surface/texture formats


This makes it very difficult to write applications that can handle addition of new formats.

Transparent software emulation of rasterization functionality


There is no possibility at this point of implementing transparent software fail-over with acceptable performance characteristics.

gl-style feedback


It is a key goal to avoid transfer of data from the graphics subsystem to the host wherever possible.  Currently processors are fast enough that re-computation on the host is more efficient.  The only justification for this being considered is for test verification and certification to encourage vertex processing consistency.

select/picking (probably DX9)


As more of the pipeline gets moved over into hardware, the requirement for getting accurate picking information back to the host may increase.   A synchronous data return mechanism is expected to be sufficient.

quads, n-gons, rectangles (unless you count blts)


These are planned for incorporation into higher-level libraries.

gl-style evaluators


insufficient demand.  Can be implemented efficiently on the host 

separate materials in 2-sided lighting


The difficulty of storing additional state required for a second material is not justified by the expected frequency of usage in common applications.  For those rare cases it is used, the performance impact of just rendering twice is not great, especially for content that may be pre-cached.

state push/pop with bits, etc.


State management continues to be investigated.  The ideal goal is to have the low-level API and the driver never have to mirror any state.  Those applications that desire state mirroring, such as for prototyping etc, can use a higher-level library that mirrors state on the host to provide conveniences like push/pop.

unbounded line loops


The silicon required to implement these is not justified when apps can so easily close them.

texture image borders


This also has been found to be rarely used for the number of gates it costs.

per-vertex edge flags

point fillmode for polygons


No significant benefit vs just rendering as a point list, and in fact may be slower on most hardware.

simultaneous rendering to both front and back buffers


Frequency of use is too low to justify hardware cost.

analogs of glRasterPos

Accumulation buffers


Anti-Aliasing is commonly provided by separate means that can be more memory-efficient.


Any buffer can be used for accumulation, especially if 16-bits per channel is supported.

Fine-grained vertex specification  (xxxx, yyyy, zzzz)


Benefits of API mapping do not justify hardware effort.  Most applications and existing content are interleaved to at least the xyz xyz level.

12 Appendix 1 Hardware Requirements

This section describes an ideal hardware implementation for DX8.

Required features will be WHQL tested in the DX8 timeframe.

Recommended features are those that are expected to be required in a subsequent release.

12.1 Performance


Entertainment applications will require the most cutting edge 3D performance attainable from the silicon of that time.  The below numbers reflect the expected performance of the high-end PC accelerators at those times.

	Year
	Xmas 99
	Mid 2000
	Xmas 2000

	Fill Rate
	600Mpix/s
	1.0Gpix/s
	1.8Gpix/s

	Polygon Rate
	10MPoly/s
	20MPoly/s
	50MPoly/s

	Texture Loads
	0.4GB/s
	0.6GB/s
	1.2GB/s


Fill Rate:


This is defined as "single texture equivalent bilinear samples per second using 2x2 kernel".  Some parts may no longer support bilinear filtering, preferring trilinear or dualtexture, for which the required fill rate drops to 1/2 of the binlinear number.  z-buffering and alpha blending are assumed to be enabled.

Polygon Rate:


This is defined as the number of polygons per second.  This is assumed to be single texture, with z, alpha.  Includes transform, and lighting via 1 directional light source, 200 vertices per batch, indexed polygon mesh data.

Texture Load Rate:


This is the number of bytes/second at which texture data can be loaded from host memory into video memory.

Note:  the performance for xmas 2000 was extrapolated from xmas 99 hardware capabilities assuming the usual annual 3X perf increase in most areas.  This may be conservative.

Note: vertex throughput requirements may exceed capabilities of basic bus architectures over the next year.

Memory:

	Year
	Xmas 99
	Mid 2000
	Xmas 2000

	Video Memory 
	32MB
	48MB
	64MB

	System Memory
	64MB
	96MB
	128MB


12.2 Display Resolutions

Adapter must support output to NTSC, 60Hz at 640x480 resolution.


True 59.94Hz support is also required at all resolutions.

Adapter must support 1600x1200 desktop resolution.

Adapter must support HDTV resolutions up to and including 1900x1080p 60Hz.


for 3D content using 24-bit double buffers and 32-bit z-stencil.


This implies 32MB video memory reqt, leaving 8MB for textures.

DAC supports full 3-channel downloadable gamma table and ICM.

Adapter supports full VESA DDC

12.3 2D Graphics Support

Hardware provides support to prevent tearing:

All blts and flips must be able to be performed in synch with the display

to avoid 'tearing'.

The ability to read back the current scan line is required to enable this.

Hardware cursors of 256x256 by up to 24-bit color are required.

12.4 Video memory architecture

Hardware is is required to support linear memory as opposed to

rectangular memory allocation.

Blts to screen are not required as they can be emulated by textured quads.

This includes all scaling (with filtering), arbitrary perspective warps, etc.

Hardware acceleration support for rectangular memory copies is still required.

This support need not include pixel format conversion, but acceleration

is required if some type of swizzling or tiling is performed.

This rectangular copy operation must support programmable strides so that

memory is linear, mod any (api-transparent) tiling.

12.5 Video Requirements

DVD playback to the screen or a texture is required at D1 resolution.

at full video rates.

Hardware acceleration of motion compensation for MPEG2 decode is required.

Scaling of video content must look as good as at least a 3-tap filter.

12.5.1 Video Input

full video input support is required including VPE, autoflip, etc.

DVD playback, MPEG2 decode, etc.

12.6 3-D Requirements

12.6.1 Rendering

Full-screen anti-aliasing must be supported at the following

All required features must be available at the same time.

Direct3D rasterization conformance rules must be adhered to.

Device must support rendering to a texture for the following formats


32-bit:  888 RGB and 8888 RGBA


16-bit:  565 RGB and 5551 RGBA  (4444 RGBA??)

Destination alpha bit storage is required.

Destination alpha rendering is required for the 32-bit 8888 case.

All alpha test modes are required:


NEVER, LESS, EQUAL, LESSEQUAL, GREATER, GREATEREQUAL, NOTEQUAL, ALWAYS

12.6.1.1 Depth Buffering

16-bit and 32-bit (24/8) depth buffering support is required.

All depth-compare modes must be supported.


NEVER, LESS, EQUAL, LESSEQUAL, GREATER, GREATEREQUAL, NOTEQUAL, ALWAYS

Minimum 8-bit stencil buffer support is required

All stencil operations and tests must be supported.


KEEP, ZERO, REPLACE, INCRSAT, DECRSAT, INVERT, INCR, DECR

12.6.1.2 Shading

Flat and Gouraud shading are required.

Device must support at least 2 independent RGBA iterator sets simultaneously.

Device must support at least 4 independent uvwq texture coordinate iterators.

All color components iterated must be perspective correct.

12.6.1.3 Fog

w-based fog computation must be supported.

pixel and vertex fog are required.


where vertex fog value can come from vertex input channel.

Range-based fog computation is recommended.

12.6.2 Textures

Minimum 2kx2k max texture limit.

Non-power-of-2 texture dimensions must be supported.

Mip Mapping is required with true linear filter between levels.


mip-maps must be supported down to 1x1 in size.


Upper limit must be clampable to MAXLOD

MIPLODBIAS must be supported.

at least 3x3 filter kernels must be supported (per video scaling reqts)


5x5 programmable kernel is recommended.

Support for projected textures is required.

Formats required are:


ARGB


1555


0555


0565


4444


8888

plus



422 Yuv,


 and DXT1-DXT5


 8-bit palettized,

4-bit palettized surface format is not required.

NONPOW2 for everything except MIP-mapping will be required in PC2000.

NONPOW2 for everything including MIP-mapping will be recommended in PC2000 and required in PC2001.

12.6.3 3D Performance


Texture upload bandwidth must peak at full bus bandwidth 800MB/s.

Any texture format differences in video memory must be translated automatically in hardware at a rate sufficient that texture load performance is unaffected.

Pixel fill rates should be 1.2GPixels/sec for bilinear single pass equivalent


(ie 600Mp/s trilinear or dual texture, or


400 Mp/s trilinear with another bilinear texture, or


300 Mp/s trilinear dual texture).

Polygon setup performance should be 50M Poly/s.

Point Sprite performance should be twice as fast as triangle setup.

Vertex Transformation throughput should be 25M vertices

In the DX9 time frame, benchmarks will require hardware to meet the above criteria for performance of individual technologies, plus be able to operate with them in combination in the following manner:

* 900M texels per second.

* 40M triangles per second.

* 300K texture state changes per second.

* 150K pixel shader state changes per second.

* 150K vertex shader state changes per second.

12.6.4 Raster Operations

Pixel texture blending support

12.6.5 Geometry Operations

Hardware supporting 3D geometry operations must support the following

   Perf


Transformation unit should support 40M vertices/second

   Input Formats:


Programmable 8-way parallel independent DMA engine for gathering vertex data.



(This is recommended even for non-TL hals).



Must be able to simultaneously read from video and system memory




if there is a distinction.


Input channels range from 1 to 4 float components.


Programmable transform unit capable of executing all algorithms specified in DX7 including:



Transform, perspective divide



Directional light calc



Vector normalization



Reflection calculation for environment mapping



vertex blending, morphing, etc.



programmable vertex shader support for spot light is not reqd as this can be accessed via device shaders.


Separate clipping unit



viewport clipping



6 arbitrary clip planes



guardband support is required of at least 1k border.


Separate setup unit



culling is at the back end of transform.

12.6.6 3D Non-Requirements

There is currently no requirement for hardware overlays.

There is currently no requirement for edge anti-aliasing of the form that requires re-drawing the edges by the application.

Colorkey is not required.?


TLHALs need not support spot lights of any type.

12.7 Texgen on Pt  Sprites

  Do not put this on.  done

12.8 Arbitrary clip planes


Don’t like cull-only, since it is a HINT, not guaranteed.  Apps could ship that rely on this behavior.   Want to deprecate user clip planes completely and base all clipping on texcoords.  Say this is more general method.

User needs to define a mapping as to which texcoord is to be used as the clipping coordinates.  If clipping vs position, the app would have to copy hpos into a texcoord set and then use that with TEXKIL

BRDF disappear

DEPTH

    D3DAOP_BRDF

    D3DAOP_DEPTH

ROP should be disabled when alpha blending is on

In DX8.  This needs to be reset in WHQL.
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