DirectX Graphics DDI Specification

DirectX Version 8.0

Revision 1.0
9/11/2000

1DirectX Graphics DDI Specification

3Introduction

3DDK Header File and Naming Issues

3DIRECT3D_VERSION

4Minimal DirectX 8.0 DDI Support

4Supporting GetDriverInfo2

7Reporting DirectX 8.0 Style Direct3D Capabilities

9Minimum Capability Requirements for DirectX 8.0 Drivers

9Reporting Support for Video Memory Vertex and Index Buffers

10The Texture Format List

12Format Operations

13Surface Formats as FOURCC Codes

13Multiple Vertex Streams

13Reporting Multiple Vertex Stream Capability

13Stream Zero

14Notification of Stream / Vertex Buffer Binding

15Index Buffers

15Reporting Support for 32-bit Indices

15Setting the Current Index Buffer

16New DP2 Stream Drawing Tokens

16D3DDP2OP_DRAWPRIMITIVE

17D3DDP2OP_DRAWINDEXEDPRIMITIVE

17D3DDP2OP_DRAWPRIMITIVE2

18D3DDP2OP_DRAWINDEXEDPRIMITIVE2

18D3DDP2OP_CLIPPEDTRIANGLEFAN

19Point Sprites

19Reporting Support for Point Sprites

19Computing the Size of Point Sprites

20Rendering Point Sprites

21Volume Textures

21Reporting Support for Volume Textures

21Handling the Creation of Volume Textures

22Copying Volume Textures in the DP2 Stream

22Presentation

23Palettized Textures

23Cursors

23Vertex Shaders

23Vertex Shaders and Fixed Function Hardware

24Reporting Support for Programmable Vertex Processing Hardware

24D3DDP2OP_CREATEVERTEXSHADER

25D3DDP2OP_DELETEVERTEXSHADER

25D3DDP2OP_SETVERTEXSHADER

26D3DDP2OP_SETVERTEXSHADERCONST

26Pixel Shaders

26Reporting Support for Programmable Pixel Processing Hardware

27D3DDP2OP_CREATEPIXELSHADER

27D3DDP2OP_DELETEPIXELSHADER

28D3DDP2OP_SETPIXELSHADER

28D3DDP2OP_SETPIXELSHADERCONST

29High Order Surfaces

29Reporting Support for High Order Surfaces

29D3DDP2OP_DRAWRECTPATCH

30D3DDP2OP_DRAWTRIPATCH

32High Order Surface Render States

32Multi-sample Rendering

32Reporting Multi-sample Support

33Multi-sample Support via StretchBlt

33Handling the Creation of Multi-Sampled Surfaces

34Controlling Multi-sampling

34Pure Device Support

34Reporting Pure Device Capability

34State Block Recording and Pure Devices

39Processing the D3DDP2OP_CLEAR DP2 Token

39Vertex Buffer Issues

39Vertex Buffer Callbacks and Windows 2000

39Vertex Buffer Creation Handling on Windows 2000

40Vertex Buffer Renaming

42Miscellaneous Issues

42Clipping Transformed Vertices

Introduction

This document is the specification of the DirectX display driver DDI for DirectX 8.0. As the DDI for DirectX 8.0 consists of relatively small incremental changes from the DDI for DirectX 7.0 this document does not attempt to be an exhaustive description of the entire DDI. Rather it focuses on those areas of the DDI, which have been modified or extended for DirectX 8.0.

This document is a work in progress and is subject to change. Furthermore, the document is incomplete and does not discuss certain areas of the DDI as yet. This will be corrected in subsequent revisions of this document.

DDK Header File and Naming Issues

In order to make the task of having a single code base for the DirectX portion of your display driver for both Windows 9x and Windows 2000 changes have been made to the naming conventions used for DDI data structures. Previously d3dnthal.h contained definitions of the Direct3D DDI data structures with a naming convention that included the letters NT, i.e., on Windows NT/2000 the data structure associated with the DrawPrimitive2 token to set a palette was called D3DNTHAL_DP2SETPALETTE. In d3dhal.h for Windows 9x the equivalent data structure was called D3DHAL_DP2SETPALETTE.

For DirectX 8.0 we are rationalizing this naming scheme to use the Windows 9x style naming on both Windows 9x and Windows NT/2000. d3dnthal.h as shipped with the DDK no longer contains the NT/2000 style names. At this time this rationalization applies to Direct3D data structures only and not DirectDraw DDI data structure. This may change prior to the release of DirectX 8.0.

We realize this will result in some initial work in your code base to convert your driver to the new naming scheme. However, we believe the potential benefits in terms of code sharing will result in significant benefits over time.

The DirectX 8.0 DDK introduces a new DDI only header file called d3dhalex.h. This header file contains optional helper definitions and macros which are not required to build a working driver but which may prove helpful. Currently this header only contains some macros to assist with reporting D3DCAPS8 to the runtime. However, prior to the final release of the DirectX 8.0 DDK other definitions will be added to this header file.

DIRECT3D_VERSION

It is necessary for a DirectX display driver to support legacy (DirectX 7.0 and earlier) versions of the DirectX runtime, and hence, DDI as well as the DirectX 8.0 DDI. In order to do that it is necessary to include both old and new DirectX headers (i.e., d3d.h and d3d8.h etc.). However, this can cause a problem with the definition of the pre-processor symbol DIRECT3D_VERSION. This pre-processor symbol is used in the header files to decide which structures and functions should be included. Thus if DIRECT3D_VERSION is defined to be 0x0600 all features from DirectX 7.0 or newer will be #ifdef’d out by the preprocessor. The DirectX header files are designed to set the value of DIRECT3D_VERSION to the most recent version they were designed for if the DIRECT3D_VERSION has not already been defined. Thus, d3d.h sets DIRECT3D_VERSION to 0x0700 and d3d8.h sets DIRECT3D_VERTSION to 0x0800. Unfortunately, this means that if d3d.h is included in your source before d3d8.h new Direct3D 8.0 features will not be defined and compiler errors will result.

This problem can be addressed by careful ordering of header file inclusion. However, a preferable solution is simple to define DIRECT3D_VERSION to 0x0800 prior to including any header files. This will ensure the correct definitions are always present. Defining DIRECT3D_VERSION to 0x0800 in either a master include file or as a standard command line parameter is strongly recommended.

Minimal DirectX 8.0 DDI Support

DirectX 8.0 will provide hardware acceleration by DirectX 7.0 level drivers. However, for a driver to expose any of the new features of DirectX 8.0 such as multiple vertex streams, index buffers, vertex and pixel shaders, volume textures, point sprites etc. it must, at a minimum, identify itself by reporting DirectX 8.0 style capabilities and support the new DrawPrimitive2 rendering tokens. In order to support the new DrawPrimitive2 rendering tokens the driver is required to provide basic support for vertex streams and fixed function vertex shaders. This does not imply that the driver/hardware must support multiple vertex streams or programmable vertex shaders. Simply that DP2 tokens relating to vertex streams and vertex shaders are required to support legacy style, fixed function vertex processing. Beyond that all other features enabled by the DirectX 8.0 DDI are optional.

Reporting DirectX 8.0 style capabilities involves several steps, handling the new GetDriverInfo2 variant of the existing GetDriverInfo entry point, returning a D3DCAPS8 structure containing the capabilities of the device when requested, ensuring that defined fields of that structure have certain minimum values and finally returning a texture format list that includes DirectX 8.0 style surface format descriptions. These various requirements are discussed in the following sections.

Supporting GetDriverInfo2

The DirectX 8.0 DDI introduces a new mechanism for querying the driver for information. This mechanism extends the existing GetDriverInfo entry point to query for additional information from the driver. Currently this mechanism is only used for querying for DX8 style D3D caps but it may be used for other information over time.

Note: As you read the following you may be confused as to why the GetDriverInfo2 mechanism is necessary at all. It would seem preferable to simply define a new GetDriverInfo GUID that the driver would handle by returning a D3DCAP8 structure. In this you would be correct. GetDriverInfo2 is a mechanism introduced to minimize the changes required to the Windows Operating Systems to enable DirectX 8.0 level functionality and, hence, to make redistributing the DirectX 8.0 runtime practical. As such, it is likely that future version of DirectX will return to adding additional GUIDs to the GetDriverInfo entry point when additional information is required of the driver.

This extension to GetDriverInfo takes the form of a GetDriverInfo call with the GUID GUID_GetDriverInfo2. When a GetDriverInfo call with that GUID is received by the driver, it must examine the data structure passed in the lpvData field of the DD_GETDRIVERINFODATA data structure to see what information is being requested. As described below lpvData can point to either a DD_GETDRIVERINFO2DATA or DD_STEREOMODE structure.

It is important to note that GUID_GetDriverInfo2 is, in fact, the same GUID value as GUID_DDStereoMode. If you driver doesn't handle GUID_DDStereoMode this is not an issue. However, if you wish your DirectX 8.0 driver to handle GUID_DDStereoMode special action must be taken. When a call to GetDriverInfo with the GUID_GetDriverInfo2(GUID_DDStereoMode) is made, the runtime sets the dwHeight field of the DD_STEREOMODE structure to the special value D3DGDI2_MAGIC. This field corresponds to the dwMagic field of the DD_GETDRIVERINFO2DATA structure. Therefore, by casting the lpvData pointer to either a pointer to a DD_STEREOMODE structure or a pointer to a DD_GETDRIVERINFO2DATA structure and checking the value of the corresponding field (dwHeight or dwMagic) for the value D3DGDI2_MAGIC you can distinguish between a call to determine stereo mode capabilities or a request of Direct3D 8.0 capabilities.

The dwExpectedSize field of the DD_GETDRIVERINFODATA structure is not used by when a GetDriverInfo2 request is being made. Its value is undefined in this case and should be ignored. The actual expected size of the data is found in the dwExpectedSize field of the DD_GETDRIVERINFO2DATA structure.

Once the driver has determined that this is a call to GetDriverInfo2 it must then determine the type of information being requested by the runtime. This type is contained in the dwType field of the DD_GETDRIVERINFO2DATA data structure. Currently only a single request type is defined, D3DGDI2_TYPE_GETD3DCAPS8. This type indicates that the runtime wishes to receive a D3DCAPS8 structure giving the DirectX 8.0 style capabilities of the device.

Finally, the driver copies the requested data into the supplied buffer. It is important to note that the lpvData field of the DD_GETDRIVERINFODATA data structure points to the buffer to which to copy the requested data. lpvData also points to the DD_GETDRIVERINFO2DATA structure. This means that the data returned by the driver will overwrite the DD_GETDRIVERINFO2DATA structure (and, hence, that the DD_GETDRIVERINFO2DATA structure occupies the first few DWORDs of the buffer).

It is not sufficient for the driver to simply handle GUID_GetDriverInfo2 in its GetDriverInfo callback. In order to be called with GetDriverInfo2, and hence report DirectX 8.0 capabilities, it is necessary for the driver to set the new flag DDHALINFO_GETDRIVERINFO2 in the dwFlags field of the DDHALINFO structure returned by the driver. If this flag is not set the runtime will not send GetDriverInfo2 calls to the driver and, hence, the driver will not be recognized as a DirectX 8.0 level driver.

The following code fragment demonstrates how to handle GetDriverInfo2.

D3DCAPS8 myD3DCaps8 = { … };

DWORD CALLBACK

DdGetDriverInfo(LPDDHAL_GETDRIVERINFODATA lpData)

{

if (MATCH_GUID((lpData->guidInfo), GUID_GetDriverInfo2))

{

ASSERT(NULL != lpData);

ASSERT(NULL != lpData->lpvData);

// Is this a call to GetDriverInfo2 or DDStereoMode?

if (((DD_GETDRIVERINFO2DATA*)(lpData->lpvData))->dwMagic

== D3DGDI2_MAGIC)

{

// Yes, its a call to GetDriverInfo2, fetch the

// DD_GETDRIVERINFO2DATA data structure.

DD_GETDRIVERINFO2DATA* pgdi2 = lpData->lpvData;

ASSERT(NULL != pgdi2);

// What type of request is this?

switch (pgdi2->dwType)

{

case D3DGDI2_TYPE_GETD3DCAPS8:

{

// The runtime is requesting the DX8 D3D caps

// so copy them over now. It should be noted

// that the dwExpectedSize field of

// DD_GETDRIVERINFODATA is not used for

// GetDriverInfo2 calls and should be ignored.

size_t copySize = min(

sizeof(myD3DCaps8), pgdi2->dwExpectedSize);

memcpy(lpData->lpvData, &myD3DCaps8, copySize);

lpData->dwActualSize = copySize;

lpData->ddRVal = DD_OK;

return DDHAL_DRIVER_HANDLED;

}

default:

// For any other GetDriverInfo2 types not handled

// or understood by the driver set an ddRVal of

// DDERR_CURRENTLYNOTAVAIL and return

// DDHAL_DRIVER_HANDLED.

return DDHAL_DRIVER_HANDLED;

}

}

else

{

// It must be a call a request for stereo mode support.

// Fetch the stereo mode data

DD_STEREOMODE* pStereoMode = lpData->lpvData;

ASSERT(NULL != pStereoMode);

// Process the stereo mode request...

lpData->dwActualSize = sizeof(DD_STEREOMODE);

lpData->ddRVal = DD_OK;

return DDHAL_DRIVER_HANDLED;

}

}

// Handle any other device GUIDs...

} // DdGetDriverInfo

The following is the data structure passed in the lpvData field of the DD_GETDRIVERINFODATA structure when GUID_GetDriverInfo2 is specified.

typedef struct _DD_GETDRIVERINFO2DATA

{

DWORD dwReserved;
// Reserved Field.

// Driver should not read or write this field.

DWORD dwMagic;

// Magic Number. Has the value D3DGDI2_MAGIC

// if this is a GetDriverInfo2 call.

// Otherwise this structure is, in fact, a

// DD_STEREOMODE call.

// Driver should only read this field.

DWORD dwType;

// Type of information requested. This

// field contains one of the

// DDGDI2_TYPE_ #defines listed below.

// Driver should only read (not write) this

// field.

DWORD dwExpectedSize;
// Expected size of the information

// requested.

// Driver should only read

// (not write) this field.

// The remainder of the data buffer (beyond the first

// four DWORDs) follows here.

} DD_GETDRIVERINFO2DATA;

Reporting DirectX 8.0 Style Direct3D Capabilities

In response to GetDriverInfo2 query with type D3DGDI2_TYPE_GETD3DCAPS8, the driver should copy an initialized D3DCAPS8 structure into the lpvData field of the DD_GETDRIVERINFODATA structure. This structure is new for DirectX 8.0 and is used for both reporting capabilities from the driver to runtime and from the runtime to the application.

D3DCAPS8 has fields that describe both capabilities new to DirectX 8.0 and capabilities carried forward from DirectX 7.0. D3DCAPS8 is not a complete replacement for existing capabilities. Although this structure (along with information of supported surface formats) is a complete description of the device’s capabilities from an API perspective it is not sufficient for the DDI. The runtime makes use of the DirectDraw capabilities reported by the driver for such information supported surface capabilities (DDSCAPS) even though these are not exposed directly through the DirectX 8.0 API. Furthermore, the driver is required to continue to report legacy capability structures (such as D3DHAL_D3DEXTENDEDCAPS) as applications using legacy interfaces (DirectX 7.0 and below will continue to request these capabilities). Therefore, reporting DirectX 8.0 style caps through D3DCAPS8 is an additional requirement, rather than a replacement for the existing capability reporting mechanisms. When DirectX 8.0 interfaces are used by the application the runtime will not query for extended D3D capabilities such as D3DHAL_D3DEXTENDEDCAPS if the driver reports DirectX 8.0 capabilities with D3DCAPS8.

typedef struct _D3DCAPS8

{

/* Device Info */

D3DDEVTYPE DeviceType;

UINT AdapterOrdinal;

/* Caps from DX7 Draw */

DWORD Caps;

DWORD Caps2;

DWORD Caps3;

DWORD PresentationIntervals;

/* Cursor Caps */

DWORD CursorCaps;

/* 3D Device Caps */

DWORD DevCaps;

DWORD PrimitiveMiscCaps;

DWORD RasterCaps;

DWORD ZCmpCaps;

DWORD SrcBlendCaps;

DWORD DestBlendCaps;

DWORD AlphaCmpCaps;

DWORD ShadeCaps;

DWORD TextureCaps;

DWORD TextureFilterCaps; // D3DPTFILTERCAPS for

// IDirect3DTexture8's

DWORD CubeTextureFilterCaps; // D3DPTFILTERCAPS for

// IDirect3DCubeTexture8's

DWORD VolumeTextureFilterCaps; // D3DPTFILTERCAPS for

// IDirect3DVolumeTexture8's

DWORD TextureAddressCaps; // D3DPTADDRESSCAPS for

// IDirect3DTexture8's

DWORD VolumeTextureAddressCaps; // D3DPTADDRESSCAPS for

// IDirect3DVolumeTexture8's

DWORD LineCaps; // D3DLINECAPS

// size limits for textures

DWORD MaxTextureWidth, MaxTextureHeight;

DWORD MaxVolumeExtent;

DWORD MaxTextureRepeat;

DWORD MaxTextureAspectRatio;

DWORD MaxAnisotropy;

float MaxVertexW;

float GuardBandLeft;

float GuardBandTop;

float GuardBandRight;

float GuardBandBottom;

float ExtentsAdjust;

DWORD StencilCaps;

DWORD FVFCaps;

DWORD TextureOpCaps;

DWORD MaxTextureBlendStages;

DWORD MaxSimultaneousTextures;

DWORD VertexProcessingCaps;

DWORD MaxActiveLights;

DWORD MaxUserClipPlanes;

DWORD MaxVertexBlendMatrices;

DWORD MaxVertexBlendMatrixIndex;

float MaxPointSize;

DWORD MaxPrimitiveCount;

// max number of primitives

// per DrawPrimitive call

DWORD MaxVertexIndex;

DWORD MaxStreams;

DWORD MaxStreamStride;

// max stride for

// SetStreamSource

DWORD VertexShaderVersion;

DWORD MaxVertexShaderConst;

// number of vertex shader

// constant registers

DWORD PixelShaderVersion;

float MaxPixelShaderValue;

// max value of pixel shader

// arithmetic component

} D3DCAPS8;

The driver should not initialize the DeviceType or AdapterOrdinal fields. These will be initialized to appropriate values by the runtime. The driver should simply set these fields to zero.

Minimum Capability Requirements for DirectX 8.0 Drivers

In addition to returning the above data structure in response to a GetDriverInfo2 query the DirectX 8.0 runtime has other requirements that a driver must meet to be considered a DirectX 8.0 level driver. As such a driver that returns the above D3DCAPS8 data structure but does not meet these additional requirements will fail initialization and, hence, Direct3D will not expose a HAL. These minimum capabilities are described below.

A DirectX 8.0 driver must explicitly:

· Report support for one (1) or more vertex streams in the MaxStreams field of D3DCAPS8
· Report a maximum point sprite size of at least one (1) in the MaxPointSize field of D3DCAPS8
· Modify its list of supported texture formats to support new style pixel format specifications

· Handle the new DrawPrimitive2 (DP2) drawing tokens.

· Handle CreateSurfaceEx for vertex and index buffers even if your driver does not support video memory vertex buffer creation. Handles for system memory vertex and index buffers will be passed to the driver.

· Set the new post-transformed clipping flag D3DPMISCCAPS_CLIPTLVERTS if the hardware supports clipping of post-transformed vertex data.

More detailed discussions of these various requirements can be found in subsequent chapters of this document.

It should be noted that a driver is NOT required to support any of the new features of DirectX 8.0 such as pixel or vertex shaders, volume textures, point sprites (beyond the non-zero maximum point size), multi-sampling or even multiple vertex streams (as the driver can set the maximum number of simultaneous vertex streams to one) in order to be considered a DirectX 8.0 driver.

Reporting Support for Video Memory Vertex and Index Buffers

A number of released drivers do not support video memory vertex buffers correctly even though they added that capability. This has caused severe end user problems when video memory vertex buffers were enabled by the runtime. To address this issue DirectX 8.0 introduces two new device capabilities that drivers who wish to use video memory vertex buffers must set. These capabilities communicate to the runtime that video vertex and/or index buffers have been extensively tests on both Win9x and Windows 2000 with the DirectX 8.0 runtime (and the version of DirectX 7.0 runtime that is shipped with DirectX 8.0) and that they work correctly including when vertex buffer renaming (see below) is used. If these capability bits are not set video memory vertex and index buffers will be disabled even for DirectX 7.0 level drivers. These capability flags should be set in the DevCaps field of the D3DCAPS8 structure and are as follows:

Prior to addition of these flags the runtime had no good way to determine whether the driver provided real support for video memory vertex buffers or not. The addition of index buffers made this situation worse. These new flags clarify this situation. Therefore, if a DirectX 8.0 exports the execute buffer (d3d buffer) creation and destruction driver entry points it should add one or both of the capability bits D3DDEVCAPS_HWVERTEXBUFFER and D3DDEVCAPS_HWINDEXBUFFER to the DevCaps field of the D3DCAPS8 structure reported via GetDriverInfo2 to the runtime. Set the flag D3DDEVCAPS_HWVERTEXBUFFER if your driver supports video or non-local video memory vertex buffers and D3DDEVCAPS_HWINDEXBUFFER if your driver supports video or non-local video memory index buffers.

The runtime masks these capability bits off before reporting capabilities to the application (as they are not useful to applications only to the runtime itself). Therefore, these capabilities will not be visible to the DirectX Caps Viewer applet even if your driver exports them.

Correct support for these capabilities will be part of WHQL certification testing.

The Texture Format List

Direct 8.0 introduces a new mechanism for describing pixel formats. In previous versions of DirectDraw and Direct3D pixel formats were described by a data structure (DDPIXELFORMAT) which contained information about the number of bits per color channel and bit masks for each color channel (along with flags and size field). Although flexible these data structures were complex and unwieldy. Pixel formats in DirectX 8.0 are simple DWORDs that identify a particular pixel format. As such, they are similar to FOURCC codes. In fact, Direct 8.0 pixel formats are compatible with FOURCC codes (Direct3D pixel formats are simply FOURCC codes with all but the least significant bytes being zero).

The DDPIXELFORMAT data structure is no longer exposed through API level interfaces. However, it is still used at the DDI level. Specifically, the driver still reports its supported texture formats through a texture format array that consists of surface descriptions with their embedded DDPIXELFORMAT data structures. However, the embedded pixel format structures can now be used to report new style pixel formats. Too specify a new style pixel format using the DDPIXELFORMAT data structure simply set the dwFlags field of the structure to the value DDPF_D3DFORMAT and store the new pixel format identifier in the dwFourCC field. In addition certain other new fields have been added DDPIXELFORMAT (the new fields have been added as members of unions with existing fields so the size of the data structure is the same). These fields include dwOperations that stores the intended operations that can be performed on surfaces with this pixel format, i.e., whether they can be used as textures, cube maps, volume textures, render targets, z/stencil buffers etc., dwPrivateFormatBitCount which holds the bits per pixel of a pixel format private to the driver (i.e., not one of the standard ones defined by Direct3D) and wFlipMSTypes and wBltMSTypes which are used when specifying surfaces that can be used when performing multi-sample rendering.

A driver supporting the DirectX 8.0 DDI should return a texture format list containing surface formats specified using the new mechanism described above. This is not an absolute requirement, as the runtime will attempt to map old style pixel formats to new ones. However, it is highly recommended that a driver return new style pixel formats directly (certain new formats and features require new style pixel formats).

A DirectX 8.0 DDI compliant driver should continue to report DX7 style surface formats via the standard mechanisms, i.e., the texture format list reported in the global driver data structure (D3DHAL_GLOBALDRIVERDATA) and the Z/Stencil list reported in response to a GUID_ZPixelFormats from GetDriverInfo. However, the driver should also report all of its supported surface formats through the new DirectX 8.0 DDI mechanism described below.

DirectX 8.0 DDI style surface formats are reported using the new GetDriverInfo2 described earlier in this document. Two GetDriverInfo2 query types are used by the runtime to query for surface formats from the driver. D3DGDI2_TYPE_GETFORMATCOUNT is used to request the number of DirectX 8.0 style surface formats supported by the driver. D3DGDI2_TYPE_GETFORMAT is used to query for a particular surface format from the driver.

For GetDriverInfo2 queries with the type D3DGDI2_TYPE_GETFORMATCOUNT , the data structure pointed to by the lpvData field of the DDHAL_GETDRIVERINFODATA is DD_GETFORMATCOUNTDATA. This data structure is shown below.

typedef struct _DD_GETFORMATCOUNTDATA

{

 DD_GETDRIVERINFO2DATA gdi2;

// [in/out]

// GetDriverInfo2 data

 DWORD dwFormatCount;
// [out]

// Number of supported

// surface formats

 DWORD dwReserved;

// Reserved

} DD_GETFORMATCOUNTDATA;

To handle the D3DGDI2_TYPE_GETFORMATCOUNT all that is required is for the driver to store the number of DirectX 8.0 DDI style surface formats it supports in the dwFormatCount field of the DD_GETFORMATCOUNTDATA.

When the runtime has received the number of supported formats from the driver it when query for each surface format in turn with GetDriverInfo2 queries of type D3DGDI2_TYPE_GETFORMAT. The data structure pointed to by the lpvData field of the DDHAL_GETDRIVERINFODATA data structure is, in this case, DD_GETFORMATDATA. This data structure is shown below.

typedef struct _DD_GETFORMATDATA

{

 DD_GETDRIVERINFO2DATA gdi2;

// [in/out]

// GetDriverInfo2 data

 DWORD dwFormatIndex;
// [in]

// The format to return

 DDPIXELFORMAT format;

// [out]

// The actual format

} DD_GETFORMATDATA;

The runtime identifies the format to be returned with an integer index whose value varies between zero (0) and one less than the number of supported formats reported earlier by the driver. How these indices as mapped to actual formats is left to the driver. All that matters is that each index maps uniquely to one supported format. The order in which the formats are reported is not significant. When processing this GetDriverInfo2 request the driver should read the dwFormatIndex and map that to one of the supported formats (probably by simply using dwFormatIndex as an index into an array of DDPIXELFORMAT structures) and then copy that format into the format field of the DD_GETFORMATDATA field. The runtime guarantees that it will only pass an index to the driver that is in the range zero (0) to one less that the number of surface formats reported by the driver. However, it is recommended that the range of the index be validated in the debug driver build at least.

The DirectX 8.0 runtime scans the texture format list reported by the driver examining the dwFlags fields of each pixel format. If any of the texture formats have dwFlags set to DDPF_D3DFORMAT the runtime identifies this texture format list as DX8 style and will filter all texture formats whose pixel format is not flagged as DDPF_D3DFORMAT. Furthermore, a DX7 or runtime will filter any texture format, which does have DDPF_D3DFORMAT set. Therefore, a driver supporting the DX8 DDI can return a texture format list that contains two entries for each supported format, one specified in the old style and one in the new. DX8 runtimes will use the formats specified in the new style and DX7 runtimes will use the formats specified in the old style.

All supported surface formats, be they textures, depth or stencil buffers, render targets etc., should all be reported through the GetDriverInfo2 mechanism. The runtime will ignore the texture and Z/Stencil formats returned through legacy mechanisms (D3DHAL_GLOBALDRIVERDATA and GUID_ZPixelFormats). No attempt will be made to map these formats to DX8 style formats for DirectX 8.0 drivers. However, legacy formats will be mapped to the new style for legacy, DirectX 7.0 or earlier drivers. Therefore, a driver must report all supported surface formats through the DirectX 8.0 DDI. Furthermore, as legacy runtimes will not map new style surface formats to old style formats it is essential that the driver continue to report DirectX 7.0 style surface and Z/Stencil formats through the legacy mechanism.

Format Operations

When reporting supported surface formats a DirectX 8.0 driver must also indicate which operations can be performed on surfaces of that format. The supported operations for a pixel format are reported through the dwOperations field of the DDPIXELFORMAT structure. The driver should set this field to the logical combination of all supported operations for surfaces of that format. The operations that can be reported are as follows:

D3DFORMAT_OP_TEXTURE

When this flag is specified in a pixel format it indicates that surfaces of this format can be used as mip-mapped textures.

D3DFORMAT_OP_VOLUMETEXTURE

When this flag is specified in a pixel format it indicates that surfaces of this format can be used as volume textures. Please note, that this flag is independent of D3DFORMAT_OP_TEXTURE. Thus, it is possible to specify a pixel format that can only be used for volume textures and not for conventional, mip-mapped textures.

D3DFORMAT_OP_CUBETEXTURE

When this flag is specified in a pixel format it indicates that surfaces of this format can be used as cubic environment map textures. Please note, that this flag is independent of D3DFORMAT_OP_TEXTURE. Thus, it is possible to specify a pixel format that can only be used for cubic environment map textures and not for conventional, mip-mapped textures.

D3DFORMAT_OP_OFFSCREEN_RENDERTARGET

When this flag is specified in a pixel format it indicates that surfaces of this format can be used as an offscreen render target regardless of the pixel format of the display mode (providing the pixel format of the current display mode was reported with the D3DFORMAT_OP_DISPLAYMODE and D3DFORMAT_OP_3DACCELERATION). If the pixel format of the current display mode did not have these flags set it indicates no 3D acceleration is available in this mode even if the render target is offscreen. This flag can be combined with D3DFORMAT_OP_TEXTURE to indicate that the device can render to textures of the specified pixel format.

D3DFORMAT_OP_SAME_FORMAT_RENDERTARGET

When this flag is specified in a pixel format it indicates that surfaces of this format can be used as render targets but only when the pixel format of the surface matches the pixel format of the current display mode. This flag does not only apply to offscreen render target but can be specified on the pixel formats of display modes to indicate rendering target capability. This flag can be combined with D3DFORMAT_OP_TEXTURE to indicate that the device can render to textures of the specified pixel format.

D3DFORMAT_OP_ZSTENCIL

When this flag is specified in a pixel format it indicates that surfaces of this format can be used as Z/Stencil buffers but only if the depth of the Z/Stencil surface matches the color depth of the rendering target to which the depth buffer is attached. When deciding on a match between Z/Stencil and color buffer depth the pixel stride is used.

D3DFORMAT_OP_ZSTENCIL_WITH_ARBITRARY_COLOR_DEPTH

When this flag is specified in a pixel format it indicates that surfaces of this format can be used as Z/Stencil buffers regardless of the color depth of the render target to which the surface is attached. When specifying this flag you should specify D3DFORMAT_OP_ZSTENCIL also.

D3DFORMAT_OP_SAME_FORMAT_UP_TO_ALPHA_RENDERTARGET

When this flag is specified in a pixel format it indicates that surfaces of this format can be used as a render target if the current display mode is the same depth if the alpha channel is ignored. e.g. if the device can render to A8R8G8B8 when the display mode is X8R8G8B8, then the format operation list entry for A8R8G8B8 should have this flag set.

D3DFORMAT_OP_DISPLAYMODE

When this flag is specified it indicates that there is a display mode with this pixel format that has DirectDraw support (including Flip). This flag should not to be set on alpha formats.

D3DFORMAT_OP_3DACCELERATION

When this flag is specified the graphics accelerator can support some level of Direct3D acceleration when in a display mode with this pixel format and also implies that the driver can create a context in this mode (for some render target format). This flag must only be used when reporting display mode formats (by specifying the D3DFORMAT_OP_DISPLAYMODE). It is not required and indeed should not be set when reporting offscreen render targets formats.

Surface Formats as FOURCC Codes

Three of the new surface formats defined by DirectX 8.0, D3DFMT_Q8W8V8U8, D3DFMT_V16U16 and D3DFMT_W11V11U10, are passed to the driver as FOURCC codes. This means the various bit depth and mask fields of the DDPIXELFORMAT data structure are not initialized and there values are undefined. Hence, a driver processing these three formats must not rely on the bit count or masks in the pixel format but must compute these as necessary. For example, when computing the pitch of a surface of one of these types the dwRGBBitCount field of the pixel format must not be used. All other formats other than YUV, DXT and IHV specific extension formats are mapped to the legacy DDPIXELFORMAT representation when passed to the driver and, hence, will have valid pixel formats and masks in the pixel format data structure.

Multiple Vertex Streams

Reporting Multiple Vertex Stream Capability

A driver reports the ability to support multiple vertex streams by setting the value of the MaxStreams field of the D3DCAPS8 structure. A driver that supports multiple vertex streams should specify a value greater than one. A DX8 level driver that doesn’t support multiple vertex streams should set MaxStreams to one (1). Even if the driver/hardware combination does not support more than one stream of vertex data the driver must still handle the stream binding DP2 tokens (D3DDP2OP_SETSTREAMSOURCE and D3DDP2OP_SETSTREAMSOURCEUM) and the new vertex stream based DP2 drawing tokens described below as these are the mechanisms for passing vertex data to the driver in drawing for DirectX 8.0 level drivers.
No DX8 level driver should specify a value of zero for this field. The driver should also set the MaxStreamStride field to the maximum supported stride (in bytes) between vertex elements in a vertex stream.

Stream Zero

Vertex stream zero is treated differently from the other streams (by virtue of the fact that it was the only stream supported by prior versions of Direct3D). Vertex buffers that have a flexible vertex format (FVF) (FVF field is non-zero) can only be bound to stream zero (this does not imply that the vertex buffer bound to stream zero will always have a flexible vertex format).

Stream zero is also the implied vertex source when one of the special, fixed-function vertex shaders is the current vertex shader handle.

Notification of Stream / Vertex Buffer Binding

A driver is notified of the binding of a vertex buffer to a particular stream through a new DP2 token, D3DDP2OP_SETSTREAMSOURCE, and its associated HAL data structure, D3DHAL_DP2SETSTREAMSOURCE shown below.

typedef struct _D3DHAL_DP2SETSTREAMSOURCE
{
 DWORD dwStream; // Stream index, starting from zero
 DWORD dwVBHandle; // Vertex buffer handle
 DWORD dwStride; // Vertex stride
} D3DHAL_DP2SETSTREAMSOURCE, *LPD3DHAL_DP2SETSTREAMSOURCE;

The stream being bound is given by dwStream and will have a value between zero (0) and the maximum number of streams specified by the driver (MaxStreams). The debug runtime validates that dwStream is within the legal range but the retail version does not so validation must be present in the driver. DirectX 8.0 does not define the behavior of the driver or hardware in the error case where the stream index given is larger than the maximum stream supported by the hardware (as reported through MaxStreams in D3DCAPS8) beyond requiring that the driver/hardware combination not fault or hang in this case and that, on restoration of correct state the driver/hardware combination should continue to operate normally. It is strongly recommended that debug versions of your display driver display messages in the debug output stream indicating when this problem has been detected.

It is legal for the vertex buffer handle (dwVBHandle) to be zero (0) in which case the stream is no longer bound to a vertex buffer. It should be noted that the runtime does not validate the streams accessed by the current vertex shader are non-NULL. It is the responsibility of the driver writer to ensure the driver/hardware does not crash when this error case arises. DirectX 8.0 does not mandate the behavior of the driver/hardware in this case other than to require that the no crash or hang occurs and that the driver can continue to operate correctly when correct state is restored. It is permissible for the display problems to continue for the offending application until it is shutdown, but other applications should not be effected. It is strongly recommended that debug versions of your display driver display messages in the debug output stream indicating when this problem has been detected.

It is guaranteed that only a single stream source will be set by a D3DHAL_DP2COMMAND. That is, the wStateCount field of the D3DHAL_DP2COMMAND will always be one (1) when bCommand is D3DDP2OP_SETSTREAMSOURCE.

In addition to binding a stream to a vertex buffer it is possible for the vertex data of stream zero) to be supplied in a user memory (UM) buffer. In this case another DP2 token and associated data structure is used to notify the driver of stream binding. That token is D3DDP2OP_SETSTREAMSOURCEUM and its associated data structure, D3DHAL_DP2SETSTREAMSOURCEUM, is shown below.

typedef struct _D3DHAL_DP2SETSTREAMSOURCEUM
{
 DWORD dwStream; // Stream index, starting from zero
 DWORD dwStride; // Vertex stride

} D3DHAL_DP2SETSTREAMSOURCEUM, *LPD3DHAL_DP2SETSTREAMSOURCEUM;

Although it is possible that dwStream will have values other than zero in future versions of DirectX, for DirectX 8.0 the dwStream field of D3DHAL_DP2SETSTREAMSOURCEUM will always be zero. Specifically, DirectX 8.0 does not support multiple vertex streams with user supplied buffers rather than vertex buffers. Additionally, it is not possible to mix user memory buffers with vertex buffers. When a user memory buffers is supplied it is guaranteed to be stream zero and to be the only stream that should be accessed by subsequent drawing primitives. It is possible that other streams will have non-NULL vertex buffers bound to them at the time when a user memory buffer is bound to stream, however, those other streams must be ignored by the driver and hardware.

The actual user memory pointer to the vertex data should be extracted from the D3DHAL_DRAWPRIMITIVES2DATA passed when actually drawing primitives.

Index Buffers

DirectX 8.0 introduces the concept of index buffers. These buffers are very similar to vertex buffers but store simple 16 or 32-bit indices into vertex data rather than the vertex data itself. Index buffers extend all the benefits of vertex buffers (optimal download, caching etc) to index data.

Index buffers are created, locked, unlocked and destroyed with the same driver entry points as those used for vertex buffers. A driver can distinguish between these buffer types using the new surface capability bit DDSCAPS2_INDEXBUFFER. For index buffers, this flag will be set in the ddsCapsEx.dwCaps2 field of the surface’s DDRAWI_DDRAWSURFACE_MORE structure. It will be clear for vertex buffers.

Unlike many other surface types a driver does not need to set the capability DDSCAPS2_INDEXBUFFER when reporting its capabilities to the runtime in order to receive driver calls for index buffer creation, destruction and locking. A DirectX 8.0 driver that supports vertex buffers is assumed to support index buffers also. If the underlying hardware has no direct support for index buffers the driver should simply handle index buffer creation by allocating system memory for the surface.

Reporting Support for 32-bit Indices

Prior to DirectX 8.0 vertex indices were restricted to 16-bit quantities. DirectX 8.0 adds support for 32-bit indices. A driver reports support for 32-bit indices by setting the value of the MaxVertexIndex field of D3DCAPS8 (currently also in D3DHAL_D3DEXTENDCAPS) to a value greater than 0xFFFF, i.e., greater than or equal to 65536. This field also allows the driver to report that although it supports indices requiring 32-bits of storage it does not support the full range of 32-bit values.

Setting the Current Index Buffer

As with vertex data, the index buffer to be used by drawing primitives is no longer part of the data passed to the driver with the primitive, but rather is driver state. The current index buffer is set by a new DP2 token, D3DDP2OP_SETINDICES. This token established the index buffer with the given handle as the current index buffer to use when drawing indexed primitives until a new index buffer is set or the current index buffer is cleared (an index buffer handle of zero is specified in the DP2 token data).

The data structure associated with the DP2 token D3DDP2OP_SETINDICES is given below.

typedef struct _D3DHAL_DP2SETINDICES

{

DWORD dwVBHandle;

// Index buffer handle

DWORD dwStride;

// Index size in bytes (2 or 4)

} D3DHAL_DP2SETINDICES, *LPD3DHAL_DP2SETINDICES;

dwVBHandle is the surface handle associate with this surface via a call to CreateSurfaceEx. A handle value of zero (0) is valid and indicates that the current index buffer is cleared. Subsequent attempts to draw indexed primitives (before a new current index buffer is established via another D3DDP2OP_SETINDICES token) should be handled by the driver such that a crash does not occur. Ignoring those primitives or drawing garbage are both acceptable as long as the driver does not crash and can continue to operate normally for non-indexed primitives. It is strongly recommended that the debug version of your driver display informative messages to the debug output stream when this error condition is detected.

dwStride gives the size of the indices contained in the index buffer. dwStride will have the value 2 if the indices are 16-bit or 4 if the indices are 32-bit quantities.

New DP2 Stream Drawing Tokens

DirectX 8.0’s support for multiple streams of vertex data requires that new DP2 drawing tokens be introduced. These new tokens were necessary as the existing drawing tokens assumed that there was a single pointer to vertex data for a particular drawing instruction. With multiple streams, this is no longer the case. A drawing command may well access multiple vertex data buffers simultaneously via streams. This section describes these new drawing tokens.

It is important to note that these drawing tokens replace the existing primitive type specific tokens (D3DDP2OP_POINTS, D3DDP2OP_TRIANGLELIST, D3DDP2OP_TRIANGLESTRIP etc.) for calls through the new DirectX 8.0 interfaces only. Calls made through DX7 our earlier interfaces will still be passed through the DDI as the old style drawing tokens. Therefore, a DX 8 driver is required to support both old and new style drawing tokens.

The indexed and non-indexed drawing tokens both have two variants. For example, non-indexed drawing is accomplished by the tokens D3DDP2OP_DRAWPRIMITIVE and D3DDP2OP_DRAWPRIMITIVE2. Similarly, indexed drawing is accomplished vie the tokens D3DDP2OP_DRAWINDEXEDPRIMITIVE and D3DDP2OP_DRAWINDEXEDPRIMITIVE2.

The main distinction between the two variants is that D3DDP2OP_DRAWPRIMITIVE2 and D3DDP2OP_DRAWINDEXEDPRIMITIVE2 are used when the vertex data has been transformed by the runtime. This can be the case either because the driver/hardware does not support hardware vertex processing or if software vertex processing has been explicitly selected. For these tokens only stream zero is used and it contains transformed and lit vertices.

D3DDP2OP_DRAWPRIMITIVE and D3DDP2OP_DRAWINDEXEDPRIMITIVE are used when the runtime has not processed the vertex data. Thus, these tokens can supply untransformed vertex data when the hardware supports hardware vertex processing or transformed vertex data when the application supplies transformed data direct to the runtime. In this case any number of streams (up to MaxStreams) can be active. Fundamentally, these variants (along with the other new drawing token, D3DDP2OP_CLIPPEDTRIANGLEFAN) enable optimal code paths in the runtime and the distinctions beyond those described here are not significant to the driver.

D3DDP2OP_DRAWPRIMITIVE

This token is sent to the driver to draw non-indexed primitives. The vertex data can be untransformed (if the hardware supports hardware vertex processing) or transform if the application supplied data in that form to the runtime. D3DDP2OP_DRAWPRIMITIVE2 is used if the vertex data has been transformed by the runtime.

typedef struct _D3DHAL_DP2DRAWPRIMITIVE

{

 D3DPRIMITIVETYPE

primType;

 DWORD

VStart;

 DWORD

PrimitiveCount;

} D3DHAL_DP2DRAWPRIMITIVE, *LPD3DHAL_DP2DRAWPRIMITIVE;

primType is the type of primitive to draw (one of D3DPT_POINTLIST, D3DPT_LINELIST, D3DPT_LINESTRIP, D3DPT_TRIANGLELIST, D3DPT_TRIANGLESTRIP or D3DPT_TRIANGLEFAN).

PrimitiveCount does not actually give the number of primitives to draw, but rather is the number of triangles, line or points to draw for a given primitive. For example, for a triangle fan PrimitiveCount will give the number of triangles forming the fan, etc.

VStart is the index (in to each active vertex stream) of the vertex elements with which to start drawing. Actual vertex data should be read from the current vertex streams (those referenced by the current vertex shader) rather than from the vertex data pointer in D3DHAL_DRAWPRIMITIVES2DATA.

D3DDP2OP_DRAWINDEXEDPRIMITIVE

This token is sent to the driver to draw indexed primitives. The vertex data can be untransformed (if the hardware supports hardware vertex processing) or transform if the application supplied data in that form to the runtime. D3DDP2OP_DRAWINDEXEDPRIMITIVE2 is used if the vertex data has been transformed by the runtime.

As with vertices, the actual indices to use are not passed with the token data, but rather should be read from the currently selected index buffer. See the section on Index Buffers in this document for more details.

typedef struct _D3DHAL_DP2DRAWINDEXEDPRIMITIVE

{

D3DPRIMITIVETYPE primType;

DWORD BaseVertexIndex;
// Vertex which corresponds to index 0

DWORD MinIndex;

// Min vertex index in the vertex buffer

DWORD NumVertices;

// Number of vertices starting from

// MinIndex

DWORD StartIndex;

// Start index in the index buffer

DWORD PrimitiveCount;

} D3DHAL_DP2DRAWINDEXEDPRIMITIVE, *LPD3DHAL_DP2DRAWINDEXEDPRIMITIVE;

primType is the type of primitive to draw (one of D3DPT_POINTLIST, D3DPT_LINELIST, D3DPT_LINESTRIP, D3DPT_TRIANGLELIST, D3DPT_TRIANGLESTRIP or D3DPT_TRIANGLEFAN).

PrimitiveCount does not actually give the number of primitives to draw, but rather is the number of triangles, line or points to draw for a given primitive. For example, for a triangle fan PrimitiveCount will give the number of triangles forming the fan, etc.

BaseVertexIndex should be added to each index referenced by the various primitives to determine the actual index of the vertex elements in each vertex stream. StartIndex gives the first index in the index buffer from which indices are read to draw the primitives.

MinIndex and NumVertices give the range of vertices that are potentially accessed by the primitives to be drawn and, hence, which vertices should be processed.

D3DDP2OP_DRAWPRIMITIVE2

This token is sent to the driver to draw non-indexed primitives where the vertex data has been transformed by the runtime. Stream zero (0) contains transform and lit vertices and is the only stream that should be accessed.

typedef struct _D3DHAL_DP2DRAWPRIMITIVE2

{

D3DPRIMITIVETYPE primType;

DWORD FirstVertexOffset;
// Offset in bytes in the stream 0

DWORD PrimitiveCount;

} D3DHAL_DP2DRAWPRIMITIVE2, *LPD3DHAL_DP2DRAWPRIMITIVE2;

primType is the type of primitive to draw (one of D3DPT_POINTLIST, D3DPT_LINELIST, D3DPT_LINESTRIP, D3DPT_TRIANGLELIST, D3DPT_TRIANGLESTRIP or D3DPT_TRIANGLEFAN).

PrimitiveCount does not actually give the number of primitives to draw, but rather is the number of triangles, line or points to draw for a given primitive. For example, for a triangle fan PrimitiveCount will give the number of triangles forming the fan, etc.

FirstVertexOffset is the offset in bytes in stream zero (0) of the vertex data. This is in contrast to D3DDP2OP_DRAWPRITIVE where the start of the vertex data in the vertex stream is specified by a vertex index rather than an actual byte offset.

D3DDP2OP_DRAWINDEXEDPRIMITIVE2

This token is sent to the driver to draw indexed primitives if the vertex data has been transformed by the runtime. Stream zero (0) contains transform and lit vertices and is the only stream that should be accessed.

As with vertices, the actual indices to use are not passed with the token data, but rather should be read from the currently selected index buffer. See the section on Index Buffers in this document for more details.

typedef struct _D3DHAL_DP2DRAWINDEXEDPRIMITIVE2

{

D3DPRIMITIVETYPE primType;

INT BaseVertexOffset;
// Stream 0 offset of the vertex which

// corresponds to index 0. This

// offset could be negative, but when

// an index is added to the offset

// the result is positive

DWORD MinIndex;

// Min vertex index in the vertex buffer

DWORD NumVertices;

// Number of vertices starting from

// MinIndex

DWORD StartIndexOffset;
// Offset of the start index in the

// index buffer

DWORD PrimitiveCount;
// Number of triangles (points, lines)

} D3DHAL_DP2DRAWINDEXEDPRIMITIVE2,

*LPD3DHAL_DP2DRAWINDEXEDPRIMITIVE2;

primType is the type of primitive to draw (one of D3DPT_POINTLIST, D3DPT_LINELIST, D3DPT_LINESTRIP, D3DPT_TRIANGLELIST, D3DPT_TRIANGLESTRIP or D3DPT_TRIANGLEFAN).

PrimitiveCount does not actually give the number of primitives to draw, but rather is the number of triangles, line or points to draw for a given primitive. For example, for a triangle fan PrimitiveCount will give the number of triangles forming the fan, etc.

BaseVertexIndex should be added to each index referenced by the various primitives to determine the actual index of the vertex elements in stream zero (0).

StartIndexOffset gives the first index in the index buffer from which indices are read to draw the primitives.

MinIndex and NumVertices give the range of vertices that are potentially accessed by the primitives to be drawn and, hence, which vertices should be processed.

D3DDP2OP_CLIPPEDTRIANGLEFAN

This token is sent to the driver to draw transformed, clipped triangle fans. This token is a replacement for the DirectX 7.0 tokens that used inline vertices in the command stream.

typedef struct _D3DHAL_CLIPPEDTRIANGLEFAN

{

DWORD FirstVertexOffset;
// Offset in bytes in the

// current stream 0

DWORD dwEdgeFlags;

DWORD PrimitiveCount;

} D3DHAL_CLIPPEDTRIANGLEFAN, *LPD3DHAL_CLIPPEDTRIANGLEFAN;

A single D3DDP2OP_CLIPPEDTRIANGLEFAN token can be used to draw multiple triangle fans. The number of primitives to draw is given by PrimitiveCount.

FirstVertexOffset is the byte offset into stream 0 of the start of the vertex data (not the index of the vertex).

dwEdgeFlags specify which edges are to be drawn when rendering wire frame (to prevent the drawing of edges introduced by clipping).

Point Sprites

DirectX 8.0 introduces support for point sprites. A point sprite is an extension to basic point rendering which allows the size of the point to be specified (either by a render state or by a vertex component). When accelerated the point sprites will be rendered in hardware as a screen space quad formed of two triangles and render states such as textures, blending etc. will be used.

Reporting Support for Point Sprites

A driver notifies the runtime of its support for point sprites by setting the MaxPointSize field of the D3DCAPS8 structure to a floating point number greater than one (reporting a value of one is part of the requirement to indicate a DX8 level HAL). This value specifies the maximum point width and height in render target pixels. Devices that don’t support large point sprites can set this value to 1.0.

The size of a point sprite can be specified either by a new pre-vertex element or by a new render state. If driver/hardware supports the interleaving of point size information with other vertex data (rather than simply through the point size render state D3DRS_POINTSIZE) it should set the D3DFVFCAPS_PSIZE flag in the FVFCaps field of the D3DCAPS8 structure.

Point sprites present a challenging when user clip planes are being used. Its is possible that a particular hardware implementation of point sprites will clip only the actual vertex position of the point sprite against the user clip plane, rather than the expanded quad actually rendered. If the driver/hardware can support clipping of point sprites by their actual computed size rather than simple vertex position the D3DPMISCCAPS_CLIPPLANESCALEDPOINTS capability bit should be set in PrimitiveMiscCaps field of D3DCAPS8.

Computing the Size of Point Sprites

Point sprites are rendered using the existing D3DPT_POINT primitive type. The size of point sprites can be controlled either via the new render state D3DRS_POINTSIZE or by the new FVF vertex component D3DFVF_PSIZE.

For vertices without the D3DFVF_PSIZE vertex component the current value of the D3DRS_POINTSIZE render state should be used. Otherwise, the value specified in the vertex data should be used. In either case the value is a floating-point number that is the size (width and height) of the rendered quad in rendering target pixels. The default value of the point size render state (1.0) is sent to the driver during initialization.

Two render states control clamping of the computed point sprite size, D3DRS_POINTSIZE_MIN and D3DRS_POINTSIZE_MAX. The computed size of the point should be clamped to be no smaller than the size given by D3DRS_POINTSIZE_MIN and no larger than the size given by D3DRS_POINTSIZE_MAX. It is the driver’s responsibility to ensure that the point sprite size is clamped to minimum and maximum size specified by the render states.

For drivers support hardware vertex processing the size of point sprites may also be scaled based on the distance from the point to the eye (in eye space). Scaling of the point sprites is enabled by the new render state D3DRS_POINTSCALEENABLE. If the value of this render state is TRUE the points are scaled according to the following formula. Note that in this case the application-specified point size is expressed in camera space units. This scaling is performed by drivers that support transform and light only.

Si input point size (either per-vertex or D3DRS_POINTSIZE)

A,B,C point scale factors D3DRS_POINTSCALEA/B/C
Vh height of viewport (dwHeight field in D3D_VIEWPORT)
Pe = (Xe, Ye, Ze) eye space position of point

De = sqrt (Xe2 + Ye2 + Ze2) distance from eye to position (eye at origin)

Ss = Vh * Si * sqrt(1/(A + B*De + C*(De2)) screen space point size

Smax MaxPointSize device capability

Smin D3DRS_POINTSIZE_MIN

Final screen-space point size:

S =
Smax
if Ss > Smax
Smin
if Ss < Smin
Ss
otherwise

Rendering Point Sprites

A screen space point P = (X, Y, Z, W) of screen-space size S is rasterized as a quadrilateral with the following 4 vertices:

(X–S/2, Y–S/2, Z, W)

(X+S/2, Y–S/2, Z, W)

(X–S/2, Y+S/2, Z, W)

(X+S/2, Y+S/2, Z, W)

The vertex color attributes are duplicated at each of the 4 vertices, thus each point is always rendered with constant colors.

The assignment of texture indices is controlled by the D3DRS_POINTSPRITEENABLE setting. If D3DRS_POINTSPRITEENABLE is set to FALSE, then the texture coordinates of the vertex are duplicated at each of the 4 vertices. If no texture coordinates are present in the vertex the default values of (0.0f, 0.0f, 0.0f, (1.0f)) are used for corner of the point sprite. If the D3DRS_POINTSPRITEENABLE is set to TRUE, then the texture coordinates at the 4 vertices are set to:

(0.0f, 0.0f)

(1.0f, 0.0f)

(0.0f, 1.0f)

(1.0f, 1.0f)

When clipping is enabled, points are clipped as follows. If the vertex is outside the view frustum in Z (either near or far), then the point is not rendered. If the point, taking into account the point size, is totally outside the viewport in x or y, then the point is not rendered. Remaining points are rendered. Note that it is possible for the point position to be outside the viewport (in x or y) and still be partially visible.

Points may or may not be correctly clipped to user-defined clip planes. If the D3DDEVCAPS_CLIPPLANESCALEDPOINTS is not set, then points are clipped to user-defined clip planes based only on the vertex position, ignoring the point size. In this case scaled points will be fully rendered when the vertex position is inside the clip planes, and discarded when the vertex position is outside a clip plane.

Applications may prevent potential ‘poping’ artifacts by adding a border geometry to clip planes that is as large as the maximum point size.

If the D3DDEVCAPS_CLIPPLANESCALEDPOINTS bit is set, then the scaled points are correctly clipped to user-defined clip planes.

Volume Textures

DirectX 8.0 adds support for volume or 3D textures. Such textures have depth in addition to width and height.

Reporting Support for Volume Textures

DirectX 8.0 introduces two new primitive texture capabilities flags that the driver sets to indicate support for volume textures. These flags are D3DPTEXTURECAPS_VOLUMEMAP and D3DPTEXTURECAPS_MIPVOLUMEMAP. D3DPTEXTURECAPS_VOLUMEMAP should be set in the dwTextureCaps field of the D3DPRIMCAPS8 structure (part of D3DCAPS8) if the hardware has support for volume textures. D3DPTEXTURECAPS_MIPVOLUMEMAP indicates that the driver supports mip-mapped volume textures.

It is a requirement that hardware that supports volume textures supports the use of volume textures in multi-texturing scenarios (in combination with other volume textures or 2D textures). If this scenario is not supported by the hardware, the driver cannot set D3DPTEXTURECAPS_VOLUMEMAP.

The driver can indicate that it requires the dimensions of the volume texture to be a power of 2 by setting the primitive texture capability D3DPTEXTURECAPS_VOLUMEMAP_POW2.

A driver that supports volume textures is also required to specify the minimum and maximum volume texture dimensions it supports. The field MaxVolumeExtent should be set to the maximum supported dimensions of the volume texture. It is a requirement that the same constraint applies to all three dimensions of the volume texture (width, height and depth).

A driver notifies the runtime of the volume texture filtering and texture addressing modes supported by the hardware by setting the VolumeTextureFilterCaps and VolumeTextureAddressCaps to the appropriate combinations of flags.

Finally, the driver notifies the runtime of which surface formats can be used with volume textures by setting the D3DFORMAT_OP_VOLUMETEXTURE in the dwOperations field of the surface format’s DDPIXELFORMAT.

Handling the Creation of Volume Textures

DirectX 8.0 introduces a new surface capability bit DDSCAPS2_VOLUME. This flag will be set in the ddsCapsEx.dwCaps2 field of the surface’s DDRAWI_DDRAWSURFACE_MORE structure. In the CreateSurface and CreateSurfaceEx callbacks depth of the volume texture can be found in the low word of the dwCaps4 field of the extended surface capabilities (ddsCapsEx) of the surface’s DDRAWI_DDRAWSURFACE_MORE structure. The driver should return the “slice pitch” of the volume texture (i.e. the number of bytes to add to move from one 2D slice of the volume to the next) in the dwBlockSizeY field of the surface global structure. DDSURFACEDESC does not contain the slice pitch of volume textures.

Copying Volume Textures in the DP2 Stream

A new DP2 token, D3DDP2OP_VOLUMEBLT, has been added to support optimal copying and updating of volume textures. This token is very similar to the existing D3DDP2OP_TEXBLT which copies and updates textures but has been extended to support sub-volume (box) copying rather than simple rectangles. The data structure associated with this DP2 token is shown below.

typedef struct _D3DHAL_DP2VOLUMEBLT

{

DWORD dwDDDestSurface;// dest surface

DWORD dwDDSrcSurface; // src surface

DWORD dwDestX; // dest X (width)

DWORD dwDestY; // dest Y (height)

DWORD dwDestZ; // dest Z (depth)

D3DBOX srcBox; // src box

DWORD dwFlags; // blt flags

} D3DHAL_DP2VOLUMEBLT, *LPD3DHAL_DP2VOLUMEBLT;

dwDDDestSurface and dwDDSrcSurface are the destination and source surface handles for the volume textures respectively. srcBox defines a sub-volume of the source volume texture to copy to the destination. dwDestX, dwDestY and dwDestZ give the location in the destination volume texture to copy the defined source sub-volume.

Presentation

DirectX 8.0 formalizes the concept of “presentation” (or making the results of rendering visible to the user) in the API. Previously, this was accomplished either by page flipping in full screen mode or a by blitting in windowed mode. The new Present API abstracts the differences of fullscreen and windowed mode away. However, this abstraction is not yet exposed at the DDI level. The runtime simply maps the present API to either the flip or blt DDI entry points depending on the application mode.

The new presentation API does place one new requirement on DirectX 8.0 drivers, however. A persistent problem reported by ISVs is a seeming input processing or interactivity lag while doing 3D operations. This problem is, in fact, caused by display drivers queue “presentation” blts or flips along with other rendering operations. In problem cases the instruction queue can contain many frames worth of drawing instructions. The end result is that the application thinks that the frame it just sent down is visible which in fact, due to queuing issues, a much older frame is currently being displayed by the graphics card. All intermediate frames are sitting in the instruction queue waiting to be processed. This is not acceptable to ISVs and they currently employ several workarounds to try and address this issue.

WHQL currently has certification tests in place to ensure that certified drivers do not queue frame excessively. However, when running Windowed, rather than fullscreen, the situation is more complex and the driver doesn’t now explicitly which blt operations mark a frame boundary. To address this situation DirectX 8.0 has added two new DirectDraw blt flags which are passed to the driver as notification of when a blt operation is actually part of a “Present” and hence marks a frame boundary. These new flags are DDBLT_PRESENTATION and DDBLT_LAST_PRESENTATION. Two flags are necessary because clipping may result in a single Present call invoking multiple blt operations in the driver. In this case all of the blts that are invoked as a result of the Present operation have the DDBLT_PRESENTATION flag set. However, only the final blt of the sequence used to perform the Present will have the DDBLT_LAST_PRESENTATION bit set. Thus if blt is used to implement a Present call the driver will see zero or more blts with the DDBLT_PRESENTATION bit set followed by exactly one blt with both the DDLT_PRESENTATION and DDBLT_LAST_PRESENTATION bits set. These flags are never set by the application. Only the runtime is allowed to pass these flags to a blt. Furthermore, these flags will only be passed to drivers supporting the DirectX 8.0 DDI.

With this in mind the driver is only permitted to queue a maximum of three frames. If the driver sees a blt call with DDBLT_ RESENTATION set and it already has three DDBLT_LAST_PRESENTATION blts queued it must fail the call with DDERR_WASSTILLDRAWING. The runtime will retry until the queue has drained sufficiently.

If the capabilities of the hardware being driver by the driver are such that the driver can’t effectively know when a DDBLT_LAST_PRESENTATION blt in the queue has been retired the driver is required to be conservative and not queue frames at all. DDBLT_LAST_PRESENTATION should cause such drivers to return DDERR_WASSTILLDRAWING until the accelerator is completely finished, exactly as if the application had called Lock on the source surface before calling Blt.

Finally, in the case of multiple windowed applications running simultaneously the driver should count presentation blts based on the source of each blt, rather than the primary, i.e., the driver is allowed to queue three frames per window/render target. This will result in better performance in this case.

Palettized Textures

Although API support for palettized textures has been completely overhauled for DirectX 8.0 this is not reflected in the DDI. The existing palette oriented DP2 tokens continue to be used to notify the driver of the binding between a palette and a texture and of updates to palettes.

It is important to note that it is not safe to assume that, because an association between a surface and a palette has been established with D3DDP2OP_SETPALETTE, the lpPalette field of the surface structure points to a valid or palette. The associated between a palette and a surface established by the DP2 stream will not be reflected in the actual surface and palette data structures.

Furthermore, DirectDraw’s palette DDI entry points will not be called for these palettes. All DDI notifications of texture palette operations are done through the DP2 stream.

Cursors

DirectX 8.0 has added an API to support high update frequency cursors without requiring API level direct access to the primary surface. For DirectX 8.0 the cursor is, in fact, simply the standard GDI cursor if capabilities permit or is emulated with DirectDraw blts. This may change in future releases of DirectX to enhance cursor support. However, currently all a driver need do to support the DirectX cursor API is return capability information in D3DCAPS8.

The CursorCaps field should be set to D3DCURSORCAPS_MONO, D3DCURSORCAPS_COLOR or both to indicate support for monochrome and color hardware cursors. The MaxCursorEdgeSize field should be set to the minimum of the maximum width and maximum height of the hardware cursor (or zero if no hardware cursor is supported). It is not possible to express different maximum sizes for the width and height of the cursor.

Vertex Shaders

Vertex Shaders and Fixed Function Hardware

All drivers that support the DirectX 8.0 DDI must support the new DP2 token D3DDP2OP_SETVERTEXSHADER even if programmable vertex shaders are not supported in hardware. This is simply because D3DDP2OP_SETVERTEXSHADER is the mechanism by which the FVF of incoming vertex data is communicated to the driver when using fixed function as well as programmable vertex processing.

D3DDP2OP_SETVERTEXSHADER can be used to notify the driver of both the handle of the current programmable vertex shader to use or the FVF of the vertex data for fixed function vertex processing due to the nature of the handle name space for vertex shaders. The vertex shader handle name space includes all vertex FVF codes. Thus a vertex shader handle can either refer to a programmable vertex shader handle previously created by means of the D3DDP2OP_CREATEVERTEXSHADER DP2 token or the FVF code a vertex format to be processed by fixed function vertex processing.

Therefore the driver for hardware that does not support programmable vertex processing should process D3DDP2OP_SETVERTEXSHADER to determine the FVF (and hence the processing to be performed) on the vertex data bound to stream zero. This is particularly important when processing user memory (UM) primitives. In this case the only way of determining the FVF of the supplied vertex data is through the D3DDP2OP_SETVERTEXSHADER token. The test to determine whether a handle is a vertex shader handle or a legacy FVF code is simple. If the least significant bit of the handle is set (1) then the handle is vertex shader handler. If the least significant bit is clear (0) the handle is a legacy FVF code.

If the FVF code of a vertex buffer conflicts with that specified by D3DDP2OP_SETVERTEXSHADER the driver should ignore the FVF code of the vertex buffer and continue.

The DirectX runtime guarantees that only FVF codes will be passed as vertex shader handles to a driver that does not support programmable vertex processing. However, it is recommended that such a driver have debug code to verify that the FVF code passed is supported.

Reporting Support for Programmable Vertex Processing Hardware

For a DirectX 8.0 level driver to report support for programmable vertex shader hardware it must set the VertexShaderVersion field of the D3DCAPS8 structure to a valid, non-zero vertex shader version number. The VertexShaderVersion is a DWORD where the most significant word must have the value 0xFFFE and the least significant word holds the actual version number. This least significant byte of this word holds the minor version number and the most significant byte holds the major version number. As the format of this DWORD is complex the driver must set the value of VertexShaderVersion using the macro D3DVS_VERSION defined in d3d8types.h. For example, the following code fragment sets the VertexShaderVersion to indicate support for 1.0 level functionality.

myD3DCaps8.VertexShaderVersion = D3DVS_VERSION(1, 0);

To report no support for programmable vertex shaders the following code fragment would be used:

myD3DCaps8.VertexShaderVersion = D3DVS_VERSION(0, 0);

Drivers that do not support programmable vertex processing should set VertexShaderVersion to zero (0).

In addition to setting the vertex shader version the driver should report the number of constant registers it has for vertex shading. In order to support the 1.0 vertex shading specification the device must have at least 96 constant registers but it may have more. The driver reports the number of constant registers in the MaxVertexShaderConst field of the D3DCAPS8 structure. For example, the following code fragment reports the minimum number of constant registers required for version 1.0 vertex shaders.

myD3DCaps8.MaxVertexShaderConst = 96;

d3d8types.h defines a symbol for the minimum number of constant registers required by version 1.0 of the vertex shader specification. This symbol is D3DVS_CONSTREG_MAX_V1_0 and it is recommended that the driver use this symbol unless it supports more than 96 constant registers.

D3DDP2OP_CREATEVERTEXSHADER

This token is sent to the driver to on the creation of a vertex shader. This token gives the driver the opportunity to convert the vertex shader declaration and code into a hardware specific format and associate this information with the given shader handle. Prior to invoking the driver the runtime performs validation to ensure that the specified shader is legal for the specified shader language version.

The runtime flushes all pending state and rendering when this token is to be sent to the driver. Thus, processing of this token is assumed to be synchronous with the runtime and, hence, it is supported for the driver to report failure of the creation request by failing the DrawPrimitives2 DDI call. The runtime checks for failure and will report the error accordingly. Thus, the driver should validate the given shader declaration and code on receipt of this token and report success of failure accordingly.

The data structure passed with this token is defined below.

typedef struct _D3DHAL_DP2CREATEVERTEXSHADER

{

DWORD dwHandle;
 // Shader handle

DWORD dwDeclSize;
 // Shader declaration size in bytes

DWORD dwCodeSize;
 // Shader code size in bytes

// Declaration follows

// Shader code follows

} D3DHAL_DP2CREATEVERTEXSHADER, *LPD3DHAL_DP2CREATEVERTEXSHADER;

The handle is assigned by the runtime and stored in the dwHandle field. This value is guaranteed to be non-zero. Furthermore, although vertex FVF codes are part of the shader handle name space it is guaranteed that the handle passed will not be an FVF code.

D3DDP2OP_DELETEVERTEXSHADER

This token is sent to the driver to notify the driver of the deletion of a vertex shader and to give the driver an opportunity to clean up any driver side resources associated with the given vertex shader.

The data structure passed with this token is defined below. Note that this data structure is the same as the one used for D3DDP2OP_SETVERTEXSHADER
typedef struct _D3DHAL_DP2VERTEXSHADER

{

// Vertex shader handle.

DWORD dwHandle;

} D3DHAL_DP2VERTEXSHADER, *LPD3DHAL_DP2VERTEXSHADER;

The handle assigned by the runtime to the vertex shader to delete is stored in the dwHandle field. The handle is guaranteed to be non-zero.

Need to determine if the vertex shader will be unset prior to deletion. Does this token ever occur of the current vertex shader.

D3DDP2OP_SETVERTEXSHADER

This token is sent to the driver to notify it that a new vertex shader has been selected. All subsequent drawing operations should utilize the given shader until another is selected. All DirectX 8.0 level drivers must support this token as it will be sent even if the driver does not support programmable vertex processing. In that case, however, the shader handle will always be an FVF code indicating fixed function processing of the vertex data. The driver should use the FVF code stored in the dwHandle field as the format of the vertex data in stream zero. A driver that does support programmable vertex processing must examine the handle to determine whether it refers to a shader previously created with D3DDP2OP_CREATEVERTEXSHADER or an FVF code and take the appropriate action.

Pixel and vertex shaders are orthogonal. Thus, if a legacy FVF code is selected as the current vertex shader this does not imply legacy pixel processing. In order to reset pixel processing to a non-programmable mode the current pixel shader must also be set to zero (0). Care should be taken in the driver to only reset vertex processing state to a fixed function mode and not pixel processing state when the vertex shader is set to an FVF code.

When switching from fixed function vertex processing to programmable vertex processing the values of legacy render state, matrices etc. should be preserved. If and when a switch from programmable to fixed function vertex processing occurs (the driver receives a D3DDP2OP_SETVERTEXSHADER with an FVF as the shader handle) that preserved state should be restored.

When switching between programmable shaders any constant register that has a value specified in the definition of that shader should be set to that value. The values of all other constant registers should remain unchanged.

The data structure passed with the token is defined below. Note that this data structure is the same as the one used for D3DDP2OP_DELETEVERTEXSHADER
typedef struct _D3DHAL_DP2VERTEXSHADER

{

// Vertex shader handle.

// The handle could be 0, meaning that the current vertex

// shader is invalid (not set). When driver receives

// handle 0, it should invalidate all streams pointers

DWORD dwHandle;

} D3DHAL_DP2VERTEXSHADER, *LPD3DHAL_DP2VERTEXSHADER;

The handle assigned by the runtime to the vertex shader to set is stored in the dwHandle field. The supplied handle can be zero indicating that no vertex shader is currently realized. In this case the driver should invalidate all previously set streams and free any data associated with them. The runtime guarantees that streams will be re-initialized with D3DDP2OP_SETSTREAMSOURCE or D3DDP2OP_SETSTREAMSOURCEUM and a new vertex shader will be selected using D3DHAL_DP2VERTEXSHADER prior to any subsequent rendering operations.

D3DDP2OP_SETVERTEXSHADERCONST

This token is sent to the driver to notify it that one or more of the vertex shader constant registers is to be set. A start register and register count are given. One or more vectors of four single precision floating point values immediately follow the D3DHAL_DP2SETVERTEXSHADERCONST data structure in the DP2 stream.

The data structure passed with the token is defined below.

typedef struct _D3DHAL_DP2SETVERTEXSHADERCONST

{

DWORD dwRegister;
 // Const register to start copying

DWORD dwCount;

 // Number of 4-float vectors to copy

// Data follows

} D3DHAL_DP2SETVERTEXSHADERCONST, *LPD3DHAL_DP2SETVERTEXSHADERCONST;

The field dwRegister gives the index of the first vertex shader constant to have its value sent. dwCount gives the number of constant registers to set and, hence, the number of four element, single precision float vectors to read from the DP2 stream. The runtime validates that the range of registers specified is legal given the level of vertex shader support reported to the driver. Furthermore, if the driver does not support any form of programmable vertex processing the runtime will not send this token to the driver.

Pixel Shaders

Reporting Support for Programmable Pixel Processing Hardware

For a DirectX 8.0 level driver to report support for programmable pixel shader hardware it must set the PixelShaderVersion field of the D3DCAPS8 structure to a valid, non-zero pixel shader version number. The PixelShaderVersion is a DWORD where the most significant word must have the value 0xFFFF and the least significant word holds the actual version number. This least significant byte of this word holds the minor version number and the most significant byte holds the major version number. As the format of this DWORD is complex the driver must set the value of PixelShaderVersion using the macro D3DPS_VERSION defined in d3d8types.h. For example, the following code fragment sets the PixelShaderVersion to indicate support for 1.0 level functionality.

myD3DCaps8.PixelShaderVersion = D3DPS_VERSION(1, 0);

To report no support for pixel shaders the code would be as follows:

myD3DCaps8.PixelShaderVersion = D3DPS_VERSION(0, 0);

Drivers that do not support programmable pixel processing should set PixelShaderVersion to zero (0).

Unlike vertex shaders, a device cannot expose more constant registers than the 1.0 specification defines. A device which implements the 1.0 pixel shader specification must expose eight and eight only constant pixel shader registers. However, there is an additional pixel shader related capability that a driver should set, MaxPixelShaderValue. This field gives the internal range of values supported for pixel color blending operations. Implementations must allow data within the range they report to pass through pixel processing unmodified (unclamped). This value normally defines the limits of a signed range, i.e., an absolute value. Therefore, 1 indicates the range is [-1.0 to 1.0], 8 indicates the range is [-8.0 to 8.0], etc.

However, the special value 0.0 indicates that no signed range is supported, and therefore the range is [0 .. 1.0] as in DirectX 6/7.

D3DDP2OP_CREATEPIXELSHADER

This token is sent to the driver on the creation of a pixel shader. The runtime generates a handle for this shader prior to calling the driver. This handle is guaranteed to be non-zero. The shader code itself follows the D3DHAL_DP2CREATEPIXELSHADER in the DP2 stream. Prior to calling the driver the runtime validates the pixel shader code to ensure that it is legal for the specified shader language version.

It is important to note that the creation of a pixel shader does not imply the setting of the current shader.

The data structure passed with the token is defined below.

typedef struct _D3DHAL_DP2CREATEPIXELSHADER

{

DWORD dwHandle;
 // Shader handle

DWORD dwCodeSize;
 // Shader code size in bytes

// Shader code follows

} D3DHAL_DP2CREATEPIXELSHADER, *LPD3DHAL_DP2CREATEPIXELSHADER;

The field dwHandle is the runtime supplied handle for this shader. dwCodeSize gives the size, in bytes, of the shader code following this data structure in the DP2 stream.

D3DDP2OP_DELETEPIXELSHADER

This token is sent to the driver when a pixel shader is to be deleted. The runtime passes the handle of the shader to be deleted to the driver. The driver should cleanup any resources associated with that handle. The handle passed is guaranteed to be non-zero.

The data structure passed with the token is defined below.

typedef struct _D3DHAL_DP2PIXELSHADER

{

// Pixel shader handle.

 DWORD dwHandle;

} D3DHAL_DP2PIXELSHADER, *LPD3DHAL_DP2PIXELSHADER;

Although this data structure is also used when setting a pixel shader it should be noted that when deleting a pixel shader the runtime guarantees that the handle will be non-zero. However, it is possible for a zero handle to be passed when setting the pixel shader.

D3DDP2OP_SETPIXELSHADER

This token is passed to the driver to set the current pixel shader. The runtime passes the handle of the shader to be set as the current shader to the driver. It is legal for this handle to be zero in which case the driver should unset any programmable vertex state and revert to fixed function pixel processing behavior (using render states etc).

The data structure passed with the token is defined below.

typedef struct _D3DHAL_DP2PIXELSHADER

{

// Pixel shader handle.

// The handle could be 0, meaning that the current pixel

// shader is invalid (not set).

DWORD dwHandle;

} D3DHAL_DP2PIXELSHADER, *LPD3DHAL_DP2PIXELSHADER;

This is the same data structure used for deleting a pixel shader. However, unlike the deletion case zero is a valid handle value as described above.

When switching from fixed function pixel processing to programmable vertex processing the values of legacy render states, texture stage states etc. should be preserved. If and when a switch from programmable to fixed function pixel processing occurs (the driver receives a D3DDP2OP_SETPIXELSHADER with a shader handle of zero) that preserved state should be restored.

When switching between programmable shaders any constant register that has a value specified in the definition of that shader should be set to that value. The values of all other constant registers should remain unchanged.

D3DDP2OP_SETPIXELSHADERCONST

This token is passed to the driver to set one or more pixel shader constant registers. The runtime passes the first register to set and the number of register to set. The actual data to copy to those registers consists of vectors of four, single precision floating point numbers. These vectors (the same number as there are registers to set) follow this token and its associated data structure in the DP2 stream.

The data structure for the token is defined below.

typedef struct _D3DHAL_DP2SETPIXELSHADERCONST

{

 DWORD dwRegister; // Const register to start copying

 DWORD dwCount; // Number of 4-float vectors to copy

 // Data follows

} D3DHAL_DP2SETPIXELSHADERCONST, *LPD3DHAL_DP2SETPIXELSHADERCONST;

The field dwRegister is the index of the first register to set. dwCount gives the number of registers to set. The runtime validates that the specified register range lies within the legal range for the version of the current pixel shader. Immediately following this data structure in the DP2 stream are dwCount, vectors of four single precision floating point numbers. This is the data to copy to the target registers.

High Order Surfaces

DirectX 8 introduces support for a class for high order surfaces. This section describes the mechanics of the DDI for these patch surfaces but it does not describe the algorithms used. Please refer to the reference rasterizer source code included with the DDK for the details of the algorithms employed.

Reporting Support for High Order Surfaces

A driver reports its support for high order surfaces using four new capability bits in the DevCaps field of the D3DCAPS8 structure. These flags are as follows:

D3DDEVCAPS_QUINTICRTPATCHES

Device supports quintic béziers and B-splines.

D3DDEVCAPS_RTPATCHES

Device supports rectangular and triangular patches.

D3DDEVCAPS_RTPATCHHANDLEZERO

When this device capability is set, the hardware architecture does not require caching of any information and that un-cached patches (handle zero) will be drawn as efficiently as cached ones. Note that D3DDEVCAPS_RTPATCHHANDLEZERO does not mean that a patch with handle zero can be drawn. A handle zero patch can always be drawn whether this cap is set or not.

D3DDEVCAPS_NPATCHES

Device supports n-patches.

D3DDP2OP_DRAWRECTPATCH

This token is sent to the driver to draw a rectangular patch. This token is sent to the driver when drawing a new patch, drawing a cached patch or to update the specification of a previously defined patch. The data structure associated with this token is shown below.

typedef struct _D3DHAL_DP2DRAWRECTPATCH

{

DWORD Handle;

DWORD Flags;

// Optionally followed by D3DFLOAT[4] NumSegments

// and/or D3DRECTPATCH_INFO

} D3DHAL_DP2DRAWRECTPATCH, *LPD3DHAL_DP2DRAWRECTPATCH;

Handle is used to associate the surface with a handle, so that the next time this surface is drawn, there is no need to re-specify the D3DRECTPATCH_INFO for this patch. This makes it possible for the driver to pre-compute and cache forward difference coefficients and/or any other information, which in turn allows subsequent D3DDP2OP_DRAWRECTPATCH tokens using the same handle to execute more efficiently.

The actual value of Handle is determined by the application and is not under runtime control. Therefore, the driver should be prepared to cope with any value specifiable by a DWORD. The special handle value of zero means that the patch is dynamic and there is no point pre-computing or caching information for this patch. A non-zero value for Handle means the patch is static (or updated with low frequency) and pre-computation and caching are possible.

The Flags is used to communicate what, if any, additional information follows the D3DHAL_DP2DRAWRECTPATCH data structure in the DP2 stream. If RTPATCHFLAG_HASSEGS is specified then four floating point values follow D3DHAL_DP2DRAWRECTPATCH in the DP2 stream. These floats give the segment counts for each of the four edges of the rectangular patch and override the value of the render state D3DRS_PATCHSEGMENTS. If RTPATCHFLAG_HASINFO is specified then a D3DRECTPATCH_INFO data structure follows in the DP2 stream. Information on this structure can be found in the DirectX 8.0 SDK documentation. If both flags are specified the four floats specifying segment counts follow D3DHAL_DP2DRAWRECTPATCH and the D3DRECTPATCH_INFO structure follows the floating point values.

There are four scenarios a driver must handle when processing D3DDP2OP_DRAWRECTPATCH.

If Handle is zero then the patch is dynamic and no pre-computation or caching should be performed. In this case a D3DRECTPATCH_INFO will follow D3DHAL_DP2DRAWRECTPATCH in the DP2 stream (and the flag RTPATCHFLAG_HASINFO will be set to indicate the presence of the D3DHAL_DRAWRECTPATCH data structure). Optionally, RTPATCHFLAG_HASSEGS may also be set to indicate the presence of the segment information. However, if this is omitted the value of the render state D3DRS_PATCHSEGMENTS should be used instead.

If Handle is non-zero and the handle value has not been specified by an earlier D3DDP2OP_DRAWRECTPATCH this indicates that a new cacheable patch is being drawn. The driver should allocate memory to store cached data and add this data to its patch handle table. As this patch has not been seen before the RTPATCHFLAG_HASINFO flags should be set and a D3DRECTPATCH_INFO flag should follow in the DP2 stream. The runtime does not guarantee this, however, and the driver should verify the presence of the patch information by testing the flag. If no information is specified this token should be ignored and no handle should be allocated in the driver’s patch handle table. Optionally, RTPATCHFLAG_HASSEGS may also be set to indicate the presence of the segment information. However, if this is omitted the value of the render state D3DRS_PATCHSEGMENTS should be used instead.

If Handle is non-zero, the handle value has been specified by an earlier D3DDP2OP_DRAWRECTPATCH token and the Flags field contains RTPATCHFLAG_HASINFO then the definition for the patch is being updated. A D3DRECTPATCH_INFO data structure will follow in the DP2 stream and the driver should use that to re-compute and re-cache patch information. Optionally, RTPATCHFLAG_HASSEGS may also be set to indicate the presence of the segment information. However, if this is omitted the value of the render state D3DRS_PATCHSEGMENTS should be used instead.

If Handle is non-zero, the handle value has been specified by an earlier D3DDP2OP_DRAWRECTPATCH token and the Flags field does not contain RTPATCHFLAG_HASINFO then the cached information should be used for drawing the patch. In this case the current vertex streams are ignored, the cached information should be used instead. However, it is still possible in this case for a new segment information to be specified. Therefore, the driver should check for the flag RTPATCHFLAG_HASSEGS and handle specified segment information even if using a cached patch.

The driver receives notification that cached patch information is be released via the render state D3DRS_DELETERTPATCH. The value of this render state is the patch to be deleted.

D3DDP2OP_DRAWTRIPATCH

This token is sent to the driver to draw a triangular patch. This token is sent to the driver when drawing a new patch, drawing a cached patch or to update the specification of a previously defined patch. The data structure associated with this token is shown below.

typedef struct _D3DHAL_DP2DRAWTRIPATCH

{

DWORD Handle;

DWORD Flags;

// Optionally followed by D3DFLOAT[3] NumSegments

// and/or D3DTRIPATCH_INFO

} D3DHAL_DP2DRAWTRIPATCH, *LPD3DHAL_DP2DRAWTRIPATCH;

Handle is used to associate the surface with a handle, so that the next time this surface is drawn there is no need to re-specify the D3DTRIPATCH_INFO for this patch. This makes it possible for the driver to pre-compute and cache forward difference coefficients and/or any other information, which in turn allows subsequent D3DDP2OP_DRAWTRIPATCH tokens using the same handle to execute more efficiently.

The actual value of Handle is determined by the application and is not under runtime control. Therefore, the driver should be prepared to cope with any value specifiable by a DWORD. The special handle value of zero means that the patch is dynamic and there is no point pre-computing or caching information for this patch. A non-zero value for Handle means the patch is static (or updated with low frequency) and pre-computation and caching are possible.

The Flags is used to communicate what, if any, additional information follows the D3DHAL_DP2DRAWTRIPATCH data structure in the DP2 stream. If RTPATCHFLAG_HASSEGS is specified then three floating point values follow D3DHAL_DP2DRAWTRIPATCH in the DP2 stream. These floats give the segment counts for each of the three edges of the triangular patch and override the value of the render state D3DRS_PATCHSEGMENTS. If RTPATCHFLAG_HASINFO is specified then a D3DTRIPATCH_INFO data structure follows in the DP2 stream. Information on this structure can be found in the DirectX 8.0 SDK documentation. If both flags are specified the three floats specifying segment counts follow D3DHAL_DP2DRAWTRIPATCH and the D3DTRIPATCH_INFO structure follows the floating point values.

There are four scenarios a driver must handle when processing D3DDP2OP_DRAWTRIPATCH.

If Handle is zero then the patch is dynamic and no pre-computation or caching should be performed. In this case a D3DTRIPATCH_INFO will follow D3DHAL_DP2DRAWTRIPATCH in the DP2 stream (and the flag RTPATCHFLAG_HASINFO will be set to indicate the presence of the D3DHAL_DRAWTRIPATCH data structure). Optionally, RTPATCHFLAG_HASSEGS may also be set to indicate the presence of the segment information. However, if this is omitted the value of the render state D3DRS_PATCHSEGMENTS should be used instead.

If Handle is non-zero and the handle value has not been specified by an earlier D3DDP2OP_DRAWTRIPATCH this indicates that a new cacheable patch is being drawn. The driver should allocate memory to store cached data and add this data to its patch handle table. As this patch has not been seen before the RTPATCHFLAG_HASINFO flags should be set and a D3DTRIPATCH_INFO flag should follow in the DP2 stream. The runtime does not guarantee this, however, and the driver should verify the presence of the patch information by testing the flag. If no information is specified this token should be ignored and no handle should be allocated in the driver’s patch handle table. Optionally, RTPATCHFLAG_HASSEGS may also be set to indicate the presence of the segment information. However, if this is omitted the value of the render state D3DRS_PATCHSEGMENTS should be used instead.

If Handle is non-zero, the handle value has been specified by an earlier D3DDP2OP_DRAWTRIPATCH token and the Flags field contains RTPATCHFLAG_HASINFO then the definition for the patch is being updated. A D3DTRIPATCH_INFO data structure will follow in the DP2 stream and the driver should use that to re-compute and re-cache patch information. Optionally, RTPATCHFLAG_HASSEGS may also be set to indicate the presence of the segment information. However, if this is omitted the value of the render state D3DRS_PATCHSEGMENTS should be used instead.

If Handle is non-zero, the handle value has been specified by an earlier D3DDP2OP_DRAWTRIPATCH token and the Flags field does not contain RTPATCHFLAG_HASINFO then the cached information should be used for drawing the patch. In this case the current vertex streams are ignored, the cached information should be used instead. However, it is still possible in this case for a new segment information to be specified. Therefore, the driver should check for the flag RTPATCHFLAG_HASSEGS and handle specified segment information even if using a cached patch.

The driver receives notification that cached patch information is be released via the render state D3DRS_DELETERTPATCH. The value of this render state is the patch to be deleted.

High Order Surface Render States

There are three render states that are used with high order surfaces. These render states are described below.

D3DRS_PATCHEDGESTYLE

This render state is used to control whether patch edges use discrete or continues tessellation. See the DirectX 8.0 SDK documentation for more details.

D3DRS_PATCHSEGMENTS

This render state gives the number of segments to be used for each edge of the patch. If an explicit number of segments is specified in the DP2 token those segments should override the value of this render state. See the DirectX 8.0 SDK documentation for more details.

D3DRS_DELETERTPATCH

This render state notifies the driver that a patch is to be deleted. The value of this render state is the handle to the patch affected. All cached information should be freed and the handle should be removed from the driver’s patch handle table. This render state is not API visible, but is generated internally by the API call DeletePatch. This render state is only sent to the driver when patches are deleted by the API explicitly. All other patches should be cleaned up when the device is destroyed.

Multi-sample Rendering

DirectX 8.0 introduces support for multi-sample rendering with the number of samples per pixel under application control. The API support multi-sampling in both fullscreen and windowed modes of operation. Furthermore, there is sufficient flexibility to support hardware that performs the processing of samples into pixels at the back end (directly out of the framebuffer) or at the front end (via a special flip or blt call).

Reporting Multi-sample Support

A driver reports the multi-sample capabilities of the hardware by specifying the number of samples per pixel for each surface format it reports. DDPIXELFORMAT has been extended to include a structure called MultiSampleCaps. This structure has fields that let the driver express the number of samples per pixel for both flip (fullscreen) and blt (windowed) multi-sampling. Each of these fields is a WORD in which each bit indicates support for a given number of samples per pixel. Hence, the driver can express support for several different sample counts with a single surface format entry.

The enumerated type D3DMULTISAMPLE_TYPE defined in d3d8types.h is used when setting the bits in wFlipMSTypes and wBltMSTypes. To specify support for a specific number of samples per pixel simply logically shift 1 by the appropriate value from the D3DMULTISAMPLE_TYPE enumerated type less 1 and or this into the appropriate field (wFlipMSType and wBltMSType).

For example, if the driver supports both two and four samples for pixel when flipping (fullscreen mode) and 4 samples per pixel when blitting (windowed mode) on X8R8G8B8 surface the following entry would be reported in the surface format list.

DDPIXELFORMAT ddpf;

ZeroMemory(&ddpf, sizeof(ddpf));

ddpf.dwSize = sizeof(DDPIXELFORMAT);

ddpf.dwFlags = DDPF_D3DFORMAT;

ddpf.dwFourCC = D3DFMT_X8R8G8B8;

ddpf.dwOperations = D3DFORMAT_OP_DISPLAYMODE |

D3DFORMAT_OP_3DACCELERATION;

ddpf.MultiSampleCaps.wFlipMSTypes = (1 << (D3DMULTISAMPLE_4_SAMPLES – 1))

| (1 << (D3DMULTISAMPLE_2_SAMPLES – 1));

ddpf.MultiSampleCaps.wBltMSTypes = (1 << (D3DMULTISAMPLE_4_SAMPLES – 1));

It is not necessary to specify 1 << (D3DMULTISAMPLE_NONE – 1) when reporting formats. It is assumed that any format reported can also be used without multi-sampling. If the hardware supports multi-sample rendering with a z-buffer the z-buffer formats reported should also include the supported samples-per-pixels.

Multi-sample Support via StretchBlt

Although not the recommended mechanism for supporting multi-sampling it is possible to implement multi-sampling support in the driver by rendering to a large back buffer and performing a stretch blt to resample the large back buffer to the lower resolution primary. However, if this is the mechanism by which the driver supports multi-sampling it must set the new capability bit D3DPRASTERCAPS_STRETCHBLTMULTISAMPLE in the RasterCaps field of the D3D8CAPS structure.

It is important to note if the driver uses a stretch blt to perform a page flip in fullscreen mode the driver should specify the supported sample counts in the wFlipMSTypes and not wBltMSTypes as, conceptually at least a flip is being performed.

Handling the Creation of Multi-Sampled Surfaces

When a multi-sampled surface is being created the number of samples can be found in the ddsCapsEx.dwCaps3 of the DDRAWI_DDRAWSURFACE_MORE/DD_SURFACE_MORE structure. This field simply holds one of the values of the enumerated type D3DMULTISAMPLE_TYPE. It is not a bit field like wFlipMSTypes or wBltMSTypes. If a surface is not multi-sampled dwCaps3 will have the value D3DMULTISAMPLE_NONE (0).

When determining whether a creation request for a multi-sample surface can be satisfied or not the driver should not take into account the current value of the D3DRS_MULTISAMPLEANTIALIAS render state. It is not permissible for a driver to fail a request to set D3DRS_MULTISAMPLEANTIALIAS false. Therefore, any restriction which would affect the ability to perform multi-sample rendering should be enforced at context create time even if D3DRS_MULTISAMPLEANTIALIAS is FALSE at that time.

Although DirectX 8.0 reduces the applications ability to access the primary surface it does not eliminate them. This has important implications when the primary buffer itself is multi-sampled. In those cases where Direct3D does lock the primary it does not expect the surface data to be multi-sampled. Therefore, if the underlying hardware does have a multi-sampled primary it must take appropriate action when the primary is locked and unlocked. On Lock the driver must return a buffer of data that contains the contents of the primary in a single sample-per-pixel format. On Unlock the driver must convert the single sample-per-pixel format back to primary’s multi-sampled format. The new cursor API can also result in Blt calls targeting the primary. Again, if the primary is multi-sampled, the Blt call must handle the conversion from the single sample-per-pixel cursor data to the mutli-sampled primary.

Controlling Multi-sampling

Two render states control multi-sample rendering.

D3DRS_MULTISAMPLEANTIALIAS

A BOOL value that determines how individual samples are computed when using a multi-sample render target buffer. When set to TRUE, the multiple samples are computed so that full-scene antialiasing is performed by sampling at different sample positions for each multiple sample. When set to FALSE, the multiple samples are all written with the same sample value (sampled at the pixel center), which allows non-antialiased rendering to a multi-sample buffer. This render state has no effect when rendering to a single sample buffer. The default value is TRUE.

D3DRS_MULTISAMPLEMASK

Each bit in this mask, starting at the LSB, controls modification of one of the samples in a multi-sample render target. Thus, for an 8-sample render target, the low byte contains the 8 write enables for each of the 8 samples. This render state has no effect when rendering to a single sample buffer. The default value is 0xFFFFFFFF.
This render state enables use of a multi-sample buffer as an accumulation buffer, doing multipass rendering of geometry where each pass updates a subset of samples.

Pure Device Support

DirectX 8.0 introduces the concept of a “Pure” device. When using a pure device the runtime is somewhat more lightweight, it will not track state or state blocks or perform any software vertex processing on behalf of the hardware. Furthermore, the application cannot query back state from the runtime. The lack of state tracking, particularly when state blocks are being used can result in a significant performance boost for the application.

Only vertex processing directly supported by the hardware is available to the application when using a pure device. For example, for cards that don’t support hardware T&L, only pre-transformed vertices can be passed to Direct3D. Furthermore, the functions SetClipStatus, GetClipStatus and ProcessVertices cannot be used with the pure device.

In order to use a pure device the application must request it with the device creation flag D3DCREATE_PUREDEVICE and the driver must report its ability to act as a pure device.

Reporting Pure Device Capability

A driver reports the ability to support pure devices by setting the new device capability D3DDEVCAPS_PUREDEVICE in the DevCaps field of the D3DCAPS8 structure.

State Block Recording and Pure Devices

State block handling is different for a device operating in pure device mode. In this mode the state block control DP2 token (D3DDP2OP_STATESET) will be sent to the driver with a new operation type (in the dwOperations field). This new operation type is D3DHAL_STATESETCREATE. On receipt of this request the driver should create a state block of the type given in the field sbType. The information to record for each state block type is described below.

D3DSBT_ALL

When requested to capture all state in pure device mode the driver should capture all state with the exception of the current vertex stream state, the current index stream state and the currently realized textures.

The state that should be captured is as follows; the render states listed below, the texture stage states listed below, the viewport, all the world transforms, the view transform, the projection transform, the texture transform for all texture stages, all user clip planes, the current material, all lights that have been used prior to the state block creation, the current vertex shader handle, the current pixel shader handle, the current vertex shader constants and the current pixel shader constants.

The render states to record are as follows:

D3DRENDERSTATE_SPECULARENABLE

D3DRENDERSTATE_ZENABLE

D3DRENDERSTATE_FILLMODE

D3DRENDERSTATE_SHADEMODE

D3DRENDERSTATE_LINEPATTERN

D3DRENDERSTATE_ZWRITEENABLE

D3DRENDERSTATE_ALPHATESTENABLE

D3DRENDERSTATE_LASTPIXEL

D3DRENDERSTATE_SRCBLEND

D3DRENDERSTATE_DESTBLEND

D3DRENDERSTATE_CULLMODE

D3DRENDERSTATE_ZFUNC

D3DRENDERSTATE_ALPHAREF

D3DRENDERSTATE_ALPHAFUNC

D3DRENDERSTATE_DITHERENABLE

D3DRENDERSTATE_FOGENABLE

D3DRENDERSTATE_STIPPLEDALPHA

D3DRENDERSTATE_FOGCOLOR

D3DRENDERSTATE_FOGTABLEMODE

D3DRENDERSTATE_FOGSTART

D3DRENDERSTATE_FOGEND

D3DRENDERSTATE_FOGDENSITY

D3DRENDERSTATE_EDGEANTIALIAS

D3DRENDERSTATE_ALPHABLENDENABLE

D3DRENDERSTATE_ZBIAS

D3DRENDERSTATE_RANGEFOGENABLE

D3DRENDERSTATE_STENCILENABLE

D3DRENDERSTATE_STENCILFAIL

D3DRENDERSTATE_STENCILZFAIL

D3DRENDERSTATE_STENCILPASS

D3DRENDERSTATE_STENCILFUNC

D3DRENDERSTATE_STENCILREF

D3DRENDERSTATE_STENCILMASK

D3DRENDERSTATE_STENCILWRITEMASK

D3DRENDERSTATE_TEXTUREFACTOR

D3DRENDERSTATE_WRAP0

D3DRENDERSTATE_WRAP1

D3DRENDERSTATE_WRAP2

D3DRENDERSTATE_WRAP3

D3DRENDERSTATE_WRAP4

D3DRENDERSTATE_WRAP5

D3DRENDERSTATE_WRAP6

D3DRENDERSTATE_WRAP7

D3DRENDERSTATE_AMBIENT

D3DRENDERSTATE_COLORVERTEX

D3DRENDERSTATE_FOGVERTEXMODE

D3DRENDERSTATE_CLIPPING

D3DRENDERSTATE_LIGHTING

D3DRENDERSTATE_NORMALIZENORMALS

D3DRENDERSTATE_LOCALVIEWER

D3DRENDERSTATE_EMISSIVEMATERIALSOURCE

D3DRENDERSTATE_AMBIENTMATERIALSOURCE

D3DRENDERSTATE_DIFFUSEMATERIALSOURCE

D3DRENDERSTATE_SPECULARMATERIALSOURCE

D3DRENDERSTATE_VERTEXBLEND

D3DRENDERSTATE_CLIPPLANEENABLE

D3DRS_SOFTWAREVERTEXPROCESSING

D3DRS_POINTSIZE

D3DRS_POINTSIZE_MIN

D3DRS_POINTSPRITEENABLE

D3DRS_POINTSCALEENABLE

D3DRS_POINTSCALE_A

D3DRS_POINTSCALE_B

D3DRS_POINTSCALE_C

D3DRS_MULTISAMPLEANTIALIAS

D3DRS_MULTISAMPLEMASK

D3DRS_PATCHEDGESTYLE

D3DRS_PATCHSEGMENTS

D3DRS_POINTSIZE_MAX

D3DRS_INDEXEDVERTEXBLENDENABLE

D3DRS_COLORWRITEENABLE

D3DRS_TWEENFACTOR

D3DRS_BLENDOP

The texture stage states to record are as follows:

D3DTSS_COLOROP

D3DTSS_COLORARG1

D3DTSS_COLORARG2

D3DTSS_ALPHAOP

D3DTSS_ALPHAARG1

D3DTSS_ALPHAARG2

D3DTSS_BUMPENVMAT00

D3DTSS_BUMPENVMAT01

D3DTSS_BUMPENVMAT10

D3DTSS_BUMPENVMAT11

D3DTSS_TEXCOORDINDEX

D3DTSS_ADDRESSU

D3DTSS_ADDRESSV

D3DTSS_BORDERCOLOR

D3DTSS_MAGFILTER

D3DTSS_MINFILTER

D3DTSS_MIPFILTER

D3DTSS_MIPMAPLODBIAS

D3DTSS_MAXMIPLEVEL

D3DTSS_MAXANISOTROPY

D3DTSS_BUMPENVLSCALE

D3DTSS_BUMPENVLOFFSET

D3DTSS_TEXTURETRANSFORMFLAGS

D3DTSS_ADDRESSW

D3DTSS_COLORARG0

D3DTSS_ALPHAARG0

D3DTSS_RESULTARG

D3DSBT_VERTEXSTATE

When capturing vertex state in pure device mode the following state should be captured; the vertex processing related render states listed below, the vertex processing texture stage states listed below, all lights that have been used prior to the state block creation, the current vertex shader handle and the current vertex shader constants.

The render states to record are as follows:

D3DRENDERSTATE_SHADEMODE

D3DRENDERSTATE_SPECULARENABLE

D3DRENDERSTATE_CULLMODE

D3DRENDERSTATE_FOGENABLE

D3DRENDERSTATE_FOGCOLOR

D3DRENDERSTATE_FOGTABLEMODE

D3DRENDERSTATE_FOGSTART

D3DRENDERSTATE_FOGEND

D3DRENDERSTATE_FOGDENSITY

D3DRENDERSTATE_RANGEFOGENABLE

D3DRENDERSTATE_AMBIENT

D3DRENDERSTATE_COLORVERTEX

D3DRENDERSTATE_FOGVERTEXMODE

D3DRENDERSTATE_CLIPPING

D3DRENDERSTATE_LIGHTING

D3DRENDERSTATE_NORMALIZENORMALS

D3DRENDERSTATE_LOCALVIEWER

D3DRENDERSTATE_EMISSIVEMATERIALSOURCE

D3DRENDERSTATE_AMBIENTMATERIALSOURCE

D3DRENDERSTATE_DIFFUSEMATERIALSOURCE

D3DRENDERSTATE_SPECULARMATERIALSOURCE

D3DRENDERSTATE_VERTEXBLEND

D3DRENDERSTATE_CLIPPLANEENABLE

D3DRS_SOFTWAREVERTEXPROCESSING

D3DRS_POINTSIZE

D3DRS_POINTSIZE_MIN

D3DRS_POINTSPRITEENABLE

D3DRS_POINTSCALEENABLE

D3DRS_POINTSCALE_A

D3DRS_POINTSCALE_B

D3DRS_POINTSCALE_C

D3DRS_MULTISAMPLEANTIALIAS

D3DRS_MULTISAMPLEMASK

D3DRS_PATCHEDGESTYLE

D3DRS_PATCHSEGMENTS

D3DRS_POINTSIZE_MAX

D3DRS_INDEXEDVERTEXBLENDENABLE

D3DRS_TWEENFACTOR

The texture stage states to record are as follows:

D3DTSS_TEXCOORDINDEX

D3DTSS_TEXTURETRANSFORMFLAGS

D3DSBT_PIXELSTATE

When capturing pixel state in pure device mode the following state should be captured; the pixel processing related render states listed below, the pixel processing texture stage states listed below, the current pixel shader handle and the current pixel shader constants.

The render states to record are as follows:

D3DRENDERSTATE_ZENABLE

D3DRENDERSTATE_FILLMODE

D3DRENDERSTATE_SHADEMODE

D3DRENDERSTATE_LINEPATTERN

D3DRENDERSTATE_ZWRITEENABLE

D3DRENDERSTATE_ALPHATESTENABLE

D3DRENDERSTATE_LASTPIXEL

D3DRENDERSTATE_SRCBLEND

D3DRENDERSTATE_DESTBLEND

D3DRENDERSTATE_ZFUNC

D3DRENDERSTATE_ALPHAREF

D3DRENDERSTATE_ALPHAFUNC

D3DRENDERSTATE_DITHERENABLE

D3DRENDERSTATE_STIPPLEDALPHA

D3DRENDERSTATE_FOGSTART

D3DRENDERSTATE_FOGEND

D3DRENDERSTATE_FOGDENSITY

D3DRENDERSTATE_EDGEANTIALIAS

D3DRENDERSTATE_ALPHABLENDENABLE

D3DRENDERSTATE_ZBIAS

D3DRENDERSTATE_STENCILENABLE

D3DRENDERSTATE_STENCILFAIL

D3DRENDERSTATE_STENCILZFAIL

D3DRENDERSTATE_STENCILPASS

D3DRENDERSTATE_STENCILFUNC

D3DRENDERSTATE_STENCILREF

D3DRENDERSTATE_STENCILMASK

D3DRENDERSTATE_STENCILWRITEMASK

D3DRENDERSTATE_TEXTUREFACTOR

D3DRENDERSTATE_WRAP0

D3DRENDERSTATE_WRAP1

D3DRENDERSTATE_WRAP2

D3DRENDERSTATE_WRAP3

D3DRENDERSTATE_WRAP4

D3DRENDERSTATE_WRAP5

D3DRENDERSTATE_WRAP6

D3DRENDERSTATE_WRAP7

D3DRS_COLORWRITEENABLE

D3DRS_BLENDOP

The texture stage states to record are as follows:

D3DTSS_COLOROP

D3DTSS_COLORARG1

D3DTSS_COLORARG2

D3DTSS_ALPHAOP

D3DTSS_ALPHAARG1

D3DTSS_ALPHAARG2

D3DTSS_BUMPENVMAT00

D3DTSS_BUMPENVMAT01

D3DTSS_BUMPENVMAT10

D3DTSS_BUMPENVMAT11

D3DTSS_TEXCOORDINDEX

D3DTSS_ADDRESSU

D3DTSS_ADDRESSV

D3DTSS_BORDERCOLOR

D3DTSS_MAGFILTER

D3DTSS_MINFILTER

D3DTSS_MIPFILTER

D3DTSS_MIPMAPLODBIAS

D3DTSS_MAXMIPLEVEL

D3DTSS_MAXANISOTROPY

D3DTSS_BUMPENVLSCALE

D3DTSS_BUMPENVLOFFSET

D3DTSS_TEXTURETRANSFORMFLAGS

D3DTSS_ADDRESSW

D3DTSS_COLORARG0

D3DTSS_ALPHAARG0

D3DTSS_RESULTARG

Processing the D3DDP2OP_CLEAR DP2 Token

DirectX 8.0 introduces some changes to the required processing of the D3DDP2OP_CLEAR token. Specifically a new flag D3DCLEAR_COMPUTERECTS has been added to the dwFlags field of the D3DHAL_DP2CLEAR data structure. This new flag will only be passed to the driver when a pure device type is being used (i.e., D3DCREATE_PUREDEVICE was specified when creating the device and the driver exports the D3DDEVCAPS_PUREDEVICE device cap). Furthermore, this flag will never be passed to non-DirectX 8.0 drivers and it will not be specified using the legacy Clear or Clear2 driver callbacks.

If this flag is set, the specified rectangles should be clipped against the current viewport. Furthermore, it is possible that when D3DCLEAR_COMPUTERECTS is specified the number of rectangles to clear can be zero (the number of rectangles to clear can be found in the wStateCount/wPrimtiveCount union of the D3DHAL_DP2COMMAND structure for the clear). In this case the entire viewport should be cleared.

It is important to note that when the number of rectangles is zero the D3DHAL_DP2CLEAR data structure still includes space for a single RECT. Thus the size of this single RECT should be included when advancing to the next DP2 instruction. However, the contents of the RECT in this case are undefined and the driver should not attempt to read them.

Vertex Buffer Issues

Vertex Buffer Callbacks and Windows 2000

DirectX 7.0 on Windows 2000 gold and Windows 2000 Service Pack 1 (SP1) suffers from a defect that prevents a driver’s execute buffer (D3D buffer) callbacks from being invoked by the runtime. This prevents the driver from being notified of vertex buffer creation requests and, hence, no video memory or non-local video memory buffers can be created or used in this scenario. This defect is not present in DirectX 8.0 or in the version of the DirectX 7.0 that is shipped with DirectX 8.0. Furthermore, it will be corrected in an upcoming service pack for Windows 2000 and in all future versions of Windows 2000. However, there is no workaround to enable video memory vertex buffers on Windows 2000 or Windows 2000 SP1 other than to install DirectX 8.0.

Vertex Buffer Creation Handling on Windows 2000

In DirectX 8.0 vertex (and index) buffers can be managed as textures were in DirectX 7.0. That is, a system memory copy of a vertex copy is maintained at all times and a video memory copy is only allocated when that vertex buffers is actually required. In order to make vertex management work correctly, however, it is essential that the driver fail vertex buffer creation in the correct way. If the driver does not want to allocate a vertex buffer in video memory but, instead, wishes the runtime to allocate the buffer in system memory. It should not return DDHAL_DRIVER_NOTHANDLED but rather should return DDHAL_DRIVER_HANDLED and indicated failure by setting a ddRVal of E_FAIL. If the driver returns DDHAL_DRIVER_NOTHANDLED the runtime will attempt to allocate the surface from the video memory heaps returned by the driver. This may either fail and return an error to the application or result in the surface being allocated in local or non-local video memory (which is not the intention).

Therefore, if you wish the runtime to allocate a vertex buffer in system memory on your behalf please set ddRVal to E_FAIL and return DDHAL_DRIVER_HANDLED.

Vertex Buffer Renaming

To improve parallelism between the driver and the runtime Direct3D supports the concept of vertex buffer “renaming”. Essentially this is a double buffering scheme for vertex buffers. In certain circumstances a driver can, when passed a vertex buffer through a DDI call, modify the video memory pointer of the vertex buffer. In this way, the driver can continue to process the contents of the vertex buffer, while, at the same time, the application can lock and fill the vertex buffer. As far as the application is concerned it is using the same vertex buffer. The fact that the memory pointed to by that vertex buffer has been modified is hidden by the runtime and driver.

Although previous versions of DirectX supported vertex buffer renaming there have been certain changes with DirectX 8.0. In previous versions of Direct3D, renaming was primarily accomplished via the DrawPrimitives2 DDI entry point. Flags specified in the D3DHAL_DRAWPRIMITIVES2DATA would specify whether the driver could swap the vertex or command buffer and if so, what the required sizes of the buffers would be. However, in DirectX 8.0 vertex buffer swapping is not accomplished through DrawPrimitives2 (although calls through legacy interfaces will still exploit this mechanism) but rather through the LockExecuteBuffer (LockD3DBuffer) DDI entry point.

DirectX 8.0 defines a new lock flag, D3DLOCK_DISCARD, that when passed to the driver indicates that the caller does not require the existing contents of the driver and hence they can be discarded prior to returning the pointer to the vertex buffer data. Hence, when the driver receives a vertex buffer lock call with the D3DLOCK_DISCARD flag set it can choose to rename the vertex buffer by setting the fpVidMem to a new value.

It is important to note that the D3DLOCK_DISCARD flag will not be passed to the driver by the initial retail release of Windows 2000. The flag will be passed on Windows 2000 Service Pack 1 (SP1) and all subsequent versions of Windows 2000 and all versions of Windows 9x.

In DirectX 7.0 vertex buffer renaming could also be accomplished via LockExecuteBuffer using the flag DDLOCK_DISCARDCONTENTS. However, there were defects in the synchronization between runtime and driver on the original release of DirectX 7.0 that prevent this mechanism working correctly. However, the version of DirectX 7.0 released with DirectX 8.0 corrects this problem and vertex buffer renaming at lock time will be functional through DirectX 7.0 interfaces.

Handling Renaming on Windows 2000

However, in order to correctly perform vertex buffer renaming it is important to understand the nature of the fpVidMem pointer stored in the surface global object on Windows 2000. The interpretation of fpVidMem depends on the type of memory in which the surface is stored. For both system and non-local video memory (AGP) surfaces the fpVidMem is a pointer directly into the user mode address space of the process owning that surface.

For local video memory surfaces, fpVidMem is an offset from the start of video memory. In order to convert this to a user mode pointer it is necessary to add the base address of video memory as mapped into a user mode process. This base address can be found in the fpProcess field of the DirectDraw local object for a given process.

Although fpVidMem for a non-local video memory surface is simply a user mode pointer the means by which this user more pointer are generated are somewhat complex. It is necessary to understand how the Windows 2000 kernel maintains AGP heaps and manages surface allocations from them. The first important point is that, for non-local heaps, the start address of the heap maintained by the kernel may not be a heap into any real address space. It is in fact, normally, a numerical offset designed to ensure that valid allocations from that heap cannot have a NULL (zero) address.

It may be helpful to think of AGP heaps as residing in a conceptual address space that does not correspond to any real address space. The fpStart field of an AGP heap is the base address of the heap in this conceptual address space. Furthermore, any surface’s allocated from an AGP heap have fpHeapOffset that also lies in this conceptual address space. Thus, fpHeapOffset is an offset from the base of this conceptual heap and it is not an offset from the start of the heap itself. Furthermore, it is not a pointer into any real address space. In order for a user mode process to access the memory of a surface fpHeapOffset must be mapped (via pointer arithmetic) into the address space of that user mode process. When a surface is created the kernel performs this mapping according to the formula outlined below.

Given a surface (pSurface), a kernel mode AGP heap (pvmHeap) and a mapping of the heap into a particular user mode process (pMap). The following formula is used to compute the actual, user mode, fpVidMem, for a surface:

fpVidMem = pMap->pvVirtAddr +

(pSurface->fpHeapOffset – pvmHeap->fpStart)

pvVirtAddr is the base address of the user mode mapping of the AGP heap into a given process. fpStart is the offset of the base of the AGP heap into the conceptual address space described above and fpHeapOffset is the offset of the start of the surface from the base of the same conceptual address space.

Your driver is notified of the conceptual base address of AGP heaps through the GetDriverInfo callback. When GetDriverInfo is called with the GUID GUID_UpdateNonLocalHeap the fpGARTLin field of the data structure passed is the same value as fpStart, i.e., the base address of the start of the AGP heap in the conceptual address space. Unfortunately, your driver is not notified of the value of pvVirtAddr and it is not visible to the driver through any of the data structures passed to the driver. Therefore, its value has to be computed from the fpVidMem computed by the kernel for the vertex buffer on initial creating. Given the fpVidMem computed by the kernel simply subtract the current fpHeapOffset less the heap’s fpStart. Given the fpHeapOffset of the new memory to be swapped into the vertex buffer on renaming the new value of fpVidMem can be easily computed.

The following code fragment demonstrates computing a new fpVidMem for an AGP surface in a lock call.

// Get the vertex buffer’s surface local and global from the

// lock data

LPDDRAWI_DDRAWSURFACE_LCL*pLcl = pLockData->lpDDSurface;

LPDDRAWI_DDRAWSURFACE_GBL*pGbl = pLcl->lpGbl;

// Get heap this vertex buffer was allocated from

LPVVIDEOMEMORY pHeap = pGbl->lpVidMemHeap;

// Get the current fpVidMem for the vertex buffer

FLATPTR fpCurrentVidMem = pGbl->fpVidMem;

// Compute the virtual base address of the mapping of this AGP

// into the process owning this vertex buffer.

FLATPTR pvVirtAddr = fpCurrentVidMem – (pGbl->fpHeapOffset – pHeap->fpStart);

// Given the fpHeapOffset of the non-local video memory to be

// swapped into the new vertex buffer compute the new fpVidMem

// as follow

FLATPTR fpNewVidMem = pvVirtAddr + (fpNewHeapOffset – pHeap->fpStart);

// Now store the new fpVidMem in the surface global object and

// also in the lock data.

pGbl->fpHeapOffset = fpNewHeapOffset;

pGbl->fpVidMem = fpNewVidMem;

pLockData->lpSurfData = fpNewVidMem;

// Return success and driver handled

pLockData->ddRVal = DD_OK;

return DDHAL_DRIVER_HANDLED;

In order to make non-local video memory accessible to a user mode process it is necessary for the memory to be both committed and mapped to the user mode process. To ensure that this is done when vertex buffer renaming is being performed it is essential that the new memory for the vertex buffer be allocated using the Eng function HeapVidMemAllocAligned. This will guarantee that the memory is committed and mapped prior to use. HeapVidMemAllocAligned returns an offset into the conceptual address space of the AGP heap and, hence, this pointer can be used as an fpHeapOffset directly.

If the driver returns DDHAL_DRIVER_HANDLED for a lock of an AGP surface the kernel code will return to the runtime and application the value of lpSurfData in the DD_LOCKDATA data structure. If the driver returns DDHAL_DRIVER_NOTHANDLED the kernel simply returns the value of fpVidMem to user mode. Therefore, it is not necessary to return DDHAL_DRIVER_HANDLED as long as fpVidMem is updated to point to the new user mode pointer. However, we recommend that the driver both set fpVidMem and lpSurfData and return DDHAL_DRIVER_HANDLED.

Miscellaneous Issues

Clipping Transformed Vertices

The Direct3D 8.0 runtime fully supports the clipping of pre-transformed vertices through both DrawPrimitive and ProcessVertices. This clipping includes user defined clipping planes as well as Z and the X and Y viewport extents. However, the runtime does not guarantee the clipping of post-transformed vertices. Post-transformed, vertex data is passed directly from the application to the driver by the runtime. This does not imply that a driver is required to full clip post-transformed vertex data. A new capability flag D3DPMISCCAPS_CLIPTLVERTS has been added for DirectX 8.0. If the driver sets this flags in the PrimitiveMiscCaps field of the D3DCAPS8 structure the application can assume that the driver will fully clip post-transformed vertex data to the Z and X, Y viewport extents. Clipping to user-defined clip planes is never supported for post-transformed data. If the driver does not set this flag the application is required to performing clipping of the post-transformed data to the Z extents and to (at least) the guardband extents in X and Y.

It is important to note that the runtime does not validate that the application has correctly clipped post-transformed data. It is the driver’s responsibility to ensure that a crash or hang does not occur if unclipped or incorrectly clipped data is passed when this flag is set.

Microsoft Corporation Confidential
Page 42
9/11/2000

