Conventions

Naming Conventions

All interface names start with IDirect3D and are appended with an 8.

All struct, enum and identifier names are all-caps, start with D3D and are typically not appended with an 8, unless it is known that the structs will change in DX9 time.

Return Code Conventions

Authors should note that each method’s return codes have been broken into two classes: development-time errors and run-time errors.

Development-time errors are those which are caused by the application misusing the method. This usually means by passing bad parameters, or using an unsupported feature (on that device) that could have been avoided by the application propoerly using other enumeration or test functions. Development-time errors should be debugged out of the application before the application is shipped, and no shipping code should have to check for development-time errors.

Run-time errors cover expected unpredictable situations. Good examples would be the exhaustion of video memory, or the loss of a device due to the user pressing alt-tab. Every run-time error should be expected and handled by the application.

Throughout this document, each function or method’s development-time and run-time errors are documented separately, so that authors may easily know what situations they should be able to remove from their application, and what situations they need to handle at run-time.

Note that the same error code may be a run-time error for one method or function and yet be a development-time error for another, and vice-versa.

Graphics Infrastructure
This section presents the services provided by Direct3D that are called at relatively low frequency. These services comprise creation of Direct3D, creation of resources (textures, vertex buffers etc.), display mode selection and presentation of rendered images to the display.

·
·

Creating Direct3D

Historical Note

The creation and setup of the Direct3D Device interface have been collapsed into a single API. Functions for enumerating and retrieving capabilities of a device have been factored out of the device interface itself, in order to allow applications to select devices without creating them.
Callbacks are no longer part of this or any other Direct3D enumeration mechanism.
Earlier versions of DirectX gave an independent identity to the primary flipping chain and Depth buffers that could be associated with a surface. In Direct3D8 the flip chain and depth buffer have become a property of the device. The motivations for this were many, but mainly to remove the need for the concept of “attached surfaces” so prevalent and problematic in the former API. This change means that the new creation API takes parameters describing the size and format of the flip chain
DX8 specifically requires that if 3D device capabilities exisit at all, then they do not vary with display mode or render target format. In other words, caps are allowed to be zero in any mode, but are not allowed to be different when they are non-zero.

The only exception to this rule is multi-sampling (full-scene anti-aliasing), which is expected to vary with render target format. Since only 16 and 32 bpp modes are exposed in DX8, this constancy of capabilities aligns well with existing cards.

In addition to these points, the design presented here requires the application to build no variable-sized storage of any kind. Caps and other items will be returned in structures of a defined size.

Enumeration APIs
Enumeration, Caps discovery and Creation functions are contained within the IDirect3D8 interface. This interface can be created by a function exported by d3d8.dll to which applications may link dynamically, or by creating an instance of the CLSID_Direct3D8 class.

The application goes through several nested layers of enumeration. The steps noted here are intended specifically for fullscreen applications. Windowed applications skip most of these steps.

1. The first enumeration is for adapters. An adapter is a physical piece of hardware (note that a graphics card may contain more than one adapter, as in the case of a dual-head display). Applications that are not concerned with multi-monitor support can skip this step and pass D3DADAPTER_DEFAULT in step 2.

2. For each adapter, the application enumerates the supported display modes via EnumAdapterModes.

3. The application next checks for the presence of hardware acceleration (if required) in each of these modes by calling CheckDeviceTypes.

4. The application now checks for a desired level of functionality for this device on this adapter by calling GetCaps. The application can now filter out those devices which do not offer the required functionality. The caps returned by GetCaps are guaranteed to be constant for a given device across all display modes that were verified supported via CheckDeviceTypes.

5. Devices can always render to surfaces of the format of an enumerated display mode that is supported by that device. If the application wishes to render to surfaces of a different format, it can call CheckDeviceFormats. If the device can render to that format, then it is guaranteed that all the caps returned by GetCaps are applicable.

6. Optionally, the application may lastly determine if multisampling (full-scene antialiasing) is supported for the given render format.

Once all these steps have been completed, the application should have a list of display modes in which it can operate as desired. The last step that needs to be performed is to verify that enough device-accessible memory is available to accomodate the required number of buffers and antialiasing. (Such a test is necessary because the memory consumption for the mode/multisample combination is impossible to predict without actually trying, and moreover some adapter architectures may not have a constant amount of device-accessible memory.) In practical terms, this means that an application should be able to respond to out-of-vidmem failures when going fullscreen. The typical response would be to remove that mode from the list of modes the application offers to its users, or to attempt to consume less memory by reducing the number of back buffers or using a cheaper multisampling method.

The windowed application performs a similar set of tasks:

1. Determine the desktop rectangle covered by the client area of the window.

2. Enumerate for adapters, looking for the one adapter whose monitor covers the client area. If the client area is owned by more than one adapter, then the application can choose to drive each adapter independently, or drive just one adapter and have the Direct3D runtime move pixels from one device to the other at Present time. The application can also skip these first two steps and use the D3DADAPTER_DEFAULT adapter. This may result in slower operation when the window is placed on a secondary monitor, but is of course a much easier scenario for the application to support.

3. The application now checks all the render target formats that it cares to test by calling CheckDeviceFormats, and passing the format returned by GetAdapterDisplayMode as the AdapterFormat parameter (which causes CheckDeviceFormats to use the adapter’s desktop format).

Function: Direct3DCreate8

Creates an instance of the DirectX 8 Direct3D object and returns an IDirect3D8 interface.
IDirect3D8 * Direct3DCreate8(void);

Parameters
None
Return Values

The call returns a new IDirect3D interface and succeeds in all cases except out-of-memory conditions.
Remarks
Calling this function samples the current set of active display adapters. If the user dynamically adds adapters, either by adding devices to the desktop or by hot-docking a laptop, then those devices will not be enumerated for the lifetime of this IDirect3D object. Re-creating a new IDirect3D will expose the new devices.

Interface: IDirect3D8
interface IDirect3D8
{

UINT
GetAdapterCount(void);

HRESULT GetDeviceIdentifier(

UINT

Adapter,
//IN
DWORD

Flags,

//IN

D3DADAPTER_IDENTIFIER8
*pIdentifier);
//OUT

UINT
GetAdapterModeCount(

UINT

Adapter);
//IN

HRESULT EnumAdapterModes(

UINT

Adapter,
//IN
UINT

Mode,

//IN
D3DDISPLAYMODE

*pMode);
//OUT

HRESULT CheckDeviceTypes(

UINT

Adapter,
//IN

D3DDEVTYPE

DeviceType,
//IN

D3DFORMAT

DisplayFormat);//IN

HRESULT GetAdapterDisplayMode(

UINT

Adapter,
//IN

D3DDISPLAYMODE

*pMode);
//OUT
HRESULT CheckDeviceFormats(

UINT

Adapter,
//IN

D3DDEVTYPE

Type,

//IN

D3DFORMAT

AdapterFormat,
//IN

DWORD

Usage,

//IN

D3DFORMAT

CheckFormat);
//IN

HRESULT CheckDeviceMultisampleTypes(

UINT

Adapter,
//IN

D3DDEVTYPE

Type,

//IN
D3DFORMAT

RenderTargetFormat, //IN

BOOL

Windowed,
//IN
D3DMULTISAMPLE_TYPE

Sample);
//IN
HRESULT GetDeviceCaps(

UINT

Adapter,
//IN

D3DDEVTYPE

Type,

//IN

D3DCAPS

*pCaps);
//OUT
HRESULT CreateDevice(

UINT

Adapter,

D3DDEVTYPE

Type,

HWND

hFocusWindow,

DWORD

BehaviorFlags,

D3DPRESENT_PARAMETERS

*pPresenationParameters,

IDirect3DDevice8

**ppReturnedInterface);

}

Interface: IDirect3D8::GetAdapterCount

Returns the number of adapters on the system.

UINT IDirect3D8::GetAdapterCount(void);

Return Value

The number of adapters on the system at the time this IDirect3D8 was instantiated.

See Also

IDirect3D8::GetDeviceIdentifier

Interface: IDirect3D8::GetDeviceIdentifier
Describes the physical display adapters present in the system when Direct3DCreate8 (or CoCreateInstance) was called.

HRESULT GetDeviceIdentifier (

UINT

Adapter,
//IN
DWORD

Flags,

//IN
D3DADAPTER_IDENTIFIER8
*pIdentifier);
//OUT

Parameters
Adapter

An ordinal number denoting the adapter to be enumerated. D3DADAPTER_DEFAULT is always the primary display adapter
Flags

The normal value is zero. Alternatively, the application may specify:

D3DENUM_HOST_ADAPTER
This flag indicates that the identifier should contain information regarding the host adapter, rather than the actual adapter executing 3D commands. (This situation occurs in so-called “stacked” driver models, wherein a host (typically 2D only) card provides the CRT controller, but a second adapter executes 3D drawing commands and writes images into the host card’s frame buffer.)

D3DENUM_NO_WHQL_LEVEL

This flag forces the D3DADAPTER_IDENTIFIER8.WHQLLevel member to be always zero (i.e. no information returned on WHQL certification date). This member can take a large amount of time to determine (on the order of a second or two). Use of D3DENUM_NO_WHQL_LEVEL avoids this penalty.

pIdentifier

Pointer to a D3DADAPTER_IDENTIFIER8 structure that will be filled with information concerning this adapter. If Adapter is greater than or equal to the number of adapters in the system, then this structure will be zeroed.
Development-Time Error Codes

D3DERR_INVALID_CALL if Adapter is out of range or if Flags contains unrecognized parameters or pIdentifier is null or points to unwriteable memory.

Run-time Return Codes

D3D_OK.

Remarks
The stacked driver model is becoming rare. Applications will typically not need to specify D3DENUM_HOST_ADAPTER.

See Also
IDirect3D8::GetAdapterCount
Interface: IDirect3D8::CheckDeviceTypes

Verifies if a particular device type can be used on this adapter.

HRESULT CheckDeviceTypes(

UINT

Adapter,
//IN

D3DDEVTYPE

CheckType,
//IN

D3DFORMAT

AdapterFormat);//IN

Parameters

Adapter

An ordinal number denoting the adapter to be enumerated. D3DADAPTER_DEFAULT is always the primary display adapter. The function returns FALSE when this value equals or exceeds the number of display adapters in the system.

CheckType

The device type to check.

AdapterFormat
The format of the adapter display mode for which the device type is to be checked. Some devices will only operate in, for example, 16 bits per pixel modes. Use D3DFMT_UNKNOWN to check the device types in the desktop display mode (i.e. when wishing to run in a window).

Development-Time Error Codes

D3DERR_INVALID_CALL if Adapter is out of range.

Run-Time Return Codes

If the device can be used on this adapter, D3D_OK is returned, otherwise D3DERR_INVALIDDEVICE is returned.

Remarks

In actuality, all of DirectX8’s software device types may be used on all adapters. The only device types that may not be present are D3DDEVICE_HAL and D3DDEVICE_PURE_HAL. D3DDEVICE_HAL requires hardware acceleration of some kind, and D3DDEVICE_PURE_HAL requires a DirectX8 driver be present for the adapter in question. Applications should use CheckDeviceTypes to determine if such hardware/drivers are present.

Interface: IDirect3D8::GetAdapterModeCount

Returns the number of display modes available on this adapter.

UINT IDirect3D8::GetAdapterModeCount(

UINT
Adapter);

Parameters

Adapter

An ordinal number denoting the adapter to be studied. D3DADAPTER_DEFAULT is always the primary display adapter. The function returns zero when this value equals or exceeds the number of display adapters in the system.

Return Values

The number of display modes on this adapter, or zero if the Adapter argument is greater than or equal to the number of adapters on the system (this is a development-time error).

See Also

Interface: IDirect3D8::EnumAdapterModes

Enumerates the display modes of the given adapter.
HRESULT EnumDeviceModes(

UINT

Adapter,
//IN

UINT

Mode,

//IN

D3DDISPLAYMODE

*pMode);
//OUT

Parameters
Adapter

An ordinal number denoting the adapter to be studied. D3DADAPTER_DEFAULT is always the primary display adapter.
Mode

An ordinal number denoting the mode to be enumerated. In addition, D3DCURRENT_DISPLAY_MODE is not allowed for this method.

pMode

Pointer to a D3DDISPLAYMODE structure that will contain the returned mode description. This value is zeroed on error conditions.
Development-Time Error Codes

D3DERR_INVALID_CALL if Adapter or Mode is out-of-range or pMode is invalid, otherwise:

Run-Time Return Codes

D3D_OK.

Remarks

In addition to the native formats supported by the adapter, the applicable “unknown” formats are also enumerated. (See the “Resource Formats” section for more details.) These unknown formats allow the application to specify a desire for a certain minimum amount of resolution per color channel, without having to specify or be concerned about the ordering of channels within a pixel.

ISSUE: It is expected that the set of refresh rates enumerated through this API be constrained to those that the monitor can handle. Since this is a very difficult determination to make, it is expected that the refresh rate information be restricted to those modes known to be good via a form of mode test performed in code offered by D3DX, in a manner analogous to the mode test API of DirectX 7. The details of this method remain TBD.

See Also
IDirect3D8::GetAdapterModeCount

Method: IDirect3D::GetAdapterDisplayMode

Returns the current display mode of the adapter.

HRESULT IDirect3D::GetAdapterDisplayMode(

UINT

Adapter,

D3DDISPLAYMODE
pMode);

Parameters

Adapter

An ordinal number denoting the adapter to be studied. D3DADAPTER_DEFAULT is always the primary display adapter.

pMode

Pointer to a D3DDISPLAYMODE to be filled with the current adapter’s mode.

Development-Time Error Codes

D3DERR_INVALID_CALL if Adapter is out of range or pMode is invalid.

Run-Time Return Codes

D3D_OK otherwise.

Remarks

Note that a device that represents an adapter may have been resized into a particular mode, but this may not be the actual mode of the adapter. A device resized to a particular mode may actually be lost and so not be determining the current mode of the adapter. This function returns the adapter mode, not any particular device’s desired mode.

Interface: IDirect3D8::CheckDeviceFormats

Determines whether a certain surface format can be used as a texture, Depth/stencil buffer or render target (or any combination thereof) on a device representing this adapter.

HRESULT CheckDeviceFormats(

UINT

Adapter,
//IN

D3DDEVTYPE

DeviceType,
//IN
D3DFORMAT

AdapterFormat,
//IN

UINT

Usage,

//IN

D3DFORMAT

CheckFormat);
//IN
Parameters

Adapter

An ordinal number denoting the adapter to be studied. D3DADAPTER_DEFAULT is always the primary display adapter. The function returns FALSE when this value equals or exceeds the number of display adapters in the system.

DeviceType
See the D3DDEVTYPE section for more details.
AdapterFormat

A D3DFORMAT identifier denoting the format of the display mode in which the adapter will be placed. If this parameter is D3DFMT_UNKNOWN, then the adapter’s current desktop mode format is taken. D3DFMT_UNKNOWN is thus the value that should be passed when application wishes to run windowed.

Usage

This value should indicate the set of usages to which the application would like to put a surface of the given CheckFormat. Allowed usages are:

D3DUSAGE_DEPTHSTENCIL

D3DUSAGE_RENDERTARGET

D3DUSAGE_TEXTURE

and any combination may be checked by ORing these values together.

CheckFormat
The format of the surfaces which may be used in the ways defined by Usage.

Development-Time Error Codes

D3DERR_INVALID_CALL if Adapter is out range, or DeviceType is unsupported.

Runt-Time Return Values

D3DERR_NOTAVAILABLE if the format is not acceptable to the device for this usage. D3D_OK if the format is acceptable to the device for this usage.

Remarks

One typical usage of this method is to check the fullscreen display pixel formats in which the device can operate, in order to verify that a device can render in that format. This is achieved by setting AdapterFormat equal to CheckFormat, and equal to one of the returned display formats. Of course, Usage should be set to D3DUSAGE_RENDERTARGET for this check. See the section on enumeration for more detail on the enumeration process.

Usages in addition to Usage may be assigned to resources when they are created, such as D3DUSAGE_LOCK. The application’s ability to specify such usages is not device-specific, and so need not be checked by this method.

See Also

Direct3DCreate8
Historical Note

Under DX7, drivers were implicitly allowed to alter their capabilities across display modes. In DX8, the display mode is implied by the back buffer format of the swap chain when the swap chain is made fullscreen. Since Direct3D still needs to accomodate older drivers, the DisplayFormat parameter is required.
Interface: IDirect3D8::CheckDeviceMultiSampleTypes
Checks if a particular multisampling technique is available on this device.

HRESULT CheckDeviceMultisampleTypes(

UINT

Adapter,
//IN

D3DDEVTYPE

Type,

//IN

D3DFORMAT

RenderTargetFormat, //IN

BOOL

Windowed,
//IN

D3DMULTISAMPLE_TYPE

Sample);
//IN

Parameters

Adapter

An ordinal number denoting the adapter to be studied. D3DADAPTER_DEFAULT is always the primary display adapter. The function returns FALSE when this value equals or exceeds the number of display adapters in the system.

DeviceType
See the D3DDEVTYPE section for more details.
RenderTargetFormat
Denotes the render target for which the set of multisample types should be returned.

Windowed
Denotes whether the application is enquiring about fullscreen or windowed multisampling.

Sample
The multisample type being tested.

Development-Time Error Codes

D3DERR_INVALID_CALL if RenderTargetFormat is not supported on this adapter for this devicetype in this mode or TYPE if DeviceType does not apply to this adapter.

Run-Time Return Values

D3DERR_NOTAVAILABLE if the queried multisample technique is not supported by this device.

D3D_OK otherwise.

Remarks

This method checks to see if the device can perform the specified multisampling method.

See Also

CreateDirect3D8
Interface: IDirect3D8::GetCaps

Retrieves the capabilities of the device that represents this adapter.

HRESULT GetCaps(

UINT

Adapter,
//IN

D3DDEVTYPE

DeviceType,
//IN

D3DCAPS8

*pCaps);
//OUT

Parameters

Adapter

An ordinal number denoting the adapter represented by the device to be studied. D3DADAPTER_DEFAULT is always the primary display adapter.

DeviceType
See the D3DDEVTYPE section for more details.

pCaps

Pointer to application-supplied storage for the returned caps structure.

Development-Time Error Returns

D3DERR_INVALID_CALL if pCaps is null or points to unwriteable memory, or if DeviceType does not apply to this adapter, or if Adapter is greater than or equal to the number of adapters enumerated by this IDirect3D.

Run-Time Return Codes

D3D_OK.

Remarks

The caps returned by this function should be valid in any mode supported by the device.

See Also

Direct3DCreate8

Interface: IDirect3D8::CreateDevice

Creates a device to represent the adapter.

HRESULT CreateDevice(

UINT

Adapter,

D3DDEVTYPE

DeviceType,

HWND

hFocusWindow,

DWORD

BehaviorFlags,

D3DPRESENT_PARAMETERS

*pPresentationParameters

IDirect3DDevice8

**ppReturnedInterface);
Parameters

Adapter

An ordinal number denoting the adapter to be studied. D3DADAPTER_DEFAULT is always the primary display adapter.

DeviceType

Denotes the desired device type desired.

hFocusWindow
The hWnd to which focus belongs for this Direct3DDevice. Can be NULL if D3DRESIZE_FULLSCREEN is not specified (but if so, then D3DRESIZE_FULLSCREEN will be illegal for all subsequent calls to Resize on this device).

BehaviorFlags

Controls some global behaviors of the Direct3D device. Meanings of the first three flags are equivalent to the similarly-named SetCooperativeLevel flags of DX7. Values are:

D3DCREATE_FPU_SETUP
Indicates that the application would like to keep the FPU set up for optimal Direct3D performance (single precision and exceptions disabled) so Direct3D does not need to explicitly set the FPU each time.
D3DCREATE_FPU_PRESERVE
Indicates that the application needs either double precision FPU or FPU exceptions enabled. This makes Direct3D explicitly set the FPU state eah time it is called. Setting the flag will reduce Direct3D performance.
D3DCREATE_MULTI_THREADED
Indicates that the application explicitly asks Direct3D to be multithread safe. This makes Direct3D take its global critical section more frequently and can thereby degrade performance.

D3DCREATE_DISABLE_DRIVER_MANAGEMENT

This flag causes Direct3D to prevent the driver from performing resource management tasks for D3DPOOL_MANAGED resources. Note that even if the driver cannot manage resources, the different semantics of driver-managed resources still pertain without this flag; namely that such resources are treated as volatile memory and must be destroyed prior to a Resize call, and may return D3DERR_DEVICE_LOST at Lock time. See “Lost Devices” for more information.

Presence of this flag means that the Direct3D runtime owns management, even if the driver can perform management tasks.

pPresentationParameters

See the “IDirect3DDevice8::Resize” method for a full discussion of this parameter.
ppReturnedInterface

A pointer to the returned interface.

Development-Time Error Returns
Run-Time Return Codes

D3D_OK

Remarks

IDirect3D8::CreateDevice returns a fully working device interface, set to the required display mode (or windowed), and allocated with the appropriate back buffers. The application need only create and set a Depth buffer, if desired, to begin rendering.
See Also
IDirect3D8::Resize
Structures
D3DDISPLAYMODE
typedef struct _D3DDISPLAYMODE
{

UINT

Width;

UINT

Height;

UINT

RefreshRate;

D3DFORMAT

Format;

} D3DDISPLAYMODE;

D3DCAPS8
typedef struct _D3DCAPS8 {

 /* Device Info */

 D3DDEVTYPE DeviceType;

 UINT AdapterOrdinal;

 /* Caps from DX7 Draw */

 DWORD Caps;

 DWORD Caps2;

 DWORD SVCaps;

 DWORD PresentationIntervals;

 /* Cursor Caps */

 UINT MaxCursorEdgeSize;

 DWORD CursorCaps;

 /* 3D Device Caps */

 DWORD DevCaps;

 D3DPRIMCAPS LineCaps;

 D3DPRIMCAPS TriCaps;

 DWORD MinTextureWidth, MinTextureHeight;

 DWORD MaxTextureWidth, MaxTextureHeight;

 DWORD MaxTextureRepeat;

 DWORD MaxTextureAspectRatio;

 DWORD MaxAnisotropy;

 D3DVALUE GuardBandLeft;

 D3DVALUE GuardBandTop;

 D3DVALUE GuardBandRight;

 D3DVALUE GuardBandBottom;

 D3DVALUE ExtentsAdjust;

 DWORD StencilCaps;

 DWORD FVFCaps;

 DWORD TextureOpCaps;

 DWORD MaxTextureBlendStages;

 DWORD MaxSimultaneousTextures;

 DWORD MaxActiveLights;

 D3DVALUE MaxVertexW;

 DWORD MaxUserClipPlanes;

 DWORD MaxVertexBlendMatrices;

 DWORD VertexProcessingCaps;

 DWORD MaxVertexIndex;

 D3DVALUE MaxPointSize;

 DWORD MaxStreams;

 DWORD VertexShaderVersion;

 DWORD PixelShaderVersion;

 DWORD MinVolumeExtent, MaxVolumeExtent;

} D3DCAPS8;

Caps

D3DCAPS_READ_SCANLINE
Caps2

D3DCAPS2_NO_2D_DURING_3D_SCENE

D3DCAPS2_FULLSCREEN_GAMMA

D3DCAPS2_CAN_RENDER_WINDOWED
D3DCAPS2_CAN_CALIBRATE_GAMMA

D3DCAPS2_STEREO

D3DCAPS2_UMA
SVCaps

Valid if D3DCAPS2_STEREO is set.

D3DCAPS_STEREO_SEQUENTIAL
PresentationIntervals
A bitmask of values representing what presentation swap intervals are available. The following values are defined:

D3DPRESENTATION_INTERVAL_IMMEDIATE

D3DPRESENTATION_INTERVAL_ONE

D3DPRESENTATION_INTERVAL_TWO

D3DPRESENTATION_INTERVAL_THREE

D3DPRESENTATION_INTERVAL_FOUR

MaxCursorEdgeSize
The largest size in pixels of the smallest dimension (x or y) of the hardware-drawn cursor. Zero if no hardware cursor is available.

CursorCaps

A bitmask indicating what hardware support is available for cursors:

D3DCURSORCAPS_MONO

A two-color black and white cursor is supported in hardware.

D3DCURSORCAPS_COLOR

A full-color cursor is supported in hardware.

Direct3D for DirectX8 does not define alpha-blending cursor capabilities.

DeviceType

The Device Type for which this IDirect3DDevice8 was created.

AdapterOrdinal

The adapter on which this IDirect3DDevice8 was created. This ordinal is only valid to pass to methods of the IDirect3D8 that created this IDirect3DDevice8. This IDirect3D8 can always be retrieved by IDirect3DDevice8::GetDirect3D.

CurrentDisplayMode

The current display mode of this adapter.

D3DADAPTER_IDENTIFIER8
typedef struct _D3DADAPTER_IDENTIFIER8
{

 char Driver[MAX_DDDEVICEID_STRING];

 char Description[MAX_DDDEVICEID_STRING];
#ifdef _WIN32

 LARGE_INTEGER DriverVersion; /* Defined for 32 bit components */

#else

 DWORD DriverVersionLowPart; /* Defined for 16 bit driver components */

 DWORD DriverVersionHighPart;

#endif
 DWORD VendorId;

 DWORD DeviceId;

 DWORD SubSysId;

 DWORD Revision;

 GUID DeviceIdentifier;

 DWORD WHQLLevel;
 HMONITOR hMonitor;

 } D3DADAPTER _IDENTIFIER8;

Driver, Description

These elements are for presentation to the user only. They should not be used to identify particular drivers, since this is unreliable and many different strings may be associated with the same device, and the same driver from different vendors.

DriverVersion, DriverVersionLowPart, DriverVersionHighPart

This element is the version of the Direct3D driver. It is legal to do <, > comparisons on the whole 64 bits. Caution should be exercised if you use this element to identify problematic drivers. It is recommended that guidDeviceIdentifier is used for this purpose. This version has the form:

Product = HIWORD(DriverVersion.HighPart)

Version = LOWORD(DriverVersion.HighPart)

SubVersion = HIWORD(DriverVersion.LowPart)

Build = LOWORD(DriverVersion.LowPart)

dwVendorId, dwDeviceId, dwSubSysId, dwRevision

These elements can be used to identify particular chipsets. Use with extreme caution.

VendorId
Identifies the manufacturer. May be zero if unknown.

DeviceId
Identifies the type of chipset. May be zero if unknown.

SubSysId
Identifies the subsystem, typically this means

the particular board. May be zero if unknown.

Revision
Identifies the revision level of the chipset.

May be zero if unknown.

DeviceIdentifier

This element can be used to check changes in driver/chipset. This GUID is a unique identifier for the driver/chipset pair. Use this element if you wish to track changes to the driver/chipset in order to reprofile the graphics subsystem. This element can also be used to identify particular problematic drivers.

WHQLLevel
This element is used to determine the Windows Hardware Quality Lab (WHQL) certification level for this driver/device pair. The DWORD is a packed date structure defining the date of the release of the most recent WHQL test passed by the driver. It is legal to do <,> operations on this value. The following format is used:

Bits

31-16
Year, a decimal number from 1999 upwards.
15-8 Month, a decimal number from 1 to 12

7-0
Day, a decimal number from 1 to 31
The following special values are also used:

0 Not certified.

1 WHQL certified, but no date information available.
hMonitor
A handle to the monitor connected to this device.

Issue: Need to ensure that this structure adequately covers localization issues.

Going from a Device to an IDirect3D8

Method: IDirect3DDevice8::GetDirect3D

Returns an interface to the instance of the Direct3D object that created this device.

void IDirect3DDevice8::GetDirect3D(IDirect3D8 **pDirect3D)

Parameters

pDirect3D

A pointer to an IDirect3D8* that will be filled with a pointer to that interface. This interface will be add-refed, so applications should call Release through this pointer when they are finished with it.

Return Values

None. This method cannot fail unless a bad pointer was passed.

Method: IDirect3DDevice8::GetCreationParameters

Returns the ordinal of the adapter represented by this device.

D3DDEVICE_CREATION_PARAMETERS IDirect3DDevice8::GetCreationParameters(void)

typedef struct _D3DDEVICE _CREATION_ PARAMETERS
{

UINT

AdapterOrdinal;

D3DDEVTYPE
DeviceType;

DWORD

BehaviorFlags;

HWND

hFocusWindow;

} D3DDEVICE _CREATION_ PARAMETERS;
Return Values

A structure whose methods are described as follows:

AdapterOrdinal

Use this ordinal as the iAdapter method for any of the IDirect3D8 methods. Note that different instances of Direct3D8 may use different ordinals (since adapters can come and go in a system due to users adding or subtracting monitors from a multimon system, or due to hot-swapping a laptop, for example). Consquently, you should use this ordinal only in a Direct3D8 known to be valid. The only two valid Direct3D8 instances are:

· The Direct3D8 that created this IDirect3DDevice8 interface.

· The Direct3D8 returned from IDirect3DDevice8::GetDirect3D as called through this IDirect3DDevice8 interface.

DeviceType, BehaviorFlags, hFocusWindow

These are the parameters exactly as they were passed to teh IDirect3D8::CreateDevice call that created this device.

Retrieving Caps From a Device

Method: IDirect3DDevice8::GetCaps

Retrieves the capabilities of the device.

HRESULT GetCaps(

D3DCAPS8

*pCaps);
//OUT

Parameters

pCaps

Pointer to application-supplied storage for the returned caps structure.

Development-Time Error Returns

D3DERR_INVALID_CALL if pCaps is null or points to unwriteable memory.

Run-Time Return Codes

D3D_OK.

See Also

Direct3DCreate8

Sample Code

D3DCAPS8 Caps;

IDirect3D8 *pFactory = CreateDirect3DFactory8();

UINT cAdapters = pFactory->GetAdapterCount();

for(UINT Adapter = 0; Adapter < cAdapters; Adapter ++)

{
pFactory->GetDeviceCaps(

Adapter,

DEVICE_TYPE_HAL,

&Caps);

if (Caps.dwXXX & DEVICE_CAP_XXX)

{
//found a device I can add to my list

}

}

Presentation APIs

Introduction
The "presentation APIs" are methods that control the state of the device that affects what you see on the monitor. These include setting display modes and once-per-frame methods that are used to present images to the user.

Definitions

The front buffer is the rectangle of memory that is translated by the graphics adapter and displayed on the monitor or other output device.

A back buffer is a surface whose contents can be promoted to the front buffer.

A swap chain is a collection of back buffers that can be serially presented to the front buffer. Typically, a fullscreen swap chain presents subsequent images via the Flip DDI, and a windowed swap chain presents images via the Blt DDI.

There is always at least one swap chain per device, since Direct3D for DirectX8 has one swap chain as a property of the device. The IDirect3DDevice8 interface has a set of methods that manipulate this implicit swap chain, and are a copy of the swap chain’s own interface.

Applications can create additional swap chains if they choose, but this is not necessary for the typical one-window or fullscreen application.

The front buffer is not directly exposed in the Direct3D API for DirectX8. Applications cannot lock or render to the front buffer. (See the Appendix for a discussion of the motivations for this choice.)

Historical Notes

DX7 offered a number of presentation APIs that always end up being called together. A good example of this grouping would be the SetCooperativeLevel, SetDisplayMode, CreateSurface(DDSCAPS_PRIMARY) sequence.
Additionally, there were two methods that signaled a transport of rendered frames to the monitor: Flip and Blt.

DX8 collapses these groups of APIs into few methods, of which two are significant: Resize and Present. Resize subsumes SetCooperativeLevel, SetDisplayMode, CreateSurface(DDSCAPS_PRIMARY) and some of the parameters to Flip. Present subsumes Flip and the presentation uses of Blt. Note that IDirect3D8::CreateDevice represents an implict Resize of the device.

The API presented here has no notion of a “primary surface”. There is no way to create an object that represents the primary surface: it is considered to be an internal property of the device. This is an intentional restriction, and is discussed in more detail in the appendix.
The result of these changes in DX8 is an API that is remarkably simpler to use (just three methods instead of six), and much easier to use correctly.

Gamma Correction is accomplished in a similar way to DirectX 7. Instead of the primary surface, gamma ramps are associated with a swap chain.

API

Method: IDirect3DDevice8::Resize

The Resize method changes the type (fullscreen or windowed, stereo or not), size and format of the swap chain.

HRESULT IDirect3DDevice8::Resize(

D3DPRESENT_PARAMETERS
*pParameters
);

Parameters

pParameters
See the description of the D3DPRESENT_PARAMETERS structure below.

 This value cannot be NULL.

Development-Time Error Codes

D3DERR_INVALID_CALL if pParameters is NULL or points to invalid memory.
Run-Time Return Codes

D3D_OK.

Remarks

If the new swap chain is fullscreen, the adapter will be placed in the display mode that matches the new size.

The back buffer’s pool is chosen from a consideration of the IDirect3DDevice8’s device type and the swap effect.

Table: Choice of Back Buffer Pool

Software Device
Hardware Device

D3DSWAPEFFECT_COPY
_SYSTEMMEM
_LOCALVIDMEM

D3DSWAPEFFECT_FLIP
_LOCALVIDMEM*
_LOCALVIDMEM

D3DSWAPEFFECT_COPY_VSYNC
_SYSTEMMEM
_LOCALVIDMEM

D3DSWAPEFFECT_DISCARD
_SYSTEMMEM
_LOCALVIDMEM

*Occasionally (when the display driver doesn’t support the flip operation) D3DSWAPEFFECT_FLIP on a software device will be implemented by way of some number of system memory buffers (two for double-buffering, three for triple-buffering) that are alternately copied to the frame buffer.

See the definition of D3DSWAPEFFECT for more information on the implications of these swap effects.

See Also

D3DSWAPEFFECT, D3DPRESENT_PARAMETERS
Structure: D3DPRESENT_PARAMETERS

struct D3DPRESENT_PARAMETERS

{

 UINT BackBufferWidth;

 UINT BackBufferHeight;

 D3DFORMAT BackBufferFormat;

 UINT BackBufferCount;

 D3DMULTISAMPLE_TYPE MultiSampleType;

 D3DSWAPEFFECT SwapEffect;

 HWND hDeviceWindow;

 BOOL Windowed;

 BOOL EnableAutoDepthStencil;

 D3DFORMAT AutoDepthStencilFormat;

 /* Following elements must be zero for Windowed mode */

 UINT FullScreen_RefreshRateInHz;

 UINT FullScreen_PresentationInterval;

 DWORD FullScreen_Flags;

};

BackBufferWidth, BackBufferHeight

The width and height, in pixels, and the format of the new swap chain’s back buffers. If Windowed is FALSE (i.e. the presentation will be fullscreen), then these values must be exactly equal to the width and height respectively of one of the enumerated display modes found through IDirect3D8::EnumAdapterModes. If Windowed is TRUE, then if either of these values is zero, then the corresponding dimension of the client area of the hWndDeviceWindow (or the focus window, if hWndDeviceWindow is NULL) is taken.

BackBufferFormat
This value must be one of the render target formats as validated by CheckDeviceFormats.

If the format is D3DFMT_UNKNOWN, then if Windowed is TRUE, then the format of the back buffers will be taken to be the current format of the display mode, unless that format is not one of the allowed render target formats. If the current format is not allowed, then D3DFMT_UNKNOWNC5 is taken.

BackBufferCount
Can be 0, 1, 2 or 3. 0 is treated as 1. If this number of back buffers cannot be created, the runtime will fail this call and fill this value with the number of back buffers that could be created. (Thus an app can call twice with the same D3DPRESENT_PARAMETERS struct and expect it to work the second time.) 1 back buffer is considered a minimum. The call fails if 1 back buffer cannot be created. The value of Buffers affects what set of swap effects are allowed. Specifically, any COPY swap effect requires that there be exactly one back buffer.
SwapEffect
The runtime will guarantee the implied semantics concerning buffer swap behaviour (I.e. can the app depend on the bits being swapped, or copied from back to front). E.g., if windowed and D3DSWAPEFFECT_FLIP, then the runtime will create one extra back buffer, and copy whichever becomes the front buffer at Present time.
D3DSWAPEFFECT_COPY and D3DSWAPEFFECT_COPY_VSYNC require that Buffers be set to 1.
D3DSWAPEFFECT_DISCARD will be enforced in the debug runtime by filling any buffer with noise after it is presented.

hWndDeviceWindow

If fullscreen, this is the cover window. If windowed, this will be the default target window for Present.

If this value is NULL, the focus window will be taken.

Note that no attempt is made by the runtime to reflect user-induced changes in window size, other than an automatic stretch from the back buffer to the client area of the window. The back buffer is not implicitly resized when this window is resized. However, the Present method does automatically track window position changes.

MultiSampleType
See below. NOTE: MultiSampleType must be D3DMULTISAMPLE_NONE, unless SwapEffect has been set to D3DSWAPEFFECT_DISCARD. In other words, multisampling is only legal if the swap effect is DISCARD.
Windowed
TRUE if the application wishes to run windowed, FALSE if the application wishes to run fullscreen.

EnableAutoZStencil
If this value is TRUE, DX8 will manage depth buffers on behalf of the application. The device will create a depth/stencil buffer when it is itself created or resized. The depth/stencil buffer will be automatically set as the render target of the device. When the device is resized, the depth/stencil buffer will also be destroyed and recreated in the new size automatically.

If EnableAutoDepthStencil is TRUE, then AutoDepthStencilFormat must be a valid Depth/Stencil format.

AutoDepthStencilFormat

The format of the automatic Depth/Stencil surface that the device will create. This member is ignored unless EnableAutoDepthStencil is TRUE.
FullScreen_RefreshRateInHz

The maximal rate at which frames can be presented to the output. Must be one of the refresh rates returned in D3DCAPS8, or one of these special values:

D3DRESIZE_RATE_DEFAULT
The runtime will choose the presentation rate, or adopt the current rate if windowed. This is the only valid value when windowed.

D3DRESIZE_RATE_UNLIMITED
The presentation rate runs as quickly as the hardware can deliver frames.

FullScreen_PresentationInterval

Must be one of the values enumerated in D3DCAPS8.dwPresentationIntervals.
D3DPRESENTATION_INTERVAL_IMMEDIATE

D3DPRESENTATION_INTERVAL_ONE

D3DPRESENTATION_INTERVAL_TWO

D3DPRESENTATION_INTERVAL_THREE

D3DPRESENTATION_INTERVAL_FOUR

D3DPRESENTATION_INTERVAL_IMMEDIATE is the only valid value when windowed.
Fullscreen_Flags

Currently controls only stereo.
D3DPRESENT_STEREO

ISSUE: still need to flesh out presentation timing when windowed

Type: D3DSWAPEFFECT

typedef enum D3DSWAPEFFECT {

D3DSWAPEFFECT_COPY,

D3DSWAPEFFECT_FLIP,
D3DSWAPEFFECT_COPY_VSYNC,

D3DSWAPEFFECT_DISCARD};

D3DSWAPEFFECT_COPY

The back buffer is copied to the front buffer. The back buffer contents are guaranteed to remain unchanged. This swap effect is only legal if exactly one back buffer was specified.

D3DSWAPEFFECT_FLIP

The back buffer is swapped to the front buffer. The back buffer contents are replaced with the contents of whatever buffer was least recently presented. All buffers rotate serially, taking turns as back buffer 0, back buffer 1 (and so on, up to BackBufferCount-1), and front buffer. The presentation is synchronized with the vertical sync of the monitor.

D3DSWAPEFFECT_COPY_VSYNC

The back buffer is copied to the front buffer, but the copy is synchronized with the vertical sync of the monitor. The back buffer contents are guaranteed to remain unchanged.

For software devices, this swap effect is implemented by a copy from the system-memory back buffer to a video-memory back buffer which is then presented via a D3DSWAPEFFECT_FLIP operation, unless the system is DDCAPS2_UMA, in which case the device is treated as a hardware device.

For hardware devices, this swap effect is typically implemented by a D3DSWAPEFFECT_FLIP operation followed by a copy from the front buffer back to the buffer. An extra buffer may be required in cases where the front buffer is in a different format or otherwise inaccessible, such a low-bandwidth remote connection.

This swap effect is only legal if exactly one back buffer was specified.

D3DSWAPEFFECT_DISCARD

The back buffer is presented in some unknown method. The back buffer contents are guaranteed to be garbage. No reliance can be made on the contents of the back buffer after Present. The application must therefore overwrite every pixel (and the first write to every pixel must be write-only) in the back buffer before the next Present.

Note that this option has the potential to have the highest performance and lowest memory consumption. In debug builds of Direct3D, the back buffer will be intentionally set to garbage regardless of the actual presentation method, as an aid to coding for this style of presentation.

This is the only swap effect allowed when multisampling has been enabled for this swap chain.

Remarks

It should be noted that the state of the back buffer after Present is well-defined by each of these swap effects, and that the fullscreen/windowed-ness of the device has no effect on this state. In particular, the FLIP swap effect operates the same whether windowed or fullscreen, and the Direct3D runtime guarantees this by creating extra buffers. It is therefore recommended that applications use D3DSWAPEFFECT_DISCARD whenever possible to avoid any such penalties, since this swap effect will always be the most efficient in terms of memory consumption and performance.

Type: D3DMULTISAMPLE_TYPE
This enumeration defines levels of full-scene multisampling that the device can apply. In addition to enabling full-scene multisampling at Resize time, there will be render states that turn various aspects on/off at a fine-grained level. Multisampling is only legal on a swap chain that is being created or resized with the D3DSWAPEFFECT_DISCARD swap effect.
typedef enum D3DMULTISAMPLE_TYPE
{

D3DMULTISAMPLE_NONE,

D3DMULTISAMPLE_2_SAMPLES,

D3DMULTISAMPLE_3_SAMPLES,

....

D3DMULTISAMPLE_16_SAMPLES
};
Method: IDirect3DDevice8::Present

HRESULT IDirect3D::Present(

LPRECT

pSrcRect,

LPRECT

pDestRect,

HWND

hDestWindowOverride
LPRGNDATA
pSrcDirtyRegion);
Parameters

pSrcRect
This value must be NULL unless the swap chain was created with D3DSWAPEFFECT_COPY or D3DSWAPEFFECT_COPY_VSYNC.

pSrcRect is a pointer to a rect containing the source rectangle, in standard DirectX fashion. If NULL, the entire source surface is presented. If the rectangle exceeds the source surface, the rectangle will be clipped to the source surface.

pDestRect
This value must be NULL unless the swap chain was created with D3DSWAPEFFECT_COPY or D3DSWAPEFFECT_COPY_VSYNC.

pSrcRect is a pointer to a rect containing the destination rectangle, in window client coordinates. If NULL, the entire client area will be filled. If the rectangle exceeds the destination client area, then the rectangle will be clipped to the destination client area.

hDestWindowOverride

The destination window whose client area will be taken as the target for this presentation. If this value is NULL, then the hWndDeviceWindow member of D3DRESIZE_PARAMETERS will be taken.

pSrcDirtyRegion
This value must be NULL unless the swap chain was created with D3DSWAPEFFECT_COPY or D3DSWAPEFFECT_COPY_VSYNC.

If this value is non-null, the contained region is considered to be expressed in back buffer coordinates.

The rectangles within the region are taken to be the minimal set of pixels that need to be transferred to complete the operation. The Present method may take these rectangles into account when optimizing the presentation by copying only the pixels within the region, or some suitably expanded set of rectangles. This is an aid to optimization only, and the application should not rely on the region being copied exactly. The implementation may choose to copy the whole source rectangle.

Development-Time Error Codes

TBD

Run-Time Return Codes

D3D_OK.

Remarks

This function presents the contents of the next in the sequence of back buffers owned by the device.

If necessary, a stretch operation is applied to transfer the pixels within the source rectangle to the destination rectangle in the client area of the target window.

The source dirty region is the minimum set of pixels that need to be copied, and may or may not be used by Present to optimize the operation. If the operation calls for stretching (or shrinking), then the dirty region is used to mask the source rectangle before the stretch (or shrink) calculations are made.

ISSUE: It is expected that this API will evolve to take a list of rectangles, rather than the hard-to-use RGNDATA.

Implementation Notes

Internally we will have this drive our atomic multi-rect CopyRects implementation.

Note that non-null dest regions are explicitly supported when fullscreen. This is intended to ease implementation of dirty-rect updates for software-rendered 2D games and/or video.

Method: IDirect3DDevice8::GetBackBuffer

GetBackBuffer returns an interface to one of the back buffers in the device’s swap chain.

HRESULT IDirect3DDevice8::GetBackBuffer(

UINT

BackBufferOrdinal,

D3DBACKBUFFER_TYPE

Side,

IDirect3DSurface8

**pBackBuffer);

Parameters

BackBufferOrdinal
Denotes which back buffer to Get. Back buffers are numbered from 0 to cBackBuffers-1, where cBackBuffers is the value of the same-named parameter to the most recent Resize. This implies that a value of 0 returns the first back buffer, not the front buffer. The front buffer is not accessible through this method.

Side
Indicates which half of the stereo pair to return. One of:

D3DBACKBUFFER_TYPE_MONO

D3DBACKBUFFER_TYPE_LEFT

D3DBACKBUFFER_TYPE_RIGHT
When the swap chain is not stereo, any flag can be used. When the swap chain is stereo, LEFT or RIGHT must be used.

pBackBuffer

Pointer to an IDirect3DSurface8* that will be filled with an interface pointer for the retrieved back buffer.

Development-Time Error Codes

If BackBufferOrdinal equals exceeds the number of back buffers, then the function fails and returns D3DERR_INVALID_CALL.

Run-Time Return Codes

D3D_OK.

Method: IDirect3DDevice8::SetGammaRamp

Sets the gamma correction ramp for the implicit swap chain.

void IDirect3DDevice8::SetGammaRamp(

DWORD

Flags,

D3DGAMMA_RAMP

*pRamp);

Parameters

Flags

Indicates whether correction should be applied. Gamma correction results in a more consistent display, but can cause SetGammaRamp to consume a lot of processor time. Short-duration effects such as flashing the whole screen red should not be callibrated, but long-duration gamma changes should be callibrated. Possible values:

D3DSGR_NO_CALLIBRATION
No correction is applied. The supplied gamma table is transferred directly to the device.

D3DSGR_CALLIBRATE

If a gamma callibrator is installed, the ramp will be modified before being sent to the device to account for the system and monitor’s response curves.

If a callibrator is not installed, the ramp will be passed directly to the device.

Return Values

None.

Remarks

Since the gamma ramp is a property of the swap chain, the gamma ramp may be applied when the swap chain is windowed.

The gamma ramp takes effect immediately. No wait for vsync is performed.

If the device does not support gamma ramps in the swap chain’s current presentation mode (fullscreen or windowed), no error return is given. Applications can check the DDCAPS2_PRIMARYGAMMA and DDCAPS2_CANCALIBRATEGAMMA capability bits in D3DCAPS8.dwCaps2 to discover the capabilities of the device and whether a callibrator is installed.

ISSUE: In future versions, it is likely that this will be extended to cover a gamma-correcting blt when windowed.

See Also

IDirect3DSwapChain8

Method: IDirect3DDevice8::GetGammaRamp

Retrieves the gamma correction ramp for the swap chain.

void IDirect3DDevice8::GetGammaRamp(

D3DGAMMA_RAMP

*pRamp);

Parameters

pRamp

Points to an application-supplied D3DGAMMARAMP structure that will be filled with the current gamma correction ramp.

Structure: D3DGAMMARAMP

typedef struct _D3DGAMMARAMP
{

 WORD Red[256];

 WORD Green[256];

 WORD Blue[256];

} D3DGAMMARAMP;

Method: IDirect3DDevice8::GetRasterStatus

Returns information concerning the raster of the monitor on which the swap chain is presented.
D3DRASTER_STATUS IDirect3DDevice8::GetRasterStatus(void);

Return Values

A structure containing information about the position or other status of the raster on the monitor driven by this adapter.

This function cannot fail, so no error return is possible.

Structure: D3DRASTER_STATUS

Contains

struct D3DRASTER_STATUS
{

BOOL
InVBLANK;

UINT
ScanLine;

};

InVBLANK
TRUE if the raster is in the vertical blank period. False otherwise.

ScanLine
If InVBLANK is FALSE, then this value is an integer roughly corresponding to the current scanline being painted by the raster. The scanlines are numbered in the same way as Direct3D surface coordinates. 0 is the top of the primary surface, extending to the height of the surface – 1 at the bottom of the display.

If InVBLANK is TRUE, then this value is set to zero and has no meaning.

Presenting Multiple Views in Windowed Mode

In addition to the swap chain owned and manipulated through the IDirect3DDevice8 interface, an application can create additional swap chains in order to present multiple views from the same device.

The application would typically create one swap chain per view, and associate each swap chain with a particular window. The application renders images into the back buffers of each swap chain, then Presents them individually.

Note that only one swap chain at a time can be fullscreen on each adapter.

Method:IDirect3DDevice8::CreateAdditionalSwapChain

Creates an additional swap chain for rendering multiple views.
HRESULT IDirect3DDevice8::CreateAdditionalSwapChain(

D3DPRESENT_PARAMETERS
*pParameters,
IDirect3DSwapChain8
**pOut
};
Parameters

The parameters are the same as those of the IDirect3DDevice8::Resize method. In fact, IDirect3DDevice8::Resize internally calls CreateAdditionalSwapChain to create the implicit swap chain owned by the device.

Return Values

Same as IDirect3DDevice8::Resize
See Also

IDirect3DDevice8::Resize
Interface: IDirect3DSwapChain8
The swap chain has the following interface:

interface IDirect3DSwapChain8
{

HRESULT Present(

LPRECT

pSourceRect,

LPRECT

pDestRect,

HWND

hDestWndOverride,

LPRGNDATA

pDirtyRegion);

HRESULT GetBackBuffer(

UINT

Buffer,

IDirect3DSurface8
**ppBackBuffer);
};

Notice that each of these methods has a mirror in the IDirect3DDevice8 interface. These methods perform identically to their IDirect3DDevice8 counterparts, and the reader is directed to those methods for further documentation.

The IDirect3DDevice8 methods are shortcuts with the following meanings:
IDirect3DDevice8::Present:

synonymous with IDirect3DDevice8::GetSwapChain()->Present
IDirect3DDevice8::GetBackBuffer:

synonymous with IDirect3DDevice8::GetSwapChain()->GetBackBuffer
Depth Buffer Manipulation

Historical Note

In the past, any surface could be given a Depth buffer via AddAttachedSurface. In this design, Depth buffers are associated with the device instead of with surfaces. Applications are required to move Depth buffers when they set render targets.

Modified Method: IDirect3DDevice8::SetRenderTarget
Sets a new color and/or Depth buffer for the device.
HRESULT IDirect3DDevice8::SetRenderTarget(
IDirect3DSurface8
*pNewRenderTarget,

IDirect3DSurface8
*pNewDepthStencil,

DWORD

Flags);
Parameters
pNewRenderTarget

The new color buffer. If NULL, the existing color buffer is retained. (Devices always have to be associated with some color buffer.) The new render target is AddRefed, if non-NULL.
The new surface must have at least D3DUSAGE_RENDERTARGET.
pNewDepthStencil
The new Depth/stencil buffer. The existing Depth/Stencil buffer, if it exists is Released. The new Depth/Stencil buffer is AddRefed, if non-NULL. Applications can change render target without changing Depth buffer by passing in the out-parameter of IDirect3DDevice8::GetDepthStencilSurface method.
The new surface must have at least D3DUSAGE_ZSTENCIL The surface must have D3DPOOL_DEFAULT.
Flags

Unchanged.
Development-Time Error Codes
D3DERR_INVALID_CALL if pNewRenderTarget or pNewZStencil are non-null and invalid, or if Flags contains unrecognized flags or if the new Depth buffer is smaller than the new or retained color buffer.
Run-Time Return Codes

D3D_OK.
Remarks
The device will call AddRef on each non-null surface passed to SetRenderTarget. After that, the device calls Release on the previously set color buffer.
Once a color buffer and a Depth/Stencil surface have been associated with the same device in this way, they are said to be “paired”.

The previous Depth/Stencil surface’s contents persist after the call to SetRenderTarget that disassoicated it from the device. If the surface is re-associated with the device, then the contents of the surface will be unchanged, providing the following criterion holds.

The new Depth/Stencil surface’s contents will not be discarded as long as the color buffer to which the new Depth/Stencil surface is being paired is the same size and format as the color buffer to which the Depth/Stencil surface was most recently paired.
See Also
IDirect3DDevice8::CreateDepthStencilSurface, IDirect3DDevice8::GetDepthStencilSurface
New Method: IDirect3DDevice8::CreateDepthStencilSurface
Creates a new Depth/Stencil surface that may be passed to IDirect3DDevice8::SetRenderTarget.

HRESULT IDIRECT3DDevice8::CreateDepthStencilSurface(

UINT
Width,

UINT

Height,

DWORD
Usage,

D3DFORMAT

Format,
D3DMULTISAMPLE_TYPE
MultiSampleType,
IDirect3DSurface8 **
ppSurface);

Parameters

Width,Height
The dimensions of the surface to be created.
Usage

D3DUSAGE_DEPTHSTENCIL is added by default.

D3DUSAGE_LOCK is legal (depending on format... unknown formats are not lockable).

All other usages are illegal.
Format
Must be one of the enumerated Depth/Stencil formats for this device.
MultiSampleType

One of the allowed multisample types. When this surface is passed to SetRenderTarget, its multisample type must match that of the color buffer.

ppSurface

Development-Time Error Returns
D3DERR_INVALIDPARAMS TBD.

Run-Time Return Values

D3D_OK.
Remarks
The pool of the Depth/Stencil buffer is always D3DPOOL_DEFAULT.

See Also
IDirect3DDevice8::SetRenderTarget, IDirect3DDevice8::CopyRects
New Method: IDirect3DDevice8::GetDepthStencilSurface

Returns an interface to the Depth buffer owned by the device.

HRESULT IDirect3DDevice8::GetDepthStencilSurface(
IDirect3DSurface8 ** pSurface);
Parameters
ppSurface

A pointer to a IDirect3DSurface8 * that will receive the new interface. The interface has been AddRefed, and should be Released when no longer needed.
Return Values
An interface to the device’s Depth/Stencil surface.
Remarks
The surface inherits the D3DUSAGE_LOCK value implied by the Depth/Stencil format (in particular, unknown depth/stencil formats will preclude D3DUSAGE_LOCK).
The surface may be passed to IDirect3DDevice8::CopyRects.
ISSUE: Should implicit depth buffers be unlockable?
See Also

IDirect3DDevice8::SetRenderTarget, IDirect3DDevice8::CopyRects

Access to Color Front Buffer
Such access will be allowed, but is targetted explicitly at testing requirements. The performance of the functionality described here will not be guaranteed.

Method: IDirect3DDevice8::GetFrontBufferContents

This method generates a copy of the device’s front buffer and places the results in a system memory buffer provided by the application.

HRESULT IDirect3DDevice8::GetFrontBufferRectangle(

RECT

*pSourceRect,

IDirect3DSurface8
**pRetrievedRectangle);

Parameters
pSourceRect

Pointer to a rectangle in back buffer coordinates for the subset of the device’s front buffer to return. If this value is NULL, the entire front buffer is returned.

pRetrieveRectangle

Points to an IDirect3DSurface8 interface pointer that will receive a pointer to an Image Surface holding a copy of the rectangle specified by pSourceRect. The data are returned in successive rows with no intervening space, starting from the vertically highest row on the device’s output to the lowest (following the usual DirectX convention).

Return Values

Remarks

This method is guaranteed to be slow.

The buffer pointed to by will be filled with a representation of the front buffer, converted to the standard 32bpp format, D3DFMT_A8R8G8B8.

Resources

Historical Note

Successive previous versions of DirectX had handled the explosion of resource types by overloading the concept of a DirectDraw surface. Originally, surfaces represented 2D arrays of pixels that could have a number of widely divergent uses such as representing the “primary surface”, or denoting the overlay transport mechanism. In DX2 surfaces further specialized into textures, execute buffers and render targets. Later, surfaces became vertex buffers (although this is hidden within the DX6 API), and so on. One of the most serious consequences of this continuing expansion of the meanings of a surface was the unacceptably large memory overhead of the objects themselves.

Memory overhead plus the volume textures feature of DX8 dictate that the poor surface be relieved of this burden. Thus DX8 presents a factorization of the surface into various types of buffers which are very tightly targeted towards their intended use.

In addition, these tightly specified objects have exactly those methods which make sense to use with the object. This reduces the complexity in learning the interface since a multitude of non-applicable methods are not obscuring the interface. Further, it reduces complexity in accessing an object that a component did not create since it vastly reduces the realm of possibilites that the component would need to check for and handle.

A further difficulty of the old polymorphic model was the combinatorially enormous number of potential uses of the objects. It was difficult to adequately specify and test what it might mean, for example, to set a mipmap sublevel as a render target, or to use an overlay as a texture. These combinatorial problems are addressed in DX8 by syntactically restricting the uses of the resources to those that are both useful and well-defined. Such silly operations cannot even be expressed in DX8, so no effort need be expended to specify or test these operations.

Resources and Buffers and Their Creation and Manipulation
Resources are the textures, cube maps, vertex buffers etc that are used to render a scene. Applications need to create, load, copy and use resources. This section gives a brief overview of these steps and the methods used to accomplish them.
The application will first create texture resources, using

· IDirect3DDevice8::CreateMipMapTexture
· IDirect3DDevice8::CreateVolumeTexture
· IDirect3DDevice8::CreateCubeMap
The created objects are containers for surfaces or volumes, (generically “buffers”). The application gains access to the contained surfaces (for the purposes of loading artwork) by calling

· IDirect3DMipMap8::LockRect
· IDirect3DMipVolume8::LockBox
· IDirect3DCubeMap8::LockRect
which take arguments denoting the contained surface (i.e. mip sub level or cube face) and return pointers to the pixels. (Note that the application has not yet dealt with a surface per se, but has created and initialized texture resources that contain surfaces. The typical application will never use a surface object directly.)
The application will also create geometry-oriented resources with
· IDirect3DDevice8::CreateIndexBuffer
· IDirect3DDevice8::CreateVertexBuffer
and lock and fill them via

· IDirect3DVertexBuffer::Lock
· IDirect3DIndexBuffer::Lock
If the application is allowing the Direct3D runtime to manage the resources, then the creation process finishes here. If not, then the application will manage promotion of system memory resources to device-accessible resources (where the accelerator can use them) via

· IDirect3DDevice8::UpdateTexture.
In order to present images rendered from these resources, the application also needs color and Depth/stencil buffers. For typical applications, the color buffer is owned by the device’s swap chain (which is a collection of back buffer surfaces) and is implicitly created with the device. Depth/Stencil surfaces can be implicitly created, or explicitly created by the application via:
· IDirect3DDevice8::CreateDepthStencilSurface
The application also associates the Depth and color buffers with the device via

· IDirect3DDevice8::SetRenderTarget
Presenting the final image is covered in the section entitled “Presentation APIs” later in this document.
The following diagram illustrates the operations that are syntactically possible on the resources and their contents, including the steps outlined above. Also illustrated are the other owners of surfaces: Depth/Stencil buffers (which are surfaces) and swap chains, which own back buffers. Arrows running from left to right indicate that the target types are created by the given methods. Arrows running from right to left indicate that those types can be passed as arguments to the given methods.

Figure: Resources and their relationships

Usage, Format, Pool and Type of Resources

Resources have four properties in common:

· Usage: The uses to which the resource will be put (texture, rendertarget, etc.)

· Format: The format of the data (e.g. the pixel format for a 2D surface).

· Pool: What type of memory the resource is allocated in.

· Type: What the resource really is (vertex buffer, mipmap etc.).

The buffers (surfaces or volumes) owned by the resource inherit the usages, format, and pool of the resource but have their own type.

Resource Usage

In DirectX 8, resource usages are enforced. An application that wishes to use a resource in a certain operation must specify that operation at resource creation time. The following usages are defined

Usage
Meaning
Allowable types

D3DUSAGE_LOCK
Lock will succeed
All resources. VBs and IBs have this usage by default. These pools disable lock: LOCALVIDMEM, NONLOCALVIDMEM, and DEFAULT.

D3DUSAGE_

DEPTHSTENCIL
Legal to pass to Depth/Stencil argument of SetRenderTarget
1-level MipMaps, and implicit on surfaces created by CreateDepthStencil-Surface

D3DUSAGE_

RENDERTARGET
Legal to pass to color buffer argument of SetRenderTarget
All resources that contain or are surfaces. CubeMaps, MipMaps, Depth/Stencil Surfaces

D3DUSAGE_TEXTURE
Legal to pass to SetTextureStage
Implicit on all textures: CubeMaps, MipMaps, volumes. Legal on DepthStencil surfaces, illegal elsewhere.

D3DUSAGE_BACKBUFFER
Surface will be presented to display via Present
Implicitly set on surfaces in a swap chain. Illegal elsewhere

D3DUSAGE_

TEXTURE_STAGE_0,

D3DUSAGE_

TEXTURE_STAGE_1,

...

D3DUSAGE_

TEXTURE_STAGE_8
Indicates that the texture will be used on the nth stage of a multitexture operation. Usage at other stages is allowed, but may not work on some devices. (See D3DDEVCAPS_SEPARATETEXTUREMEMORIES)
All Textures

D3DUSAGE_WRITE_ONLY

Vertex and Index Buffers

D3DUSAGE_

SOFTWARE_PROCESSING

Vertex and Index Buffers

D3DUSAGE_DO_NOT_CLIP

Vertex Buffers

D3DUSAGE_LOAD_ONCE
Data can be written to the resource once only. Only one Lock of, CopyRects to, or UpdateTexture to the resource will be allowed. Drivers may typically compress or re-order the art after Unlock. Has a benefit especially relevant to vertex and index buffers: on some systems, the contents of these buffers may be reordered for more optimal processing after the unlock.
All resources

Resource Pools

The class of memory that holds a resource’s buffers is denoted by the term “pool”. The following pools are defined.

Pool
Meaning

D3DPOOL_LOCALVIDMEM
Memory local to the device. Allocations from this memory do not consume system RAM, and use of this memory does not consume system bandwidth. Reading or writing this memory may be expensive since it typically resides across an expansion bus from the point of view of the processor. Such resources must be destroyed before Resize can be called.

D3DPOOL_NONLOCALVIDMEM
Memory accessible by the device but backed by system RAM. Allocating this memory consumes pageable system RAM. Using this memory consumes system bandwidth. Writing to this memory is fast, but reading may be slow due to cache issues. Such resources must be destroyed before Resize can be called.

D3DPOOL_SYSTEMMEM
Memory typically not accessible by device. Consumes system RAM but does not reduce pageable RAM. Such resources need not be destroyed before Resize can be called.

D3DPOOL_MANAGED
The resources will be moved to device-accessible memory automatically. If the device was created without the D3DCREATE_DISABLE_DRIVER_MANAGEMENT flag, the driver may promote the resource according to an unknown algorithm, and Lock may return D3DERR_DEVICE_LOST. If the device was created witht that flag then the Direct3D runtime performs management according to a fixed algorithm, and such resources will not be “lost”. See “Lost Devices” for more information on driver-managed resources and lost devices.

D3DPOOL_DEFAULT
The resource will be placed in the pool most appropriate for the set of usages requested for this resource. Such resources will be “lost”.

Pools cannot be mixed for different objects contained within one resource (e.g. mip levels in a mipmap), and once chosen cannot be changed.

Applications are strongly urged to use the D3DPOOL_DEFAULT pool. The Direct3D runtime will alllocate memory appropriately and may be able to insulate the application from future evolutions in display memory design.
Resource Types
The following types are defined:

Resource Types

D3DRESOURCETYPE_SURFACE

D3DRESOURCETYPE_VOLUME

D3DRESOURCETYPE_MIPMAP

D3DRESOURCETYPE_MIPVOLUME

D3DRESOURCETYPE_CUBEMAP

D3DRESOURCETYPE_VERTEXBUFFER

D3DRESOURCETYPE_INDEXBUFFER

These types are set implicitly by the runtime when the application calls a resource-creation method such as IDirect3DDevice8::CreateCubeMap. Applications can query these types at run-time, but it is expected that most scenarios will not require run-time type checking.

Resource Formats

Historical Note

The DDPIXELFORMAT structure is quite complex and poorly defined, and has led to much confusion in the past. Examples of this confusion arise when new formats are defined within the scope of this structure, and older applications become confused as to the interpretation of the structure. Direct3D for DirectX8 replaces the DDPIXELFORMAT structure with an opaque identifier. There is no chance that applications will incorrectly compare formats, since the results of such a comparison is now rigorously defined.

Additionally, the DDPIXELFORMAT introduced constraints such as the inability of IHVs to legitimately create their own formats except through a formal FOURCC code registration process.

DDPIXELFORMAT was restricted to pixels no larger than a DWORD (due to the choice of DWORD for the mask values).

The D3DFORMAT specifier

Pixel formats are denoted by opaque DWORD identifiers. The format of these DWORDs has been chosen to enable the expression of IHV-defined extension formats, and also to include the well-established FOURCC method. The set of formats understood by the Direct3D runtime is defined by an enumerated type in the header file.

All FourCC codes are inherently part of the table (without mapping). IHVs can extend the table by putting their PCI vendor ID into the high-word, putting 0x00 into the high-byte of the low-word and using the low-byte as a format identifier. The 0x00 prevents collisions with all valid FourCC codes. A high-word of Zero implies that it is a IHV-independent format that doesn't have a FourCC.

Note that IHV supplied formats and many FourCC codes will not be listed in the D3DFORMAT enumeration. The formats in this enumeration are unique in that they are sanctioned by the runtime, meaning that the reference rasterizer will operate on all these types. The IHV formats will be supported by the individual IHVs on a card-by-card basis.

Also note the following table is not complete, and is shown here for illustrative purposes only. The final formats are still TBD.

/* Formats */

typedef enum _D3DFORMAT {

 D3DFMT_UNKNOWN

= 0,

 D3DFMT_UNKNOWN_C5

= 1,

 D3DFMT_UNKNOWN_C5A1

= 2,

 D3DFMT_UNKNOWN_C8

= 3,

 D3DFMT_UNKNOWN_C8A8

= 4,

 D3DFMT_UNKNOWN_F16

= 5,

 D3DFMT_UNKNOWN_F16

= 5,

 D3DFMT_UNKNOWN_D15S1

= 6,

 D3DFMT_UNKNOWN_D24

= 7,

 D3DFMT_UNKNOWN_D24S8

= 8,
 D3DFMT_UNKNOWN_D32

= 9,

ISSUE:Add a 4 bit palettized

 D3DFMT_R8G8B8

= 11,

 D3DFMT_A8R8G8B8

= 12,

 D3DFMT_X8R8G8B8

= 13,

 D3DFMT_R5G6B5

= 14,

 D3DFMT_X1R5G5B5

= 15,

 D3DFMT_A1R5G5B5

= 18,

 D3DFMT_A4R4G4B4

= 19,

 D3DFMT_L8

= 20,

 D3DFMT_A8L8

= 21,

 D3DFMT_U8V8

= 22,

 D3DFMT_U5V5L6

= 23,

 D3DFMT_U8V8L8

= 24,

 D3DFMT_X8U8V8L8

= 25,

 D3DFMT_R3G3B2

= 26,

 D3DFMT_A8

= 27,

 D3DFMT_UYVY

= MAKEFOURCC('U', 'Y', 'U', 'V'),

 D3DFMT_YUY2

= MAKEFOURCC('Y', 'U', 'Y', '2'),

 D3DFMT_DXT1

= MAKEFOURCC('D', 'X', 'T', '1'),

 D3DFMT_DXT2

= MAKEFOURCC('D', 'X', 'T', '2'),

 D3DFMT_DXT3

= MAKEFOURCC('D', 'X', 'T', '3'),

 D3DFMT_DXT4

= MAKEFOURCC('D', 'X', 'T', '4'),

 D3DFMT_DXT5

= MAKEFOURCC('D', 'X', 'T', '5'),

 D3DFMT_D16

= 30,

 D3DFMT_VERTEXDATA

= 70,

 D3DFMT_INDEX_16

= 71,

 D3DFMT_INDEX_32

= 72,

 D3DFMT_FORCE_DWORD

= 0xffffffff

} D3DFORMAT;

Opaque Color Formats

We would like to encourage applications to treat the color buffers as opaque, but we still want to enable applications to choose a minimum resolution per channel. If the application specifies any of the D3DFMT_UNKNOWN* identifiers, then the corresponding device surfaces may take on a higher resolution. Specifying any of these formats means that the corresponding surface is not lockable.

Locking Resources

“Locking” a resource means granting CPU access to its storage. The application subsequently relinquishes direct access to Locked textures by unlocking them. In addition to granting processor access, any other operation involving that resource will be serialized for the duration of a lock. Only one lock for a given resource is allowed (even for non-overlapping regions) and no acclerator operations on a surface may be ongoing while a Lock is outstanding on that surface.

Each resource interface has methods for locking the contained buffers. Each resource can also lock a sub-portion of that resource. Two dimensional resources (surfaces) allow the locking of sub-rectangles, and volume resources allow the locking of sub-volumes, or boxes. Each Lock method returns a structure that contains a pointer to the storage backing the resource, and values representing the distances between rows or planes of data, depending on the resource type (see the resource interface reference section below for details). The returned pointer always points to the top-left byte in the locked sub-region.

Some resource formats aren’t particularaly conducive to locking sub-regions. A good example is the DXTn set of formats, which store pixels in encoded 4x4 blocks. Application writers are cautioned that they should only lock sub-rects for resources that have well-defined storage for each individual pixel. Examples of such storage are D3DFMT_A1R5G5B5 and D3DFMT_A8R8G8B8. Examples of formats with poorly-defined storage for individual pixels are D3DFMT_UYVY and D3DFMT_DXT1.

Historical Note

DX8 continues the same somewhat fragile convention that a locked subrect returns a pointer to the subrect’s top-left pixel. Since it is the display driver that makes the calculation of the address of the subrect and potentially even allocates storage for a temporary buffer therefor, it would have been technically difficult to second-guess the driver and offer a more robust convention: that the returned pointer would always be the top-left of the surface, and the subrect merely an optimization hint.

Lock Flags

This section discusses the flags that are common to the Lock method on all resource types.

Resource Lock Flag
Meaning

D3DLOCK_READ_ONLY
The application will not write to the buffer. This allows resources stored in non-native formats to save the re-compression step when unlocking.

D3DLOCK_DISCARD
The application will overwrite (with a write-only operation) every location within the portion being locked. This allows resources stored in non-native formats to save the decompression step.

D3DLOCK_NO_OVERWRITE
Used only with vertex and index buffers. Indicates that no vertices that were referred to in Draw*PrimtiveVB calls since the start of the frame (or the last lock without this flag) will be modified during the lock. This can enable optimizations when the application is only appending data to the vertex buffer. (ISSUE: Can we hide this behind the lock-ranges of a VB/IB?)

D3DLOCK_NO_DIRTY _UPDATE
By default, lock on a resource adds a dirty region to that resource. This flag prevents any changes to the dirty state of the resource. Applications should use this flag when they have further information about the true set of regions changed during the Lock (and can then pass this information to AddDirtyRect/Box).

D3DLOCK_NO_SYSLOCK
The default behavior of a video memory lock is to take a system-wide critical section that guarantees (among other things) that no display mode changes can happen for the duration of the lock. This flag causes the system-wide critical section not to be held for the duration of the lock. The lock operation is slightly more expensive, but can enable the system to perform other duties (such as moving the mouse cursor). This flag is useful for long duration locks (e.g. the lock of the back buffer for software rendering) that would otherwise adversely affect system responsiveness.

Application writers should note that the first three lock flags (READ_ONLY, DISCARD, and NO_OVERWRITE) are hints only. The runtime makes no checks that applications are obeying the rules they specify by these flags. An application that, for example, specifies READ_ONLY but then writes to the resource can expect strange results.

Resource Interfaces

All resources have the following methods in common:

interface IDirect3DResource
{

// Allows navigation to the owning device object; for

// example, in DX8, using IID_IDirect3DDevice8 would return

// the IDirect3D interface for the object that created

// this buffer. This method is rarely required, but is

// impossible to work around if missing.

HRESULT GetDevice(
REFIID

riid,
void

**ppOwner);

// Private Data is the same as in DX7

HRESULT SetPrivateData (

REFGUID

refguid,

void

*pData,

DWORD

SizeOfData,

DWORD

Flags);

HRESULT GetPrivateData (

REFGUID

refguid,

void

*pData,

DWORD

*pSizeOfData);

HRESULT FreePrivateData(

REFGUID

refguid);

// Priority control for managed resources

// For SetPriority, the previous value is returned.

DWORD SetPriority(

DWORD

PriorityNew);

DWORD GetPriority(void);

// Indicates that the application will need this managed resource shortly.

// Has no effect on non-managed resources.

void PreLoad(void);
// Returns the type of this resource.

D3DRESOURCETYPE GetType(void);

};
Texture Resource Interfaces

All textures have the following methods in common, in addition to the resource methods:

interface IDirect3DTexture8
{

 DWORD SetLOD(DWORD);

 DWORD GetLOD(void);

 DWORD GetLevelCount(void);
// Get number of levels

};

The texture interface serves as a syntactical reminder that only texture resources can be used as textures, since the IDirect3DDevice8::SetTextureStage method takes IDirect3DTexture8 interfaces.

IDirect3DMipMap8
In addition to the IDirect3DTexture8 methods, a mipmap resource has:
interface IDirect3DMipMap : public IDirect3DTexture8
{

HRESULT GetSurfaceLevel(
UINT

Level,

IDirect3DSurface8
**pOut);
//Handy shortcuts to lock a level:

D3DSURFACE_DESC GetLevelDesc(

UINT

Level);

HRESULT LockRect(

UINT

Level,

LPRECT

pRect,

D3DLOCKED_RECT
*pLockedRect,

DWORD

Flags);

HRESULT UnlockRect(

UINT

Level);

void AddDirtyRect(

RECT

*pRect)

}; // IDirect3DMipMap8
IDirect3DMipVolume8
In addition to the IDirect3DTexture8 methods, a volume resource has:

interface IDirect3DMipVolume8 : public IDirect3DTexture8

{

HRESULT GetVolumeLevel(
UINT

Level,

IDirect3DVolume8
**pOut);

//Handy shortcuts to lock a level

D3DVOLUME_DESC GetVolumeDesc(

UINT

Level);

HRESULT LockBox(

UINT

Level ,

D3DBOX

*pBox,

D3DLOCKED_BOX

*pLockedVolume,

DWORD

Flags);

HRESULT UnlockBox(

UINT

Level);

void AddDirtyBox(

D3DBOX

*pBox)

}; // IDirect3DMipVolume8
IDirect3DCubeMap8

In addition to the IDirect3DTexture8 methods, a cubemap resource has:

interface IDirect3DCubeMap8 : public IDirect3DTexture8
{

// dwFaceType is one of the cubemap face descriptors defined

// as part of BUFFER_UUSAGE

HRESULT GetCubemapSurface(
D3DCUBEMAP_FACES
FaceType,
UINT

Level,

IDirect3DSurface8
**pSurface);

//Handy shortcuts to lock a level of a face:

D3DSURFACE_DESC GetLevelDesc(

UINT

Level);

HRESULT LockRect(

D3DCUBEMAP_FACES
FaceType,

UINT

Level,

LPRECT

pRect,

D3DLOCKED_RECT
*pLockedRect,

DWORD

Flags);

HRESULT UnlockRect(

D3DCUBEMAP_FACES
FaceType,

UINT

Level);

void AddDirtyRect(

D3DCUBEMAP_FACES
Face,

RECT

*pRect);

}; // IDirect3DCubeMap8
Geometry Resource Interfaces
IDirect3DVertexBuffer8

interface IDirect3DVertexBuffer8 : public IDirect3DResource
{

//Other methods TBD

DWORD GetFVFormat();

// Methods for IDIRECT3DVertexBuffer8

D3DVERTEXBUFFER_DESC GetVertexBufferDesc(void);

 HRESULT Lock(
UINT

OffsetToLock,
UINT

SizeToLock,

 BYTE

**ppData,
DWORD

Flags);

HRESULT Unlock(void);

}; // IDirect3DVertexBuffer
IDirect3DIndexBuffer8

interface IDirect3DIndexBuffer8 : public IDirect3DResource
{

D3DINDEXBUFFER_DESC GetIndexBufferDesc(void);

 HRESULT Lock(
UINT

OffsetToLock,
UINT

SizeToLock,

 BYTE

**ppData,
DWORD

Flags);

HRESULT Unlock(void);

}; // IDirect3DIndexBuffer8
Buffer Interfaces
IDirect3DSurface8

interface IDirect3DSurface8
{

// Allows navigation to the owning device object; for

// example, in DX8, using IID_IDirect3DDevice8 would return

// the IDirect3D interface for the object that created

// this buffer. This method is rarely required, but is

// impossible to work around if missing.

HRESULT GetDevice(

REFIID

riid,

void

**ppOwner);

// Private Data is the same as in DX7

HRESULT SetPrivateData (

REFGUID

refguid,

void

*pData,

DWORD

SizeOfData,

DWORD

Flags);

HRESULT GetPrivateData (

REFGUID

refguid,

void

*pData,

DWORD

*pSizeOfData);

HRESULT FreePrivateData(

REFGUID

refguid);

// Get access to the parent CubeMap or MipMap object

// if this surface is child level of such.

HRESULT GetContainer(
REFIID

riid,
void

**ppContainer);

// Methods for IDirect3DSurface8

D3DSURFACE_DESC GetSurfaceDesc(void);

HRESULT LockRect(
D3DLOCKED_RECT
*pLockedRect,
LPRECT

pRect,
DWORD

Flags);

HRESULT UnlockRect(void);

}; // IDirect3DSurface8
IDirect3DVolume8

interface IDirect3DVolume8
{

// Allows navigation to the owning device object; for

// example, in DX8, using IID_IDirect3DDevice8 would return

// the IDirect3D interface for the object that created

// this buffer. This method is rarely required, but is

// impossible to work around if missing.

HRESULT GetDevice(

REFIID

riid,

void

**ppOwner);

// Private Data is the same as in DX7

HRESULT SetPrivateData (

REFGUID

refguid,

void

*pData,

DWORD

SizeOfData,

DWORD

Flags);

HRESULT GetPrivateData (

REFGUID

refguid,

void

*pData,

DWORD

*pSizeOfData);

HRESULT FreePrivateData(

REFGUID

refguid);

// Get access to the parent MipVolume object

HRESULT GetContainer(
REFIID

riid,
void

**ppContainer);

// Methods for IDirect3DVolume8

D3DVOLUME_DESC GetVolumeDesc(void);

HRESULT LockBox(
D3DLOCKED_BOX

*pLockedVolume,
LPD3DBOX

*pBox,
DWORD

Flags);

HRESULT UnlockBox(void);

}; // IDirect3DVolume8
Enumerated Type: D3DCUBEMAP_FACES

typedef enum {

D3DCUBEMAP_FACE_POSITIVE_X,

D3DCUBEMAP_FACE_NEGATIVE_X,

D3DCUBEMAP_FACE_POSITIVE_Y,

D3DCUBEMAP_FACE_NEGATIVE_Y,

D3DCUBEMAP_FACE_POSITIVE_Z,

D3DCUBEMAP_FACE_NEGATIVE_Z,

D3DCUBEMAP_FACE_FORCE_DWORD = 0xffffffff

} D3DCUBEMAP_FACES;

Resource Creation API Reference

Method: IDirect3DDevice8::CreateImageSurface

Creates an Image Surface. Image surfaces are place-holder surfaces which cannot be used in any Direct3D operation except CopyRects.

HRESULT IDirect3DDevice8::CreateImageSurface(

UINT

Width,

UINT

Height,

D3DFORMAT

Format,

IDirect3DSurface8
**ppSurface);

Parameters

Width,Height,Format

The width height and format of the surface to be created.

ppSurface

Points to an IDirect3DSurface8 interface pointer that will be filled with a pointer to an interface to the created image surface.

Development-Time Error Returns

D3DERR_INVALID_CALL if ppSurface is invalid.

Run-Time Return Codes

D3D_OK.

Remarks

Image surfaces are always D3DPOOL_SYSTEMMEM, and have only D3DUSAGE_LOCK. They can only be Locked or used in CopyRects.

Method: IDirect3DDevice8::CreateMipMap
Creates a MipMap resource

HRESULT IDirect3DDevice8::CreateMipMap(
UINT

Width,

UINT

Height,

UINT

Levels,

DWORD

Usage,

D3DFORMAT

Format,

D3DPOOL

Pool,
D3D_MULTISAMPLE_TYPE
MultiSampleType,

IDirect3DMipMap8
*ppMipMap);

Parameters

Width, Height

Size of the top-level of the mipmap. The pixel dimensions of subsequent levels will be the truncated value of ½ of the previous level’s pixel dimension (independently). Each dimension clamps at a size of 1 pixel (i.e. if the division by two results in zero, one will be taken instead).

Format

Format of all levels in the mipmap.

Levels

The number of levels in the mipmap. If this is zero, the runtime will generate all mipmap sublevels down to 1x1 pixels.

Usage

D3DUSAGE_TEXTURE is automatically applied. Other allowed usages are (in any combination):

D3DUSAGE_RENDERTARGET

D3DUSAGE_DEPTHSTENCIL

If either D3DUSAGE_RENDERTARGET or D3DUSAGE_DEPTHSTENCIL is used, the application should check that the device supports such operations via IDirect3D::CheckDeviceFormats.

D3DUSAGE_LOCK

D3DUSAGE_LOAD_ONCE

The following hints are useful for devices that expose D3DDEVCAPS_SEPARATETEXTUREMEMORIES. Only one such hint may be specified. The Direct3D runtime does not enforce these hints. Such devices may not function if the texture is placed in a different stage.

D3DUSAGE_TEXTURE_STAGE_0,

D3DUSAGE_TEXTURE_STAGE_1, ...

D3DUSAGE_TEXTURE_STAGE_8
Pool

The pool in which the mipmap should be placed.

MultiSampleType

If the mipmap is going to be used as a render target, then the application may specify a multisample type. Note that depth/stencil and color surfaces which have non-zero multisample types must have matching multisample types when SetRenderTarget pairs the surfaces.

Issue: How does the application determine if MS is supported on a texture?
ppMipMap

Points to an IDirect3DMipMap8 interface pointer that will be filled with a pointer to an interface to the created mipmap.

Development-Time Errors

TBD

Run-Time Return Codes

D3DOK.

Method: IDirect3DDevice8::CreateMipVolume
HRESULT IDirect3DDevice8::CreateMipVolume(

 UINT Width,

 UINT Height,

 UINT Depth,

 UINT Levels,

 DWORD Usage,

 D3D BUFFER_FORMAT Format,

 D3DPOOL

 Pool,

 IDIRECT3DMipVolume **ppMipVolume);

Parameters

Width, Height, Depth

Size of the top-level of the mipvolume. The pixel dimensions of subsequent levels will be the truncated value of ½ of the previous level’s pixel dimension (independently). Each dimension clamps at a size of 1 pixel (i.e. if the division by two results in zero, one will be taken instead).

Format

Format of all levels in the mipvolume.

Levels

The number of levels in the mipvolume. If this is zero, the runtime will generate all mipmap sublevels down to 1x1x1 pixels.

Usage

D3DUSAGE_TEXTURE is automatically applied. Other allowed usages are (in any combination):

D3DUSAGE_LOCK

D3DUSAGE_LOAD_ONCE

The following hints are useful for devices that expose D3DDEVCAPS_SEPARATETEXTUREMEMORIES. Only one such hint may be specified. The Direct3D runtime does not enforce these hints. Such devices may not function if the texture is placed in a different stage.

D3DUSAGE_TEXTURE_STAGE_0,

D3DUSAGE_TEXTURE_STAGE_1, ...

D3DUSAGE_TEXTURE_STAGE_8
Pool

The pool in which the mipvolume should be placed.

ppMipVolume

Points to an IDirect3DMipVolume8 interface pointer that will be filled with a pointer to an interface to the created mipvolume.

Method: IDirect3DDevice8::CreateCubeMap
Creates a cubemap. A cubemap is a collection of six faces, each of which is represented by a set of successively downsampled surfaces (i.e. mipmapped). A cubemap is a flat collection of 6 X Levels surfaces, rather than a collection of six mipmaps.
HRESULT IDirect3DDevice8::CreateCubeMap(

 UINT EdgeLength,

 UINT Levels,

 DWORD Usage,

 D3DFORMAT
Format,

 D3DPOOL
Pool,

 IDirect3DCubeMap
**ppCube);
EdgeLength

Size of the edges of all the top-level faces of the mipmap. The pixel dimensions of subsequent levels of each face will be the truncated value of ½ of the previous level’s pixel dimension (independently). Each dimension clamps at a size of 1 pixel (i.e. if the division by two results in zero, one will be taken instead).

Format

Format of all levels in all faces of the cubemap.

Levels

The number of levels in each face of the cubemap. If this is zero, the runtime will generate all mipmap sublevels down to 1x1 pixels for each face.

Usage

D3DUSAGE_TEXTURE is automatically applied. Other allowed usages are (in any combination):

D3DUSAGE_RENDERTARGET

D3DUSAGE_DEPTHSTENCIL

If either D3DUSAGE_RENDERTARGET or D3DUSAGE_DEPTHSTENCIL is used, the application should check that the device supports such operations via IDirect3D::CheckDeviceFormats.

D3DUSAGE_LOCK

D3DUSAGE_LOAD_ONCE

The following hints are useful for devices that expose D3DDEVCAPS_SEPARATETEXTUREMEMORIES. Only one such hint may be specified. The Direct3D runtime does not enforce these hints. Such devices may not function if the texture is placed in a different stage.

D3DUSAGE_TEXTURE_STAGE_0,

D3DUSAGE_TEXTURE_STAGE_1, ...

D3DUSAGE_TEXTURE_STAGE_8
Pool

The pool in which the mipmap should be placed.

MultiSampleType

If the mipmap is going to be used as a render target, then the application may specify a multisample type. Note that depth/stencil and color surfaces which have non-zero multisample types must have matching multisample types when SetRenderTarget pairs the surfaces.

Issue: How does the application determine if MS is supported on a texture?
ppCube

Points to an IDirect3DCubeMap8 interface pointer that will be filled with a pointer to an interface to the created cubemap.

Development-Time Errors

TBD

Run-Time Return Codes

D3DOK.

Remarks

Unlike previous versions, DirectX8 does not allow cubemaps to have missing faces. Also, cubemaps must be the same pixel size in all three dimensions.

CreateVertexBuffer
Described fully in the “Vertex Buffers” section.

CreateIndexBuffer
Described fully in the “Index Buffers” section.

CreateRenderTarget
HRESULT IDIRECT3DDevice8::CreateRenderTarget(

 UINT

Width,

 UINT

Height,

 DWORD

Usage,

 D3DFORMAT

Format,

 D3DMULTISAMPLE_TYPE
MultiSample,
 IDIRECT3DSurface8

**ppSurface);
Parameters

MultiSample

Specifies the anti-aliasing type for this render target. This type must match any color-buffer surface when both surfaces are passed to SetRenderTarget.
Return Values

Remarks

This function creates a surface with at least the D3DUSAGE_RENDERTARGET. The only other legal usages is D3DUSAGE_LOCK. The pool of the render target is always POOL_DEFAULT.

Manipulation of Resources

Historical Note

The UpdateTexture API replaces the artwork-transportation uses of the removed Blt API.

Method: IDirect3DDevice8::UpdateTexture

HRESULT IDirect3DDevice8::UpdateTexture(
IDirect3DTexture8 * pSrc,
IDirect3DTexture8 *pDest);
This function does a straight copy of the bits from one texture to another. It fails if the textures are of different types, and also if their top-level buffers are of different size.
If the destination texture has fewer levels than the source, then only the matching levels are copied.

If the source texture has dirty regions, then the copy may be optimized by restricting the copy to just those regions. It should be noted that it is explicitly not guaranteed that only those bytes marked dirty will be copied.
Dirty Regions
Applications can optimize what subset of a texture is copied by specifying dirty regions on the textures. Only those regions marked “dirty” are copied by UpdateTexture (but the dirty regions may be expanded to optimize alignment).
When a texture is created it is considered to be “all dirty”. Only four operations affect the dirty state of a texture:

1. Adding a dirty region to the texture.

2. Locking some buffer in the texture. This operation will add the locked region as a dirty region. The application can turn off this automatic dirty region update if it has better knowledge of the actual dirty regions.

3. Using the texture as a destination in UpdateTexture. This marks the destination texture as “all dirty”.

4. Using the texture as a source in UpdateTexture. This clears all the dirty regions on the source texture.

Dirty regions are set on the top level of a mipmapped texture, and UpdateTexture may extend the dirtied region down the mip chain in order to minimize the number of bytes copied for each sublevel. Note that sublevel dirty region coordinates are rounded “outwards”: meaning that their fractional parts are rounded towards the nearest edge of the texture.

Since each type of texture has different types of dirty regions, there are methods on each texture type. 2D textures use dirty rectangles, and volume textures use boxes.

IDirect3DVolume::AddDirtyBox(D3DBOX *pBox)
IDirect3DMipMap::AddDirtyRect(RECT *pRect)

IDirect3DCubeMap::AddDirtyRect(D3DCUBEMAP_FACES Face, RECT *pRect);
Passing NULL for the pRect or pBox parameters expands the dirty region to cover the entire texture.

Each Lock method can take D3DLOCK_NO_DIRTY_UPDATE, which prevents any changes to the dirty state of the texture. Applications should use this flag when they have further information about the true set of regions changed during the Lock.

Application authors should note that a lock or copy to just a sublevel (i.e. without locking/copying to the top level) of a texture does not update the dirty regions for that texture. Applications assume responsibility for updating dirty regions when they lock lower levels without locking the topmost level.
Implementation Note

The Direct3D texture manager uses this scheme. In addition, the manager must mark a texture as all dirty (AddDirty*(NULL)) when it is evicted.

Method: IDirect3DDevice8::CopyRects
CopyRects copies rectangular subsets of pixels from one surface to another. No stretch, color key, alpha blend or format conversion is supported.

HRESULT IDirect3DDevice8::CopyRects(

IDirect3DSurface8
*pSourceSurface,

LPRECT

pSourceRects,

UINT

CountOfSourceRects,

IDirect3DSurface8
*pDestSurface,

LPPOINT

pDestPoints);
Parameters

pSourceSurface, pDestSurface

The source and dest surfaces. These surfaces must be different surfaces.

pSourceRects, CountOfSourceRects, pDestPoints

Pointer to an array and count of rectangles to be transferred. Each rectangle will be transferred to the destination surface, with its top-left pixel at the position identified by the corresponding element of the pDestPoints array. If the pDestPoints value is NULL, then the rects are copied to the same offset (i.e. same top/left location) as the source rectangle.

Remarks
Rects are clipped against the source and dest surfaces automatically. The format of the two surfaces must match, but they can be different sizes.

Development-Time Error Codes

TBD.

Run-Time Error Codes

D3D_OK.
Allowing mutable surface formats

Many ISVs have asked us for a cheap way to change the format of an existing video memory surface without destroying and recreating it. Obviously, the surface could only mutate between two formats that consume the same amount of memory.

The DX7 driver model gives us a mechanism whereby this should be achievable. CreateSurface is done in two passes: one which calls the driver to create and allocate the surface, and then a second that tells the driver to associate a runtime-owned handle with the surface. We could do the second operation more than once, and associate several different handles with the same fpVidMem, one for each format. Internally the driver will allocate one driver-owned surface object per format.

The SetFormat call would then just swap driver handles in the surface object and so should be very very lightweight indeed.

DX8 suits this scenario since DX8 surfaces are state-free. If a surface has any state, then clearly we would have to duplicate driver set-state calls for each of the handles.

Blindly doing this on top of DX7 drivers isn’t a great idea. We could add an internal caps bit that allows drivers to say they work well in this scenario, and/or develop a list of known-good DX7 drivers.

If it turns out that we need a driver rev to do this anyway, then we might just as well add a SetFormat DP2 token...

Issue: We could have the SetFormat method either fail or destroy/recreate when the driver isn’t compatible. Our choice.

DDI Issues

We would inaugurate a new DP2 token that has two fields: handle and new usage. Perhaps we should define a range of DP2 tokens that are to be considered ‘hints’, such as SetUsage, that the driver/device can ignore. (If we do this, we should add a WHQL test to ensure that the driver does indeed ignore all undefined hint tokens!)

Resource Structures
/* Vertex Buffer Description */

typedef struct _D3DVERTEXBUFFER_DESC
{

 D3DFORMAT Format;
 D3DTYPE Type;
 DWORD Usage;
 D3DPOOL Pool;
 UINT Size;
 DWORD dwFVF;
} D3DVERTEXBUFFER_DESC;

/* Index Buffer Description */

typedef struct _D3DINDEXBUFFER_DESC
{

 D3DFORMAT Format;

 D3DTYPE Type;
 DWORD Usage;
 D3DPOOL Pool;
 UINT Size;
} D3DINDEXBUFFER_DESC;

/* Surface Description */

typedef struct _D3DSURFACE_DESC

{

 D3DFORMAT Format;
 D3DTYPE Type;
 DWORD Usage;
 D3DPOOL Pool;
 UINT Size;
 UINT Width;
 UINT Height;
} D3DSURFACE_DESC;

typedef struct _D3DVOLUME_DESC
{

 D3DFORMAT Format;
 D3DTYPE Type;
 DWORD Usage;
 D3DPOOL Pool;
 UINT Size;
 UINT Width;
 UINT Height;
 UINT Depth;
} D3DVOLUME_DESC;

/* Structure for LockRect */

typedef struct _D3DLOCKED_RECT
{

 INT Pitch;

 LPVOID pBits;

} D3DLOCKED_RECT;

/* Structures for LockBox */

typedef struct _D3DBOX
{

 UINT left;
 UINT top;
 UINT right;

 UINT bottom;

 UINT front;

 UINT back;
} D3DBOX;

typedef struct _D3DLOCKED_BOX
{

 INT RowPitch;
 INT SlicePitch;
 LPVOID pBits;
} D3DLOCKED_BOX;

Resource Management

Direct3D for DirectX8 offers a resource manager similar in capability to the texture manager of previous releases.

An Overivew of Management

Devices can typically access less texture memory than the application wishes to consume over its lifetime. “Resource Management” is that process whereby resources are “promoted” from system-memory storage to device-accessible storage and “evicted”, or discarded from device-accessible storage. The Direct3D runtime has its own management algorithm based on a “least recently used” (or LRU) scheme. Direct3D switches to a most-recently used scheme when it detects that more resources than can coexist in device-accessible memory are used within one frame (between BeginScene and EndScene).

In additon to this standard management scheme, some drivers have the ability to assume management tasks.

Managed resources usually incur the storage cost of an extra copy in non-volatile memory. In the particular case of Vertex Buffers, there is no performance gain to be realized by allowing the driver to own the transfer of data from system memory to device-accessible memory. Rapidly-changing vertex buffers are thus more efficient in terms of speed and system memory consumption when stored and accessed directly in device-accessible memory rather than in a managed pool.

Invoking Management

An application expresses its wish for managed resources by passing a special value for the ‘Pool’ argument of the IDirect3DDevice8 creation methods. A value of D3DPOOL_MANAGED means that the resource will be managed. There are slight differences in behaviour between runtime-managed and driver-managed resources. If the device was created without the D3DCREATE_DISABLE_DRIVER_MANAGEMENT flag, then all resources will follow the driver managed rules (even if the driver cannot perform management tasks):

· Driver-managed resources are considered to be video memory and must be destroyed before Resize can be called.

· Driver-managed resources can return D3DERR_DEVICE_LOST from Lock.

(These points are reiterated and further explained in the “Lost Devices” section.)

If the D3DCREATE_DISABLE_DRIVER_MANAGEMENT flag is present, then all managed resources are Direct3D runtime-managed and follow these rules:

· The runtime will manage allocation of video memory and promotion of resources thereto using its own LRU scheme. In over-committed scenarios (wherein more texture storage is requested than can actually be promoted to device-accessible memory at once) the management switches to a most-recently-used scheme.

· Direct3D-managed resources are never “lost”, i.e. operations thereon never return D3DERR_DEVICE_LOST.

· Direct3D-managed resources persist through transitions between the lost and operatonal states of the device. The device can be restored (via Resize) and such resources will continue to function normally without having to be reloaded with art.

Note that Resource Management is not supported for all types and usages; for example, objects that have D3DUSAGE_RENDERTARGET are not supported.

In DX8, Management is now supported for vertex and index buffers as well as the texture types. Management is not recommended for objects whose contents are changing with very high frequency.

Resource Management APIs

IDirect3DResource Properties

Many objects have the following management-oriented method

DWORD
SetPriority(DWORD);
// returns previous priority

DWORD
GetPriority(void);
// returns current priority

and in addition, the texture types: CubeMaps, MipMaps and MipVolumes support the LOD functionality from DX7.

DWORD
IDirect3DMipTexture::GetLOD(void);

DWORD
IDirect3DMipTexture::SetLOD(void);

//returns previous LOD

These methods operate in the same manner as the analogous surface methods from previous releases

Method: IDirect3DDevice8::TextureManagerDiscardBytes

This method invokes the texture manager to free up memory in a particular pool. The texture manager will free up allocations until the number of target bytes is reached. The manager follows an LRU/Priority technique.

HRESULT IDirect3DDevice8::TextureManagerDiscardBytes(

D3DPOOL
Pool,

DWORD

Bytes);

Parameters

Pool

The pool in which the manager should discard bytes.

ISSUE: Should this be explicit local, nonlocal, etc (i.e. not DEFAULT)?

Bytes
The number of bytes to discard. If zero, then the manager should discard all bytes.

The Mouse Cursor API

The well-motivated removal of direct primary surface access necessitates the addition of an API to manipulate a mouse cursor.

Discussion of Functionality

The mouse cursor methods in DirectX8 allow the application to specify a color cursor by providing a surface that contains an image. The system will guarantee that this cursor will be updated at at least half the display refresh rate if the application’s frame rate is slow, but never more frequently than the display refresh rate.

The mouse cursor position is slaved to the system cursor (appropriately scaled for the current display mode spatial resolution), but can be moved explicitly by the application. (This is analogous to the behavior of the win32-supported system mouse cursor.)

Direct3D guarantees that the mouse will appear either by hardware implementations or by the Direct3D runtime performing hardware-accelerated blt operations at Present time and/or at specific intervals in order to guarantee the half-refresh rate cursor update rate.

API

Method: IDirect3DDevice8::SetCursorProperties

Sets properties for the cursor.

HRESULT IDirect3DDevice8::SetCursorProperties(

UINT

xHotSpot,
UINT

yHotSpot,
IDirect3DSurface8
*pSourceBitmap);

Parameters

xHotSpot, yHotSpot
This is the offset into the cursor (in pixels from the top-left corner) that is considered to be the center. When the cursor is given a new position, the image is drawn at an offset from this new position determined by subtracting the hotspot coordinates from the position.

pSourceBitmap

pSourceSurface has to point to an 8888 ARGB surface (format D3DFMT_A8R8G8B8). The contents of this surface will be copied (and potentially format-converted) into an internal buffer from which the cursor is displayed. The dimensions of this surface must be less than the dimensions of the current display mode, and must be a power of two in each direction (although not necessarily the same power of two). For DX8, the alpha channel must be either 0.0 or 1.0. In DX9 we may open up other alpha values...

Return Values

TBD, D3D_OK

Remarks

The application can determine what hardware support is available for cursors by examining appropriate members of D3DCAPS8. See the documentation of that structure for more details. Typically, hardware will support only 32x32 pixel cursors. Additionally, when windowed, the system may only support 32x32 pixel cursors. In this case, the SetCursorProperties call will still succeed, but the cursor may be shrunk to this size (the hotspot will be scaled appropriately).

See Also

IDirect3DDevice8::SetCursorPosition, IDirect3DDevice8::ShowCursor , D3DCAPS8

Method: IDirect3DDevice8::SetCursorPosition

void IDirect3DDevice8::SetCursorPosition(

 UINT
x,

 UINT
y); //screen space coordinates

Parameters

x,y

The new position of the cursor in screen-space coordinates. When windowed, this means desktop coordinates. When fullscreen, this means back buffer coordinates (which Direct3D will then appropriately scale to the current display mode, if necessary). The cursor image will be drawn at this position minus the hotspot offset specified in IDirect3DDevice8::SetCursorProperties.

If the cursor has been hidden IDirect3DDevice8::ShowCursor, then the cursor is not drawn.

Return Values

None. This function cannot fail.

See Also

IDirect3DDevice8::SetCursorProperties, IDirect3DDevice8::ShowCursor

Method:IDirect3DDevice8::ShowCursor

The ShowCursor function displays or hides the cursor.
BOOL IDirect3DDevice8::ShowCursor(
BOOL bShow);
// cursor visibility flag

Parameters
bShow
If bShow is TRUE, the cursor is shown. If bShow is FALSE, the cursor is hidden.

Return Values
The return value specifies whether the cursor was previously visible.
Remarks
This function is independent from the Win32 cursor function of the same name. Applications should use either Win32 cursors or Direct3D cursors exclusively, and not attempt to mix them.
See Also

IDirect3DDevice8::SetCursorProperties, IDirect3DDevice8::SetCursorPosition
Video Memory Management

GetAvailableTextureMem

Method:IDirect3DDevice8::GetAvailableTextureMem

Returns the amount of texture memory available in the given pool.

UINT IDirect3DDevice8:: GetAvailableTextureMem (

D3DPOOL Pool);

Parameters
Pool
The pool class for which available texture memory statistics should be returned. Only one of the following values may be passed:

D3DPOOL_LOCALVIDMEM

D3DPOOL_NONLOCALVIDMEM

D3DPOOL_DEFAULT

Return Value

The function returns an estimate of the available texture memory for the given pool and usages, or zero if the pool is illegal.

Remarks

This returned value is rounded to 2 significant digits in its binary representation. This is done to reflect the fact that video memory estimates are never precise due to alignment and other issues that affect consumption by certain resources. Applications can use this value to make gross estimates of memory availability to make large-scale resource decisions such as how many levels of a mipmap to attempt to allocate, but cannot use this value to make small-scale decisions such as if there is enough memory left to allocate one more resource.

ISSUE: What to do on UMA systems? localvidmem is clearly 0. Should nonlocal be some fixed small amount, like 8 megs? What other number could be meaningful?

Historical Note on GetAvailableVidmem

In the past, this function has been problematic to interpret, since it was never accurate. The amount of video memory you can actually allocate to textures depends on alignment and pitch restrictions, so it’s never guaranteed that you can consume all these bytes. The DCTs have a test that attempts to do so, but has been continually fudged to accomodate reasonable but increasingly unpredictable alignment restrictions. Despite this, a gross approximation to the available vidmem is useful for applications to make first-cut decisions at texture memory allocation. Since the app knows its texture working set to the byte, it might decide, for example, that on an 8 meg card it will discard all its top-level mipmaps.

Previously, GetAvailableVidmem also returned a number representing the total amount of a given type of memory, regardless of whether it could ever be available. This was difficult to define and fairly useless to the application, since there was no way the application could know how to free up that other memory if, for example, it was consumed by other applications. On the contrary, applications always know how much memory they have already consumed (within a certain error at least) so can always add this value to the FreeMemory value to derive a fairly meaningful estimate of total accessible video memory.

This function cannot reasonably return the amount of physical memory on the adapter, because there are many architectures that make the interpretation of this value very difficult. These architectures are:

· UMA systems. These devices may have no separate memory at all, but can consume system memory. The amount of “video” memory an application may consume depends heavily on its own working set, and Direct3D cannot know this number.

· Seconday drivers. Traditional display adapters subtract the amount of memory consumed by the Windows desktop surface from the amount of memory reported. This is sensible, since that memory has to be allocated to the display frame buffer. Secondary drivers, on the other hand, don’t have a desktop frame buffer, and so do not subtract this value first, but still need to consume space for the primary surface when they are used. Applications thus need to know which type of adapter they are using before they can reliably transform the amount of physical memory available into the amount available for resources.

· Stacked drivers. Some parts work by storing all textures in their own memory, but write their output into the actual display card. These cards have issues similar to secondary drivers, but do not subtract the displayed frame buffer from their texture memory, even when they are being actively used. Again, the application needs to understand these parts before it can accurately calculate how much texture memory will be available.

· Multisampling. When full-scene anti-aliasing is enabled, the display buffers may consume an arbitrarily larger amount of video memory than a naive calculation would suggest. Furthermore, some parts will consume more or less for the primary surface depending on whether the down-sampling is done at Present or scan-out time. This datum isn’t even available through the DX8 API.

Lost Devices

Historical Note

In DirectX 1 through 7, DirectDraw surfaces could become “lost”, meaning that the memory they represented had been deallocated and the contained image destroyed. The application was responsible for detecting this situation and repairing it by re-allocating the memory, or “restoring” the surfaces, and then re-filling the surface contents.

Two observations motivate a change in this behavior for DirectX8:

· Various considerations have demonstrated that it may not be possible to guarantee restorability for surfaces in the future.

· Fine-grained resource loss (i.e. per-surface) necessitates that the application have many hard-to-test (and likely untested) code paths responding to resource loss.

DirectX8 moves the concept of “loss” up the object hierarchy to the device. The device becomes lost, but resources do not. DirectX8 “hides” device loss as much as possible, enabling and encouraging the application to have but one device-loss error path.

What is a Lost Device?

A Direct3D device has two states: operational and lost. The operational state is the normal state of the device wherein it executes and presents all rendering as expected. The device makes a transition to the lost state when some event (such as loss of keyboard focus in a fullscreen application) causes rendering to become impossble. The lost state is characterized by silent failure of all rendering operations (meaning that their return codes indicate success), and an error code (D3DERR_DEVICE_LOST) returned by IDirect3DDevice8::Present.

What Causes a Lost Device?

The full set of circumstances that can cause a device to become lost is intentionally not specified. Some typical examples include loss of focus such as when the user presses alt-tab, or a system dialog is brought up. Devices can also be lost when power management events occur, or when another application assumes fullscreen operation.

How Does an Application Respond to a Lost Device?

The application will query the device to see if it can be restored into the operational state. If not, the application will typically wait until the device can be restored. If the device can be restored, the application must ready the device by destroying all video memory resources and any additional swap chains, then Resize it as the application sees fit. Resize is the only method that will have a real effect when the device is lost, and is the only method by which an application can return the device from lost to operational state. Resize will fail unless all video memory resources have been destroyed.

The high-frequency calls of Direct3D (with a few exceptions documented below) do not return any information about whether the device has been lost or not. The application can continue to call DrawPrimitive etc. without receiving notification of device loss. Internally, these operations will be discarded until the device is Resized into the operational state.

The application can decide what to do upon device loss by consulting the IDirect3DDevice8::TestCooperativeLevel method.

· If the method returns D3D_OK, then the device is operational, and vice-versa.

· If the device is lost but cannot be restored at the current time, the return value will be D3DERR_DEVICE_LOST. This would be the case, for example, when a fullscreen device has been alt-tabbed out of focus. Applications should respond to this method by pausing until the device can be Resized again. This situation will be indicated by a D3DERR_DEVICE_NOT_RESIZED return from TestCooperativeLevel.

· If the device is lost, and can be restored, then the return code from TestCooperativeLevel is D3DERR_DEVICE_NOT_RESIZED (the return code from Present will still be D3DERR_DEVICE_LOST). Applications should respond to this return code by attempting to Resize the device and un-pausing the application.

In all cases, destroying video memory resources (any resource or additional swap chain with D3DPOOL_LOCALVIDMEM, D3DPOOL_NONLOCALVIDMEM or D3DPOOL_DEFAULT) is a prerequisite to calling IDirect3D::Resize (even if the device has not been lost).

Creating Resources in Lost Devices

Resources can consume video memory. Since a lost device has been disconnected form the video memory owned by the adapter, it is not possible to guarantee allocation of video memory when the device is lost. Hence, all resource creation methods are implemented to succeed the call (i.e. return D3D_OK) but do in fact only allocate dummy system memory. Since any video memory resource has to be destroyed before the device is resized, there will be no issue of over-allocating video memory. These dummy surfaces allow lock, copy etc. to continue to appear to function until the application calls Present and discovers the device has been lost.

Driver-Managed Resources and Lost Devices

Driver-managed resources present a problem. Since the driver owns the storage associated with the resource and the driver is by definition inaccessible when the device is lost, the Direct3D runtime has no ability to offer continued access to such resources. When resources are driver-managed, then, they are considered to be video-memory, meaning that they must be destroyed before Resize can be called. Additionally, driver-managed resources can fail Lock as explained below in the section entitled “Lost Devices and Retrieved Data”.

Lock and Lost Devices

Internally, Direct3D for DirectX8 does enough work that Lock will still succeed after a device has been lost. It is not guaranteed that any video memory resource’s data will be accurate during these locks, but it is guaranteed that no error code will be returned. This allows applications to be written without concern for device loss at Lock time. One caveat is covered in the following paragraph.

Lost Devices and Retrieved Data (Two scenarios that force applications to notice lost devices)

DirectX8 allows applications to copy generated (or even previously written) images from video memory resources into non-volatile system memory resources. Since the source images of such transfers may be lost at any time, the Direct3D runtime is faced with three options:

· Allow such copy operations to fail when the device is lost and thus break the promise of hiding device loss.

· Disallow such copies and reduce functionality.

· Hide loss of the source image in the usual manner, and impress upon application writers the need to re-copy any such images after loss of a device (since it cannot be guaranteed that the device was lost before or after the image was retrieved).

DirectX8 chooses the first option: Copy operations (UpdateTexture or CopyRects) can return D3DERR_DEVICELOST when the source object is volatile (D3DPOOL_LOCALVIDMEM, D3DPOOL_NONLOCALVIDMEM, D3DPOOL_DEFAULT or D3DPOOL_MANAGED when driver management is enabled) and the destination object is non-volatile (D3DPOOL_SYSTEMMEM or D3DPOOL_MANAGED when driver management is disabled).

In addition to the problem of lost source images when copying, an application is also allowed to lock a driver-managed resource. Since such resources can be inaccessible when the device is lost, Direct3D for DirectX8 also allows such Lock calls to fail with D3DERR_DEVICELOST.

These two cases are the only instances of D3DERR_DEVICELOST outside of Present and TestCooperativeLevel.

Other 3D state and Lost Devices

As mentioned previously, all video memory must be freed before a device can be resized out of a lost state. In addition to this, other pieces of state are destroyed by the transition from lost back to operational. Specifically:

· All vertex and pixel shaders are destroyed

· All lights are destroyed

· All textures set into the texture pipeline become unset

· All render states revert to their default state (the state they would have had when the device was first created).

These facts encourage applications to develop a single code path to respond to device loss. This code path is likely to be very similar if not identical to the code path taken to initialize the device at start-up.

Device Loss State Diagram

This diagram illustrates how the device’s lost state evolves in response to inputs from the system (external loss events) and the application (resize/allocation/destruction of video memory). In this diagram “vidmem” means any additional swap chain or any resource or surface that consumes D3DPOOL_DEFAULT, D3DPOOL_LOCALVIDMEM, or D3DPOOL_NONLOCALVIDMEM. “Not enough vidmem” means not enough storage for the implicit swap chain.

Appendix: Debugging support

Easy Runtime Debug/Release Switching

Direct3D for DirectX8 will be distributed in two versions in the DirectX SDK: release and debug. Applications will always link against the release build, but a registry setting will cause the release build to load and substitute the debug build for itself.

The registry setting will be controlled through the DirectX SDK control panel and/or the dxdiag diagnostic tool.

The debug build will immediately output a banner declaring itself and its version number.

Appendix:A Discussion of Retired Functionality

This section highlights and discusses motivations for removing functionality that continues to be supported on DX7 but deemed unnecessary or problematic in DX8.

Front-Buffer Rendering and the “Primary Surface”

The original design of DirectDraw has been an obstacle to many people:

· IHVs find that exposing a particular implementation of a graphics display limits their ability to innovate in hardware design. A good and highly relevant example is full-scene anti-aliasing.

· OS designers (that’s us) are plagued by applications’ ability to Lock the primary surface as we try to evolve the Window manager away from the desktop metaphor towards more dynamic presentation schemes, and even struggle to keep different applications from harming each other’s displays on the shared desktop.

These and other similar considerations have prompted us to strongly hide the primary surface in DirectX 8. The API doesn’t even have such a notion, insofar as there is no way to create an object that represents the primary surface. The primary is considered to be a piece of state, private and internal to the display adapter.

Now, the removal of the primary surface does impose some hardships on applications. We have received consistent feedback that applications need to be able to manipulate the front buffer in order to achieve:

· Custom mouse pointers

· Immediate display of primitives for debugging

The former is hard enough to achieve that Direct3D for DirectX8 will offer a mouse cursor manipulation API. The latter will be achievable through a registry setting (along with other debug aids).

The Blt API

It was observed that the Blt API serves three purposes in current DirectX applications:

· High-frequency rectangle primitive

· Manipulation/Download of Artwork

· Presentation of rendered frames

The DX8 API has been designed to offer better alternatives to Blt that accomplish these tasks.

Blt as a High Frequency Rectangle Primitive

The simple observation is that in hardware relevant to the DirectX8 release timeframe, DrawPrimitive is a much more effective high frequency primitive than Blt. There are various reasons such as:

· The Blt DDI does not participate in the token-stream architecture of Direct3D. This causes pipeline stalls and synchrony.

· Blt has hundreds of poorly-defined modes of operation.

· Blt doesn’t filter.

· Blt doesn’t rotate, skew, affine transform, blend, compare Depth, stencil etc.

Direct3D for DirectX8 makes the assertion that modern applications can achieve all their high-frequency needs with DrawPrimitive. To further promote this pathway, the D3DX library offers a Blt-like API that drives the DrawPrimitive API.

Manipulation/Download of Artwork

Blt is ideally suited to this application. In DX8, the subset of Blt’s functionality that is suited to moving art around is found in the IDirect3DDevice8::CopyRect method. The utility of a rect copy API is retained, while removing the poorly defined and fragile complexity of the original Blt. In addition, the new interface will more closely match the ability of hardware to effectively download textures asynchronously.

Blt as a Presentation Primitive

Blt’ing a back buffer to the client are of a window was unnecessarily complex in DirectX 7. The application had to create a clipper object, associate and hWnd with the clipper, then associate the clipper with the primary surface. Direct3D for DirectX8 deletes the clipper object, and offers the IDirect3DDevice8::Present method to achieve the same result without the intermediate steps.

Retained uses for Blt

The Blt DDI continues to be used in DirectX8 as the primary mechanism for moving large rectangles of pixels on a per-frame basis, i.e. as the mechanism behind the copy-oriented Present operations. Blt also allows the runtime to sidestep two driver transitions (lock and unlock) in favor of one when performing texture download.

Lock of Video Memory Textures

Direct access to video memory textures is illegal in DX8. Direct access to other resource types and to back buffers is still allowed.

The motivations for this choice are:

· Some drivers fail texture locks anyway

· Some drivers allocate system memory on Lock to prevent pipeline stalls.

· Writing across the bus is slow.

· Reading across the bus is very very slow.

· Reading from AGP is very slow.

· Hardware likes to reorder textures to gain better 2D locality. This operation has to be undonde on lock and redone on unlock. Very expensive.

· Many of today’s devices hide lock issues by returning pointers to system memory buffers and performing potentially very expensive operations on unlock. These buffers are sometimes persistent, resulting in enormous memory consumption per surface.

The alternative promoted in DX8 is that applications lock only system memory surfaces, and the driver own transporting the contents to video memory (even thought the app can still own allocation of that vidmem and choice of transport time/source/dest). This enables re-ordering by hardware, removes pipeline stalls.

Ability to turn stereo on and off arbitrarily

In DX7, stereo is enabled via a Flip flag, and can thus change rapidly. In DX8, the stereo-ness is a property of the display mode.

Ability to specify user-allocated memory for surfaces.

This capability is currently not part of the DX8 API.

Palettized Render Targets

IHVs and ISVs have indicated that supporting rendering directly to palettized formats is not part of their plans. Synchronizing Palettes when there are multiple devices is very complex and makes it hard to deliver consistency across different OS’es.

Color-Keyed Surfaces

Color keys are now render states. Surfaces no longer maintain color key as a piece of internal state.

Arbitrary Back Buffer Formats

In DX8, render target formats are restricted to:

· D3DFMT_X1R5R5B5
· D3DFMT_R5G6B5
· D3DFMT_X8R8G8B8
· D3DFMT_A8R8G8B8
IHVs have indicated that these are the only formats that they plan to support in the forseeable future.

Adapter/Driver restrictions

DX8 turns off all HAL hardware for any driver that exposes the DX7 caps bit DDCAPS_BANKSWITCHED

DX8 turns off the 3D HAL for any driver that does not support the DrawPrimitives2 entry point. All DX6+ drivers expose this entry point.

Ability to alter a surface’s format/size etc. after creation

I.e. SetSurfaceDesc is not supported. Since drivers are optimizing their performance by remembering surface properties when the surface is created, it would significantly increase their complexity to support these changes. In most cases, few applications needed this functionality; and we have reduced the performance costs involved in just creating a new surface.

Detached multimon secondary displays

Providing consistent and reliable support for this feature is difficult. Applications are directed towards implementing support for Attached multi-mon situations.

Multiple concurrent locks on a surface

Only one lock per surface at any one time. The complexity involved in keeping track of all possibily locks and whether locks were overlapping did not justify the few cases where this could be useful. By reducing the complexity, we are able to reduce the overhead and hence, improve the performance of this API.

Flippable mip-maps

Complexity was not justified by the limited utility that this feature provided.

Piece-wise creation of complex surface chains

API-visible attached surfaces no longer exist. Not only is the overhead of our implementation reduced, we have also eliminated complex coding paths that applications would have to write and debug.

QueryInterface for older interfaces

Supporting old interfaces through QueryInterface just doesn’t make sense considering the vast changes to the object model. Many of the older methods and interface/object relationships don’t map onto the new interfaces in a compatible way.

Overlays and VideoPorts

This capability is currently not part of the DX8 API. Applications that need this functionality are directed to to use the DX7 interfaces. Support for video will very likely be overhauled to synchronize with new hardware support, and new software requirements in the future.

IDirect3D

CreateMipMap

SetTexture

IDirect3DSurface8

(render target)

Vertex/Index Buffers

CreateMipVolume

IDirect3D

Mip

Volume8

IDirect3D

CubeMap8

CreateCubeMap

SetRenderTarget

IDirect3DSurface8

(Faces,Levels)

CopyRects

IDirect3DSurface8

(Mip Levels)

IDirect3D

MipMap8

CreateDepthStencilSurface

IDirect3D

Volume8

Texture Creation

Surface Creation

Surface Manipulation

Texture Usage

Resource Manipulation

UpdateTexture

CreateVertexBuffer

IDirect3D

VertexBuffer8

IDirect3D

IndexBuffer8

IDirect3DSwapChain8

IDirect3DSurface8

(Back Buffer)

CreateIndexBuffer

IDirect3DSurface8

(Depth/Stencil)

CreateRenderTarget

OPERATIONAL

(Vidmem allocated)

LOST

(Vidmem allocated)

External Loss Event

Resize

OPERATIONAL

(No Vidmem allocated)

LOST

(No Vidmem allocated)

Allocate Vidmem

Destroy Vidmem

Destroy Vidmem

Allocate Vidmem

Attempting Resize

External Loss Event

External Loss Event

Not enough vidmem

Resize

Enough vidmem

Resize

Resize

CreateImageSurface

IDirect3DSurface8

(Image Surface)

PAGE
32

