
Table of Contents

2Device Types

3‘Pure’ Device

4Device Creation Vertex Processing

6Rendering Interfaces

7Set Stream Source Methods

7Draw Primitive Methods

8User Pointer Draw Primitive Methods

10Vertex Processing

10Vertex Shaders

10Programmable vs. Fixed Function Vertex Processing

11Flexible Vertex Format and Vertex Shaders

11Creating/Setting Vertex Shaders

12Vertex Shader Declaration

15Vertex Shader Function

15Software Vertex Processing Capabilities

16‘TL’ Vertex Functionality

17Vertex Buffers

18Index Buffers

20Process Vertices

20Fixed Function ProcessVertices

22Programmed Function ProcessVertices

22Pool and Usage for Vertex and Index Buffers

23Point Primitive Rendering Controls

23Point Size Computations

24Point Rendering

26Flexible Vertex Format

27Texture Palettes

28Capabilities

28Render/Device State

32Appendix: Fixed Function Vertex Processing

32Device State Controls

32Functional Description

32Vertex Shader Program

33Appendix: Debugging Support

Change History

(3/15/00 MToelle) – Removed emulation device type and added pluggable SW devices; added point size max and clarified point size interpretations;

(4/18/00 MToelle) – Fixed SW device registration to take a null pointer for the init function.

TODO

doc SetCurrentTexturePalette

HRESULT GetPixelShaderFunction(

 DWORD Handle,

 VOID* pBuffer,

 DWORD* pcbBufferSize
);
Parameters

Handle

The PixelShader being referred to.

pBuffer

Address of a previously allocated buffer to be filled with the code associated with the requested pixel shader handle if the call succeeds. The application calling this method is responsible for allocating and releasing this buffer.

pcbBufferSize

Size of the buffer at pBuffer, in bytes. If this value is less than the actual size of the data (such as 0), the method sets this parameter to the required buffer size, and the method returns D3DERR_MOREDATA. If the buffer is NULL, then the pcbBufferSize is filled with the required size and S_OK returned.

Remarks

If the handle is an invalid handle , then a DPF is spewed in the Debug builds and an error D3DERR_INVALID_CALL is returned.

 Return Values

If the method succeeds, the return value is DD_OK.

If it fails, the method can return one of the following error values:

D3DERR_INVALID_CALL

D3DERR_MOREDATA

HRESULT GetVertexShaderFunction(

 DWORD Handle,

 VOID* pBuffer,

 DWORD* pcbBufferSize
);
Parameters

Handle

The Vertex-Shader being referred to.

pBuffer

Address of a previously allocated buffer to be filled with the code associated with the requested vertex shader handle if the call succeeds. The application calling this method is responsible for allocating and releasing this buffer.

pcbBufferSize

Size of the buffer at pBuffer, in bytes. If this value is less than the actual size of the data (such as 0), the method sets this parameter to the required buffer size, and the method returns D3DERR_MOREDATA. If the buffer is NULL, then the pcbBufferSize is filled with the required size and S_OK returned.

Remarks

If the handle is an invalid handle , then a DPF is spewed in the Debug builds and an error D3DERR_INVALID_CALL is returned.

 Return Values

If the method succeeds, the return value is DD_OK.

If it fails, the method can return one of the following error values:

D3DERR_INVALID_CALL

D3DERR_MOREDATA

HRESULT GetVertexShaderDeclaration(

 DWORD Handle,

 VOID* pBuffer,

 DWORD* pcbBufferSize
);
Parameters

Handle

The Vertex-Shader being referred to.

pBuffer

Address of a previously allocated buffer to be filled with the declaration associated with the requested vertex shader handle if the call succeeds. The application calling this method is responsible for allocating and releasing this buffer.

pcbBufferSize

Size of the buffer at pBuffer, in bytes. If this value is less than the actual size of the data (such as 0), the method sets this parameter to the required buffer size, and the method returns D3DERR_MOREDATA. If the buffer is NULL, then the pcbBufferSize is filled with the required size and S_OK returned.

Remarks

If the handle is an invalid handle , then a DPF is spewed in the Debug builds and an error D3DERR_INVALID_CALL is returned.

 Return Values

If the method succeeds, the return value is DD_OK.

If it fails, the method can return one of the following error values:

D3DERR_INVALID_CALL

D3DERR_MOREDATA

Device Types

Direct3D for DX8 supports several device types encompassing hardware acceleration for both rasterization and vertex processing, software rasterizers, plus development aids such as the reference device.

The primary device type is the HAL device (D3DDEVTYPE_HAL), which supports hardware accelerated rasterization and both hardware and software vertex processing. This device type is available on all Direct3D-supported graphics adapters.

Software rasterization is supported via pluggable software devices, which allow software rasterizers loaded by the application to be used via the Direct3D interfaces.

Also supported is the Reference Device (D3DDEVTYPE_REF), which is an additional software-only device intended for use with the DirectX SDK and DDK for application and hardware/driver development. The Reference Device supports the full feature set of DX8, but is implemented for exact accuracy and runs at a very small fraction of the speed of HAL or Emulation devices. The reference device is intended as a development and debugging tool, and is not intended to be used in shipping products.

The Emulation and Reference devices in DirectX 8 have behavior identical to that of the HAL device, so application code authored to work with the HAL device will work with the Emulation or Reference devices with no modifications.

Note however that while the Emulation or Reference device behavior is identical to the HAL devices, the device capabilities do vary, and in particular the Emulation device does not implement all capabilities exposed through the DX8 interfaces.

‘Pure’ Device

The ‘Pure’ device is a variant of the HAL Device (also available on the reference device) which is focused on hardware acceleration with more limited software emulation support than the standard HAL Device. The pure HAL device supports hardware vertex processing only, and only allows a small subset of the device state to be queried by the application. Additionally, the pure device is available only on adapters which have a minimum level of capabilities.

A pure device is created by passing the D3DCREATE_PUREDEVICE flag to CreateDevice. Support for pure device type is indicated by the D3DDEVCAPS_PUREDEVICE caps bit.

The pure device type is intended for extremely performance sensitive applications which are not reliant on software vertex processing or the ability to query device state. The pure HAL device has significant performance advantages over the (non-pure) HAL device, due to a guaranteed close mapping to the hardware, and reduced need for state shadowing.

Note that the functionality and behavior of the pure HAL device is a strict subset of the HAL device. This enables applications authored to the pure device to fully function, without any modifications (aside from the usual capabilities differences across adaptors), on HAL device when the pure device variant is not available.

Device Creation Vertex Processing

IDirect3D::CreateDevice takes three flags for controlling the vertex processing capabilities of the created device. These flags are:

D3DCREATE_SOFTWARE_VERTEXPROCESSING

D3DCREATE_HARDWARE_VERTEXPROCESSING

D3DCREATE_MIXED_MODE_VERTEXPROCESSING

These flags control where vertex processing occurs for the HAL and Reference devices. The ‘Mixed Mode’ flag enables that device to perform both software and hardware vertex processing. Only one of these flags may be set at one time.

Valid combinations of these flags and device types for CreateDevice are (the HWVERTEXPROCESSING cap is the capabilities bit which indicates a hardware device’s ability to do vertex processing):

	D3DCREATE flag
	D3DDEVTYPE
	HWVERTEXPROCESSING cap
	Vertex

Processing
	Create

Usage Flag

	SOFTWARE_VERTEXPROCESSING
	HAL/REF
	(don’t care)
	Software
	no

	HARDWARE_VERTEXPROCESSING
	HAL/REF
	TRUE
	Hardware
	no

	MIXED_MODE_VERTEXPROCESSING
	HAL/REF
	TRUE
	Both
	yes

	SOFTWARE_VERTEXPROCESSING
	Software
	(don’t care)
	Software
	no

Specifying combinations other than these listed will cause DeviceCreate to fail.

Also note that the HARDWARE_VERTEXPROCESSING flag is required when creating a pure device.

Pluggable Software Device

Software rasterization for Direct3D is enabled by the pluggable software device, which allows applications to access a variety of software rasterizers through the Direct3D DX8 interfaces.

A software device is loaded by the application and registered with IDirect3D, at which point an IDirect3DDevice can be created which will perform the rendering with that software device.

HRESULT

IDirect3D::RegisterSoftwareDevice(

 VOID* InitializeFunction);

The application is responsible for instantiating the software rasterizer device code. The external interface for the software rasterizer is a single function, which the application passes from the software device into IDirect3D via the RegisterSoftwareDevice method. If the software device is successfully registered then the application can create an IDirect3D8Device by calling IDirect3D8::CreateDevice with the D3DDEVTYPE_SW device type.

Calling CreateDevice with D3DDEVTYPE_SW will fail if a software device has not been registered or if the registration failed. Only a single software device can be registered with a single instance of IDirect3D, so RegisterSoftwareDevice will fail if called more than once. It is possible to use multiple different pluggable software devices by creating multiple IDirect3D8Device instances, one for each software device.

Direct3D pluggable software devices communicate with Direct3D via an interface which is similar to the hardware device driver interface (DDI). The Direct3D DDK provides the documentation and headers for developing these pluggable software devices.

Microsoft will provide at least one software device in the form of a static library shipped with the SDK. Additional software devices may be available from third parties.

Rendering Interfaces

The rendering interfaces for Direct3D for DX8 consist of methods to render primitives from vertex data stored in one or more data buffers.

Vertex data consists of vertex elements combined to form vertex components. Vertex elements are the smallest indivisible unit of a vertex, and represent entities such as position, normal, or color. Vertex components are one or more vertex elements stored contiguously (interleaved per-vertex) in a single memory buffer. A complete vertex consists of one or more components, where each component is in a separate memory buffer. To render a primitive, multiple vertex components are read and assembled such that complete vertices are available for vertex processing.

Rendering primitives with DX8 consists of two steps: the first is to set up one or more vertex component streams, and the second is to invoke a ‘draw’ method to render from those streams.

Identification of vertex elements within these component streams is specified by the vertex shader. This is covered in detail in the Vertex Shader sections.

The draw methods specify an offset into the vertex data streams such that an arbitrary contiguous subset of the primitives within one set of vertex data can be rendered with each draw invocation. This enables changing device rendering state between groups of primitives being rendered from the same vertex buffer(s).

Both indexed and non-indexed drawing methods are supported. The indexed methods use a single set of indices for all vertex components.

Vertex data is presented to the API via Vertex Buffers, and index data for indexed draw methods is presented to the API Index Buffers. Refer to the appendix on ‘Programming Hints and Tips’ for details on the best way to use index and vertex buffers.

A secondary set of rendering interfaces supports passing vertex and index data directly from user memory pointers. These interfaces support a single stream of vertex data only.

Set Stream Source Methods

HRESULT

IDirect3DDevice8::SetStreamSource(
 UINT StreamNumber,

 DIRECT3DVERTEXBUFFER8* StreamData,

 UINT Stride);
Parameters

StreamNumber

Stream number in range 0 to (dwMaxStreams – 1).

StreamData

Pointer to vertex buffer.

Stride

Stride, in bytes, between components.

The SetStreamSource method binds a vertex buffer to a device data stream. A stream is defined as a uniform array of component data, where each component consists of one or more elements representing a single entity such as position, normal, color, etc. The stride specifies the size, in bytes, of the component.

These functions create an association between the vertex data and one of several data stream ports feeding the primitive processing functions. The actual references to the stream data do not occur until a DrawPrimitive function is called.

Draw Primitive Methods

HRESULT IDirect3DDevice8::DrawPrimitive(

 D3DPRIMITIVETYPE PrimitiveType,

 UINT StartIndex,

 UINT PrimitiveCount);

Parameters
PrimitiveType
Type of primitive.

StartIndex

Index of first vertex to be loaded for this call.

PrimitiveCount
Number of primitives to render this call.

This method draws non-indexed primitives from the current set of data input streams.

HRESULT IDirect3DDevice8::SetIndices(

 D3DINDEXBUFFER* IndexData,

 UINT BaseVertexIndex);
Parameters

IndexData

Pointer to index buffer.

BaseVertexIndex

Base value for vertex indices. This value is added to all indices prior to referencing vertex data, thus defining a starting position in the vertex streams.

HRESULT IDirect3DDevice8::DrawIndexedPrimitive(

 D3DPRIMITIVETYPE PrimitiveType,

 UINT MinVertexIndex,

 UINT NumIndices,

 UINT StartPosition,
 UINT PrimitiveCount);
Parameters
PrimitiveType
Type of primitive.

MinVertexIndex

Minimum vertex index, relative to BaseVertexIndex, for vertices used during this call.

NumIndices

Number of vertex indices for vertices used during this call.

StartPosition

Specifies the location in the index array to start reading indices for this call.

PrimitiveCount
Number of primitives to render this call. The number of indices used is a function of the primitive count and the primitive type.

These methods draw indexed primitives from the current set of data input streams. The SetIndex methods set the current index array to an index buffer. The single set of indices is used to index all streams.

The BaseVertexIndex specifies the base value for indices. This base value is added to all indices prior to referencing into the vertex data streams, the result of which is to set a starting position in the vertex data streams. The BaseVertexIndex allows multiple indexed primitives to be packed in to one set of vertex data without requiring the indices to be recomputed based on where the corresponding primitive happens to be placed in the vertex data.

The MinVertexIndex and MaxVertexIndex specify the range of vertex indices used for each DrawIndexedPrimitive call. These are used to optimize vertex processing of indexed primitives by processing a sequential range of vertices prior to indexing into these vertices. Setting these to 0x0 and D3DMAXNUMVERTICES respectively indicates that all vertices are potentially referenced during this call, and thus may all vertices be processed even if only a small subset of them are actually referenced by indices. It is illegal for any indices used during this call to reference any vertices outside of this range.

DrawIndexedPrimitive fails if no index array is set.

User Pointer Draw Primitive Methods

These methods render with data specified by user memory pointers (instead of vertex and/or index buffers). These are intended for use in applications which are unable to store their vertex data in vertex buffers. These methods support a single vertex stream only. The effect of these calls is to use the provided vertex data pointer and stride for vertex stream zero. It is invalid to have the declaration of the current vertex shader refer to vertex streams other than stream zero.

Following any Draw(Indexed)PrimitiveUP call, the stream zero settings (referenced by GetStreamSource a subsequent non-‘UP’ drawprim call) are set to NULL. Following any DrawIndexedPrimitiveUP, the index buffer setting for SetIndices is set to NULL.
HRESULT IDirect3DDevice8::DrawPrimitiveUP(

 D3DPRIMITIVETYPE PrimitiveType,

 UINT PrimitiveCount,

 VOID* VertexStreamZeroData,

 UINT VertexStreamZeroStride);

Parameters
PrimitiveType
Type of primitive.

PrimitiveCount
Number of primitives to render this call.

VertexStreamZeroData
User memory pointer to vertex data to use for vertex stream zero.

VertexStreamZeroStride
Stride, in bytes, between data for each vertex.

HRESULT IDirect3DDevice8::DrawIndexedPrimitiveUP(

 D3DPRIMITIVETYPE PrimitiveType,

 UINT MinVertexIndex,

 UINT MaxVertexIndex,

 UINT PrimitiveCount,
 VOID* IndexData,

 D3DFORMAT IndexDataFormat,
 VOID* VertexStreamZeroData,

 UINT VertexStreamZeroStride);

Parameters
PrimitiveType
Type of primitive.

MinVertexIndex

Minimum vertex index, relative to zero (the start of the IndexData pointer), for vertices used during this call.

MaxVertexIndex

Maximum vertex index, relative to zero (the start of the IndexData pointer), for vertices used during this call.

PrimitiveCount
Number of primitives to render this call. The number of indices used is a function of the primitive count and the primitive type.

IndexData
User memory pointer to index data.

IndexDataFormat

D3DFMT_INDEX_16

Indices are 16 bits each.

D3DFMT_INDEX_32

Indices are 32 bits each.

VertexStreamZeroData
User memory pointer to vertex data to use for vertex stream zero.

VertexStreamZeroStride
Stride, in bytes, between data for each vertex.

Vertex Processing

Vertex Shaders

Vertex shaders control the loading and processing of vertices. Direct3D for DX8 supports two types of vertex processing: programmed vertex processing, and fixed function vertex processing. The term ‘vertex shader’ most often applies to the programmable mode, although the vertex shader API mechanism encompasses both types of functionality.

Vertex shaders are created and managed by methods on IDirect3DDevice8. Once created, a vertex shader is referred to by its handle. Vertex shaders are not editable – to be changed they must be destroyed and recreated.

Each vertex shader includes a function, which defines the operations to be applied to each vertex, and a declaration, which defines the inputs to the shader, including how the vertex elements within the input data streams are to be used by the shader.

Vertex processing performed by vertex shaders encompasses operations applied to single vertices only. The output of the vertex processing step is defined as individual vertices each consisting of a clip-space position (x, y, z, and w) plus color, texture coordinate, fog intensity, and point size information. The projection and mapping of these positions to the viewport, the assembling of multiple vertices into primitives, and the clipping of primitives is done by a subsequent processing stage and is not under the control of the vertex shader.

Programmable vs. Fixed Function Vertex Processing

Vertex shaders are defined at creation as using fixed function or programmed vertex processing.

Fixed function vertex processing provides the same functionality as in Direct3D for DX7, including transformation and lighting, vertex blending, and texture coordinate generation. Unlike programmed vertex shaders, where the operations applied to vertices are defined within the shader, fixed function vertex processing is controlled by device state set by methods on IDirect3DDevice8 similar to those on IDirect3DDevice7 (which set lights, transforms, etc.). Note that it is still useful to have multiple fixed-function vertex shaders, because even though the function is fixed (and shared), the declarations can vary. This enables feeding the fixed function shader with differing layouts of multi-stream inputs.

The input vertex elements for fixed function vertex processing have fixed semantics, thus the declaration tags specific input vertex elements as coordinate, normal, color, etc. The vertex outputs for fixed function vertex shaders always include coordinates, diffuse and specular colors, and multiple texture coordinates (as required by the current device state settings for pixel processing).

Programmed vertex shaders have a function defined by an array of instructions to be applied to each vertex. The mapping of the input vertex elements to the vertex input registers for programmed vertex shaders is defined within the shader declaration, but do not have specific semantics about their usage - the interpretation of the elements is up to the shader instructions. The vertex outputs for programmed vertex shaders are explicitly written to by instructions within the shader function.

Flexible Vertex Format and Vertex Shaders

Direct3D for DX8 has a simplified programming model for using the fixed function vertex processing with a single input stream (functionality very similar to that of previous releases). In this case, the vertex shader consists of a Flexible Vertex Format (FVF) code which is passed in place of a shader handle when setting the current vertex shader. (The handle space for vertex shaders is managed by the runtime library such that handles which are valid FVF codes are reserved for this usage.)

Setting an FVF code as the ‘current’ vertex shader causes the vertex processing to load from stream zero only, and to interpret the vertex elements as defined in the FVF code.

Creating/Setting Vertex Shaders

A vertex shader is defined by two token arrays which specify the declaration and function of the shader. The token arrays are composed of single or multiple DWORD tokens terminated by a special 0xFFFFFFFF token value.

The shader declaration defines the static external interface of the shader, including binding of stream data to vertex register inputs and values loaded into the shader constant memory.

The shader function defines the operation of the shader as an array of instructions which are executed in order for each vertex processed during the time the shader is bound to a device. Shaders created without a function array apply the fixed function vertex processing when that shader is current.

Method: IDirect3DDevice8::CreateVertexShader

CreateVertexShader creates vertex shader, and also sets that shader (if created successfully) as the current shader.

HRESULT IDirect3DDevice8::CreateVertexShader(

 DWORD* Declaration,

 DWORD* Function,

 DWORD* Handle,

 DWORD Usage);

Parameters

Declaration

Pointer to shader declaration DWORD token array.

Function

Pointer to shader function DWORD token array.

Handle

Pointer to shader handle return.

Usage

Usage controls for vertex shader. Valid bits are:

D3DUSAGE_SOFTWAREPROCESSING – When set, this shader is used only when D3DRS_SOFTWAREVERTEXPROCESSING true.

If Handle is set to NULL, then the shader is instantiated and set as the current shader, but no handle is made available for it so it is discarded the next time CreateVertexShader or SetVertexShader are called.

If Function is set to NULL, then a fixed-function vertex shader is implied. The parameter declaration indicated by Declaration is made current, and is also available to be set in a subsequent SetVertexShader if a handle pointer is provided.

The D3DSHADER_USAGE_SOFTWAREPROCESSING bit must be set for vertex shaders used when D3DRS_SOFTWAREVERTEXPROCESSING is TRUE, and unset for vertex shaders used when D3DRS_SOFTWAREVERTEXPROCESSING is FALSE.

Method: IDirect3DDevice8::SetVertexShader

Sets current vertex shader to previously created shader or to FVF-driven fixed function shader.

HRESULT IDirect3DDevice8::SetVertexShader(

 DWORD Handle);

Parameters

Handle
Handle from CreateVertexShader or FVF code.

SetVertexShader also can take a DX7 FVF code in place of the handle. The effect of this is to enable the fixed-function vertex shader, with an implicit declaration that matches the FVF code contents read from stream zero. Only stream zero will be referenced when an FVF-specified shader is bound to the device.

The default value for the vertex shader is D3DFVF_VERTEX, which implies the fixed-function vertex shader loading D3DFVF_VERTEX format data from stream zero.

Method: IDirectD8::GetVertexShader

Returns the currently set vertex shader.

HRESULT IDirect3DDevice8::GetVertexShader(

 DWORD* Handle);

Parameters

Handle

Pointer to location to return DWORD handle.

Returns
DDERR_INVALIDOBJECT - invalid IDirect3DDevice8 object

DDERR_INVALIDPARAMS - bad pdwHandle pointer

Method: IDirect3DDevice8::DeleteVertexShader

Deletes the shader referred to by the handle and frees up the associated resources.

HRESULT IDirect3DDevice8::DeleteVertexShader(

 DWORD Handle);

Parameters

Handle

Handle of shader to be deleted.

Vertex Shader Declaration

The declaration portion of a vertex shader defines the static external interface of the shader. The information in the declaration includes:

· Binding of stream data to vertex shader input registers. This information defines the type and vertex input register assignment of each element within each data stream. The type specifies the arithmetic data type plus the dimensionality (1, 2, 3, or 4 values). Stream data elements which are less than 4 values are always expanded out to 4 values with zero or more 0.F values and one 1.F value.

· Binding of vertex shader input registers to implicit data from the primitive tessellator. This controls the loading of vertex data which is not loaded from a stream, but rather is generated during primitive tessellation prior to the vertex shader.

· Loading data into the constant memory at the time a shader is set as the current shader. Each token specifies values for one or more contiguous 4 DWORD constant registers. This allows the shader to update an arbitrary subset of the constant memory, overwriting the device state (which contains the current values of the constant memory). Note that these values can be subsequently overwritten (between DrawPrimitive calls) during the time a shader is bound to a device via the SetVertexShaderConstant method.

Declaration arrays are single-dimensional arrays of DWORDs composed of multiple tokens each of which is one or more DWORDs. The single-DWORD token value 0xFFFFFFFF is a special token used to indicate the end of the declaration array. The single DWORD token value 0x00000000 is a padding token which is ignored during the declaration parsing. This pad token enables more complex in-place editing of declarations. Note that 0x00000000 is a valid value for DWORDs following the first DWORD for multiple word tokens.

The shader declaration token types and bit definitions are:

[31:29] TokenType

 0x0 – padding (requires all DWORD bits to be zero)

 0x1 – stream selector

 0x2 – stream data definition (map to vertex input memory)

 0x3 - vertex input memory from tessellator

 0x4 - constant memory from shader

 0x5 - reserved

 0x6 - extension

 0x7 - end-of-array (requires all DWORD bits to be 1)

Pad (whitespace) Token (single DWORD token)

 [31:29] 0x0

 [28:00] 0x0

Stream Selector (single DWORD token)

 [31:29] 0x1

 [28:04] 0x0

 [03:00] stream selector (0..15)

Stream Data Definition (single DWORD token)

Vertex Input Register Load

 [31:29] 0x2

 [28] 0x0

 [27:20] 0x0

 [19:16] type (dimensionality and data type)

 [15:04] 0x0

 [03:00] vertex register address (0..15)

 Data Skip (no register load)

 [31:29] 0x2

 [28] 0x1

 [27:20] 0x0

 [19:16] count of DWORDS to skip over (0..15)

 [15:00] 0x0

Vertex Input Memory from Tessellator Data (single DWORD token)

 [31:29] 0x3

 [28:20] 0x0

 [19:16] type (dimensionality)

 [15:04] 0x0

 [03:00] vertex register address (0..15)

Constant Memory from Shader (multiple DWORD token)

 [31:29] 0x4

 [28:24] count of 4*DWORD constants to load (0..15)

 [25:07] 0x0

 [06:00] constant memory address (0..95)

Extension Token (single or multiple DWORD token)

 [31:29] 0x6

 [28:24] count of additional DWORDs in token (0..31)

 [23:00] extension-specific information

End-of-array token (single DWORD token)

 [31:29] 0x7

 [28:00] 0x1fffffff

The stream selector token must be immediately followed by a contiguous set of stream data definition tokens. This token sequence fully defines that stream, including the set of elements within the stream, the order in which the elements appear, the type of each element, and the vertex register into which to load an element.

Streams are allowed to include data which is not loaded into a vertex register, thus allowing data which is not used for this shader to exist in the vertex stream. This skipped data is defined only by a count of DWORDs to skip over, since the type information is irrelevant.

The token sequence:

Stream Select: stream=0

Stream Data Definition (Load): type=FLOAT3; register=3

Stream Data Definition (Load): type=FLOAT3; register=4

Stream Data Definition (Skip): count=2

Stream Data Definition (Load): type=FLOAT2; register=7

defines stream zero to consist of 4 elements, 3 of which are loaded into registers and the fourth skipped over. Register 3 is loaded with the first three DWORDs in each vertex interpreted as FLOAT data. Register 4 is loaded with the 4th, 5th, and 6th DWORDs interpreted as FLOAT data. The next two DWORDs (7th and 8th) are skipped over and not loaded into any vertex input register. Register 7 is loaded with the 9th and 10th DWORDS interpreted as FLOAT data.

Placing of tokens other than padding tokens between the Stream Selector and Stream Data Definition tokens is disallowed.

When using the fixed function vertex shader, the mapping of the vertex input registers is fixed such that specific vertex elements (such as position or normal) must be placed in specific register locations in the vertex input memory. These assignments are made automatically when passing an FVF code to SetVertexShader. When using an explicit shader declaration, the D3DVSDE_* preprocessor macros define the vertex input location into which specific elements must be loaded.

Vertex Shader Function

The function portion of a vertex shader defines the operations applied to each vertex. Only programmed vertex shaders have shader functions. Like declarations, shader functions are single dimensional arrays of DWORDs which form an ordered list of instructions to be executed for each vertex. Each instruction is composed of multiple DWORDs.

Programmed vertex shader functions are described in detail in the ‘Vertex Shader Programming’ chapter.

The operations applied to vertices by fixed function vertex shaders are described in the appendix ‘Fixed Function Vertex Processing’.

Method to set values in the constant array.

HRESULT IDirect3DDevice8::SetVertexShaderConstant(

 UINT RegisterAddress,

 VOID* ConstantData,

 UINT ConstantCount);

Parameters

RegisterAddress

Address at which to start loading data into vertex constant array.

ConstantData

Pointer to (ConstantCount * 4 * sizeof(FLOAT)) data block to load into constant array.

ConstantCount

Number of 4 FLOAT constants to load.

Returns

Software Vertex Processing Capabilities

The IDirect3DDevice8 interface supports both software and hardware vertex processing. The software vertex processing capabilities and the hardware vertex processing capabilities generally will not be identical. However, only the hardware capabilities are variable (depending on the graphics adaptor and driver) while the software capabilities are fixed. Thus, to avoid having two sets of capabilities for a single device, only the hardware vertex processing capabilities are queriable at runtime, while the software vertex processing capabilities are fixed and not-runtime queriable. As a convenience, the values for the software processing capabilities are included as #defines in the headers.

For the IDirect3DDevice8 interface, the software vertex processing capabilities are:

dwMaxActiveLights: unlimited

wMaxUserClipPlanes: 6

wMaxVertexBlendMatrices: 4

dwVertexProcessingCaps:

D3DVTXPCAPS_TEXGEN

D3DVTXPCAPS_MATERIALSOURCE7

D3DVTXPCAPS_VERTEXFOG

D3DVTXPCAPS_DIRECTIONALLIGHTS

D3DVTXPCAPS_POSITIONALLIGHTS

D3DVTXPCAPS_LOCALVIEWER

dwMaxStreams: 16

dwMaxVertexIndex: 0xFFFFFFFF

The software vertex processing provides a guaranteed set of vertex processing capabilities, including an unbounded number of lights and full support for programmable vertex shaders. The application programmer can change between software and hardware vertex processing at any time when using the Direct3DHALDevice (the only device type which supports use of both hardware and software vertex processing), the only requirement being that vertex buffers used for software vertex processing must be allocated in system memory.

Providing, within a single device type, both hardware and software-emulation functionality for vertex processing makes sense because the performance of software vertex processing is comparable to that of hardware vertex processing. This is not the case for rasterization, for which host processors are much slower than specialized graphics hardware, thus both hardware and software-emulated rasterization is not provided within a single device type.

The software vertex processing is the only instance of functionality duplicated between the runtime and the hardware/driver within a single device, thus all other capabilities bits represent (potentially variable) functionality provided by the hardware/driver.

‘TL’ Vertex Functionality

Vertex data specified with an FVF code has the property of being either transformed or non-transformed. The terminology used for FVF-specified transformed vertices, dating from prior Direct3D releases, is ‘TL’ vertices (meaning ‘Transformed and Lit’). Direct3D for DX8 continues to support TL vertex data, but is subject to some conditions not applicable for non-transformed vertices.

TL vertex data is only possible for vertices specified by an FVF code, and is not valid as input for a programmable vertex shader. (Programmable vertex shaders have the flexibility to take various forms of transformed vertex data, but this is different from FVF-TL vertex data since the interpretation is part of the shader, not a property of the vertex data.) TL vertex data, due to being defined by an FVF code, is also inherently single stream.

TL vertex data is not clipped by Direct3D, thus it is required that TL vertex primitives be clipped prior to sending them to Direct3D. The X and Y values are required to be clipped to the viewport, or, if available, the device guardband. The Z values for TL vertices are required to be between 0. and 1. inclusive. It is also required that the RHW values be within the range 0. < 1./D3DCAPS8.MaxVertexW. The RHW requirement is to guarantee that the W values are within the supported range of the hardware rasterization device. Note that the W (and RHW) range of vertices resulting from a perspective projection transformation can be modified by applying a scale to all values in the projection matrix.

TL vertex data is always passed directly to the driver for rendering. When using vertex buffers with TL vertex data, there can be very significant performance advantages to having the driver allocate these VBs in AGP or video memory. Note that the allocation of a TL vertex VB may be driver-allocated even when non-TL vertex data (either FVF or non-FVF) is not allowed to be driver-allocated, as would be the case when running on a hardware device which does not support transformation and lighting.

Vertex Buffers

The IDirect3DDevice8 interface supports rendering of primitives using vertex data stored in Vertex Buffer (VB) objects. Vertex buffers are created from the IDirect3DDevice8 interface, and are usable only with the IDirect3DDevice8 from which they are created.

HRESULT

IDirect3DDevice8::CreateVertexBuffer(

 UINT Size,

 DWORD Usage,
 DWORD UsageFVF,
 D3DPOOL Pool,
 DIRECT3DVERTEXBUFFER8** VertexBuffer);

Parameters
Size

Total size in bytes of the vertex buffer.

Usage

Usage controls for vertex buffer.

D3DUSAGE_WRITEONLY – (Same as DX7)

D3DUSAGE_SOFTWAREPROCESSING – Set to indicate that the vertex buffer is to be used with software vertex processing.

D3DUSAGE_DONOTCLIP - Set to indicate that the vertex buffer content will never require clipping.

UsageFVF

Flexible Vertex Format usage specifier. When set to a valid FVF code, then the created vertex buffer is an ‘FVF Vertex Buffer’ (see usage requirements below). When set to zero, the vertex buffer is non-FVF.

Pool

Set to valid D3DPOOL type.
VertexBuffer

Pointer to return pointer.

The UsageFVF field, when set to a non-zero value (must be a valid FVF code) indicates that the buffer content is to be characterized by an FVF code. A vertex buffer which is created with an FVF code is referred to as an ‘FVF Vertex Buffer’. Some methods or usages of IDirect3DDevice8 require FVF Vertex Buffers, and others specifically require non-FVF vertex buffers. FVF Vertex Buffers are required for:

· The destination vertex buffer for IDirect3DDevice8::ProcessVertices

· The vertex buffer bound to input data stream zero when SetVertexShader is set to an FVF code.

FVF Vertex Buffers are not allowed to be used for inputs to programmed vertex shaders, or for vertex buffers which are multiple-stream inputs to fixed function vertex processing.

Note that the presence of the RHW component on FVF Vertex Buffers indicates that the vertices in that buffer have already been processed. Vertex buffers used for ProcessVertices destination must be ‘post-processed’. Vertex buffers used for fixed function shader inputs can be either pre- or post-processed. If post processed, then the shader is effectively bypassed and the data is passed directly to the primitive clipping/setup module.

The D3DUSAGE_SOFTWAREPROCESSING bit specifies that the vertex buffer is to be used with software vertex processing. All vertex buffers used for software vertex processing must be created with this bit set. Vertex buffers used for software vertex processing include:

· All input streams for IDirect3DDevice8::ProcessVertices.

· All input streams for IDirect3DDevice8::DrawPrimitive and DrawIndexedPrimitive when software vertex processing. See the description of D3DRS_SOFTWAREVERTEXPROCESSING.

Index Buffers

Index buffers are memory resources used to hold indices used for the DrawIndexedPrimitive rendering method.

HRESULT IDirect3DDevice8::CreateIndexBuffer(

 UINT Size,

 DWORD Usage,

 D3DFORMAT Format,

 D3DPOOL Pool,
 DIRECT3DINDEXBUFFER8** IndexBuffer);

Parameters
Size

Total size in bytes of the index buffer.

Usage

Usage controls for vertex buffer. Valid bits are:

D3DUSAGE_WRITEONLY – (Same as DX7)

D3DUSAGE_SOFTWAREPROCESSING – Set for device created with D3DCREATE_MIXED_MODE_VERTEXPROCESSING to indicate that the index buffer is to be used with software vertex processing.

Format

Format of index buffer. Valid settings are:

D3DFMT_INDEX_16 – 16 bits/index

D3DFMT_INDEX_32 – 32 bits/index

Pool

Set to valid D3DPOOL type.
IndexBuffer

Pointer to return pointer.

The usage is to create an index buffer, lock it, fill it with indices, unlock it, then pass it to DrawIndexedPrimitive. Use of index buffers allows Direct3D to avoid unnecessary data copying, and to place the buffer in the optimal memory type for the expected usage.

Process Vertices

Direct3D for DX8 supports standalone processing of vertices, without rendering any primitives, via the ProcessVertices method. This standalone vertex processing is always performed in software on the host processor.

ProcessVertices applies the vertex processing defined by the current vertex shader to the current set of input data streams, generating a single stream of interleaved vertex data to the destination vertex buffer. The functionality provided by ProcessVertices is identical to that invoked for Draw(Indexed)Primitive while using software vertex processing.

HRESULT IDirect3DDevice8::ProcessVertices(
 UINT SourceStartIndex,

 UINT DestStartIndex,

 UINT VertexCount,

 DIRECT3DVERTEXBUFFER8* DestBuffer,

 DWORD Flags)

Parameters

SourceStartIndex

Index of first vertex to be loaded for this call.

DestStartIndex

Index of first vertex in the destination vertex buffer into which the results are placed.

VertexCount

Number of vertices to process.

DestBuffer

Pointer to destination vertex buffer.

Flags

D3DPV_DONOTCOPYDATA

Because ProcessVertices is always performed in software on the host processor, vertex buffers used as sources (via SetStreamSource) must be created with the D3DVBCAPS_SOFTWAREVERTEXPROCESSING flag for use with ProcessVertices.

The destination vertex buffer (DestBuffer) must be created with a non-zero FVF parameter. The FVF code specified during the VB creation specifies the vertex elements present in the destination vertex buffer.

Fixed Function ProcessVertices

When using the fixed function vertex processing, modification of the elements in the destination vertex buffer is controlled by the D3DPV_DONOTCOPYDATA flag. This flag only applies to fixed function vertex processing.

When D3DPV_DONOTCOPYDATA is set, ProcessVertices does not overwrite color and texture coordinate information in the destination buffer unless this data is generated by Direct3D. Diffuse color is generated when lighting is enabled (D3DRS_LIGHTING true). Specular color is generated when lighting is enabled and specular is enabled (D3DRS_SPECULAR and D3DRS_LIGHTING true). Specular color is also generated when fog is enabled. Texture coordinates are generated when texture transform or texture generation is enabled.

ProcessVertices uses the current render states to determine what vertex processing should be done.

FVF Usage Settings for Destination Vertex Buffers

The ProcessVertices function has very specific requirements for the FVF usage settings of the destination vertex buffer, which must fit the current settings for the vertex processing. For fixed function vertex processing, ProcessVertices requires the following FVF settings:

· Position type is always D3DFVF_XYZRHW (XYZ and XYZB* are invalid).

· D3DFVF_NORMAL and D3DFVF_RESERVED* bits must not be set.

· D3DFVF_DIFFUSE must be set if (OR of following):

· lighting is enabled (D3DRS_LIGHTING true)

· lighting is disabled AND diffuse color present in input vertex stream(s) AND D3DPV_DONOTCOPYDATA is not set

· D3DFVF_SPECULAR must be set if (OR of following):

· lighting is enabled AND specular is enabled (D3DRS_SPECULAR true)

· lighting disabled AND specular color present in input vertex stream(s) AND D3DPV_DONOTCOPYDATA is not set

· vertex fog is enabled (D3DRS_FOGVERTEXMODE not set to D3DFOG_NONE)

· Texture coordinate count (D3DFVF_TEXCOUNT) must be set as follows:

If texture transform and texture generation are disabled for all active texture stages, and the D3DPV_DONOTCOPYDATA is not set, then the number and type output texture coordinates are required to match those of the input vertex texture coordinates. If D3DPV_DONOTCOPYDATA is set (and texture transform and texgen are disabled), then the output texture coordinates are ignored.

If texture transform or texture generation is enabled for any active texture stages, the output vertex may need to contain more texture coordinate sets than the input vertex. This is due to a proliferation of texture coordinates due to those being generated by texgen or derived by texture transforms. (Note that a similar proliferation of texture coordinates occurs during DrawPrimitive calls, but is not visible to the application programmer.) In this case, Direct3D generates a new set of texture coordinates according to the following algorithm.

The new set of texture coordinates is derived by stepping through the texture stages and analyzing the settings for texture generation, texture transformation, and texture coordinate index to determine if a unique set of texture coordinates is required for that stage. Each time a new set is required it is ‘allocated’ in increasing order. Note that the maximum (and typical) requirement is one set per stage, although it may be less due to sharing of non-transformed texture coordinates via D3DTSS_TEXCOORDINDEX.

Thus, for each texture stage, a new set of texture coordinates is generated if a texture is bound to that stage and any of the following is true:

· texture generation is enabled for that stage

· texture transformation is enabled for that stage

· non-transformed input texture coordinates are referenced (via D3DTSS_TEXCOORDINDEX) for the first time

Note that this case (where Direct3D is generating new texture coordinates), the application is required to both: (1) use a destination vertex buffer with the appropriate FVF usage; and (2) reprogram the texture stages D3DTSS_TEXCOORDINDEX accordingly for the placement of the post-processed texture coordinates. Note that the reprogramming of the D3DTSS_TEXCOORDINDEX settings occurs when the processed vertex buffer is used in subsequent Draw(Indexed)Primitive calls.
· Texture coordinate dimensionality (D3DFVF_TEX0..7) must be set as follows:

For each texture coordinate set: if texture transform and texture generation are disabled, then the output texture coordinate dimensionality must match the input; if the texture transform is enabled, then the output dimensionality must match the count defined by the D3DTTFF_COUNT settings; if the texture transform is disabled and texture generation is enabled, then the output dimensionality must match the settings for the texture generation mode (currently all modes generate 3 floats).

When ProcessVertices fails due to an incompatable destination vertex buffer FVF code, the expected code is printed to the debug output (debug builds only).

Programmed Function ProcessVertices

When using a programmed vertex shader, the elements updated in the destination vertex buffer are controlled by the shader function program. When the program writes to one of the destination vertex registers, the corresponding element within each vertex of the destination vertex buffer is updated. Elements in the destination vertex buffer which are not written to by the program are not modified. ProcessVertices will fail if the program writes to elements which are not present in the destination vertex buffer.

Pool and Usage for Vertex and Index Buffers

Vertex and index buffers are created with Pool and Usage information. Vertex buffers can also optionally be created with a specified FVF code for use in fixed function vertex processing or as the output of process vertices.

The D3DUSAGE_SOFTWAREPROCESSING flag can be set for CreateVertexBuffer and CreateIndexBuffer only when mixed mode vertex processing is enabled for that device. This flag must be set for buffers to be used with software vertex processing, and should be unset for the best possible performance when using hardware vertex processing. This flag can be set for buffers used for hardware vertex processing, but this should only be done when a single buffer is to be used with both hardware and software vertex processing.

In all cases other than mixed mode vertex processing, vertex and index buffers will automatically be created in the appropriate memory pool (for D3DPOOL_DEFAULT). Setting the D3DUSAGE_SOFTWAREVERTEXPROCESSING flag any of the non mixed-mode cases will cause the create function to fail.

Note that it is possible to force vertex and index buffers into system memory by specifying D3DPOOL_SYSTEMMEM, even when the vertex processing is being done in hardware. This is potentially desirable to avoid overly large amounts of page locked memory when driver is putting these buffers into AGP.

Point Primitive Rendering Controls

Direct3D for DX8 supports additional parameters controlling the rendering of point primitives. These parameters enable points to be of a variable size and have a full texture map applied to them.

The size of each point is determined by an application-specified size combined with a distance based function computed by Direct3D. The application can specify point size either per-vertex or via the D3DRS_POINT_SIZE renderstate (which applies to points without a per-vertex size). The point size is expressed in camera space units, with the exception of when the application is passing post-transformed FVF vertices, in which case the distance-based function is not applied and the point size is expressed in units of pixels in the render target.

The texture coordinates used when rendering points are computed depending on the setting of D3DRS_POINT_SPRITE_ENABLE. When this value is set, the texture coordinates are set such that each point displays the full texture, which is generally useful only when points are significantly larger than one pixel. When not set, each point’s vertex texture coordinate is used for the entire point.

Point Size Computations

Point size is computed depending on the setting of D3DRS_POINT_SCALE_ENABLE. If this value is false, then the application-specified point size is directly used as the screen space size. Vertices that are passed to Direct3D in screen space (post-transformed) do not have point sizes computed, and in this case the specified point size is interpreted as a screen space size.

If D3DRS_POINT_SCALE_ENABLE is true, then the screen space point size is computed as follows. Note that in this case the application-specified point size is expressed in camera space units.

Si input point size (either per-vertex or D3DRS_POINT_SIZE)

A,B,C point scale factors D3DRS_POINT_SCALE_A/B/C
Vh height of viewport (dwHeight field in D3DVIEWPORT)
Pe = (Xe, Ye, Ze) eye space position of point

De = sqrt (Xe2 + Ye2 + Ze2) distance from eye to position (eye at origin)

Ss = Vh * Si * sqrt(1/(A + B*De + C*(De2)) screen space point size

Smax MIN(MaxPointSize device capability, D3DRS_POINT_SIZE_MAX)

Smin D3DRS_POINT_SIZE_MIN

Final screen-space point size:

S =
Pmax
if Ss > Pmax
Pmin
if Ss < Pmin
Ss
otherwise

Point Rendering

A screen space point P = (X, Y, Z, W) of screen-space size S is rasterized as a quadrilateral of the following 4 vertices:

(X–S/2, Y–S/2, Z, W)

(X–S/2, Y–S/2, Z, W)

(X–S/2, Y–S/2, Z, W)

(X–S/2, Y–S/2, Z, W)

The vertex color attributes are duplicated at each of the 4 vertices, thus each point is always rendered with constant colors.

The assignment of texture indices is controlled by the D3DRS_POINT_SPRITE_ENABLE setting. If D3DRS_POINT_SPRITE_ENABLE is set to FALSE, then the vertex texture coordinates are duplicated at each of the 4 vertices. If the D3DRS_POINT_SPRITE_ENABLE is set to TRUE, then all texture coordinates at the 4 vertices are set to:

(0.F, 0.F)

(0.F, 1.F)

(1.F, 0.F)

(1.F, 1.F)

When clipping is enabled, points are clipped as follows. If the vertex is outside the view frustum in Z (either near or far), then the point is not rendered. If the point, taking into account the point size, is totally outside the viewport in x or y, then the point is not rendered. Remaining points are rendered. Note that it is possible for the point position to be outside the viewport (in x or y) and still be partially visible.

Points may or may not be correctly clipped to user-defined clip planes. If the D3DDEVCAPS_CLIPPLANESCALEDPOINTS is not set, then points are clipped to user-defined clip planes based only on the vertex position, ignoring the point size. In this case scaled points will be fully rendered when the vertex position is inside the clip planes, and discarded when the vertex position is outside a clip plane. Applications may prevent potential ‘poping’ artifacts by adding a border geometry to clip planes that is as large as the maximum point size.

If the D3DDEVCAPS_CLIPPLANESCALEDPOINTS bit is set, then the scaled points are correctly clipped to user-defined clip planes.

Usage Flags and Point Size Emulation

Point size may be emulated under some conditions when the device is not able to directly render arbitrarily sized points. In this case the software expands out each point to a screen aligned quadrilateral prior to invoking the device. Because of this potential emulation it is a requirement that vertex buffers which are to be used with variable size point primitives must be identified with the D3DUSAGE_POINTSIZE flag. (This forces the buffer to be allocated in system memory, since the readback for the expansion would be very slow if the VB were stored in AGP or video memory.)

D3DUSAGE_POINTSIZE must be set for vertex buffers used to render point primitives when any of the following are true:

· D3DRS_POINTSIZE is > 1.0F

· D3DRS_POINT_SCALE_ENABLE is TRUE (applies only to pre-transformed vertices)

· passing in per-vertex point size (D3DFVF_PSIZE)

The conditional capabilities related to variable sized point rendering are:

1. The ability to render scaled points. Devices which can directly render scaled points have the D3DCAPS8.MaxPointSize set to >1.0F. Devices which specify that they can render scaled points are also required to:

· support D3DRS_POINT_SCALE_ENABLE if D3DDEVCAPS_HWTRANSFORMANDLIGHT is set

Devices which are not able to render scaled points

2. do vertex processing are required to

3. The ability to receive per-vertex point size.

 The first is the ability of the device to render scaled points; this is detected via the D3DDEVCAPS. The second is the ability of the device to compute point size during vertex processing.

Hardware vertex processing may or may not support point size processing. If, for example, you create a device with D3DCREATE_HARDWAREVERTEXPROCESSING on a HAL device for which the D3DCAPS8.MaxPointSize is <=1.0F, then all points will be single pixel. To get >1 pixel point sprites you either need to use (FVF) TL verts or SWVP, in which case the runtime will emulate the point sprite rendering.

A hardware device which does vertex processing and supports point sprites (has MaxPointSize set > 1.0f) is required to do the size computation for non-transformed sprites, and is required to properly field the per-vertex or RS point size for TL verts.

DDI (DX6/7; DX8)

D3DDEVCAPS_HWTRANSFORMANDLIGHT: DX7,DX8 DDI’s only

D3D8CAPS::MaxPointSize (<=1.F; >1.F)

TLVert input

Multi-Sampling

Direct3D for DX8 supports multisample image buffers for render targets. Multisample image buffers are used to render filtered (antialiased) images, and can also be used to achieve special effects such as motion blur.

Two renderstates control rendering into a multisample render target:

D3DRS_MULTISAMPLEANTIALIAS (BOOL; default TRUE)

Determines how individual samples are computed when using a multisample rendertarget buffer. When set TRUE, then the multiple samples are computed such that full-scene antialiasing is achieved (by sampling at different sample positions for each of the multiple samples). When set FALSE, the multiple samples are all written with the same sample value (sampled at the pixel center), which allows non-antialiased rendering to a multisample buffer. This renderstate has no effect when rendering to a single sample buffer.

D3DRS_MULTISAMPLEMASK (DWORD; default 0xffffffff)

Each bit in this mask, starting at the LSB, controls modification of one of the samples in a multisample rendertarget. Thus, for a 8 sample rendertarget, the low byte contains the 8 write enables for each of the 8 samples. This renderstate has no effect when rendering to a single sample buffer.

This renderstate enables use of a multisample buffer as an accumlation buffer, doing multipass rendering of geometry where each pass updates a subset of samples.

Multisampling occurs only for surface/area based primitives (triangles, point sprites, high-order surfaces), and does not occur when rendering lines. Line rendering to a multisample buffer results in all samples for a given pixel being updated with each line pixel (the same effect achieved when D3DRS_MULTISAMPLEANTIALIAS is FALSE and D3DRS_MULTISAMPLEMASK is set to all 1’s). D3DRS_MULTISAMPLEANTIALIAS and D3DRS_MULTISAMPLEMASK have no effect when rendering lines.

The multisampling resolve filtering operation is not guaranteed to do anything more specific than include weighted contributions of each of the samples. The precise result achieved for a given number of samples may vary for difference devices.

Flexible Vertex Format

The Flexible Vertex Format (FVF) is used in DX8 to describe the contents of vertices stored interleaved in a single data stream. FVF is generally used to specify data to be processed by the fixed function vertex processing.

The FVF specification for DX8 includes specification for point size, specified by D3DFVF_PSIZE. This size is expressed in camera space units for non-TL vertices, and in device-space units for TL vertices.

Texture Palettes

Direct3D for DX8 supports paletted textures via a set of 256 entry palettes associated with the IDirect3DDevice8 object. One of these palettes is made current via a renderstate setting. The current palette is used for translating all paletted textures for all active texture stages.

The IDirect3DDevice8 palettes contain an alpha channel. This alpha channel can be used when the hardware capability bit D3DPTEXTURECAPS_ALPHAPALETTE is true, indicating that the device supports alpha from the palette. The palette alpha channel is used when the texture format does not have an alpha channel. If the device does not support alpha from the palette and the texture format does not have an alpha channel, the a value of 0xff is used for alpha.

There are a maximum of 16,384 palettes. Memory resources associated with the set of palettes are proportional to the maximum palette number that an application references, so it is advantageous to use contiguous palette numbers starting at zero.

This method updates a subset of a palette’s 256 entries. Each entry is a DWORD of the format D3DFMT_A8R8G8B8. All entries default to 0xffffffff. Calling SetTexturePalette(n, 0, 0, NULL) frees the resources associated with the n’th palette.

HRESULT

IDirect3DDevice8::SetTexturePalette(

 UINT PaletteNumber,

 UINT StartEntry,

 UINT NumberOfEntries,

 DWORD* Entries);

Parameters
PaletteNumber

Sets which of the set of 256 entry palettes to update for this call. The range for this parameter is 0 to 16,383.

StartEntry

Starting entry in 256 entry palette to update for this call.

NumberOfEntries

Number of entries in 256 entry palette to update for this call.

Entries

Pointer to DWORD array of colors to copy into device palette. DWORDs are in D3DFMT_A8R8G8B8 format.

D3DRS_CURRENT_PALETTE (UINT; default 0; range 0 to 16,383)

Sets the current palette for the device. All subsequent paletted texture reads use this palette.

Capabilities

DWORD MaxStreams

The maximum number of concurrent data streams for SetSteamSource. The valid range is 1 to 16.

DWORD MaxVertexIndex

The maximum size of indices supported for hardware vertex processing. The D3DDP_32BITINDICES and D3DFMT_INDEX_32 can only be used if this value is greater than 0x0000FFFF.

FLOAT MaxPointSize

Maximum size of point primitive. If set to 1.0F then device does not support point size control. Range is >= 1.F.

D3DDEVCAPS_CLIPPLANESCALEDPOINTS

Set if device correctly clips scaled points (of size > 1.0) to user-defined clipping planes.

Render/Device State

D3DRS_SOFTWARE_VERTEX_PROCESSING (BOOL; default depends on device)

Allows app to query and select hardware or software vertex processing. For D3DPureHALDevice, this value is fixed to FALSE. For D3DHELDevice, this value is fixed to TRUE. Settable by application for D3DRefDevice. Settable by application for D3DHALDevice only when D3DDEVCAPS_HWTRANSFORMANDLIGHT is set, else fixed to TRUE. When variable, the default is FALSE.

D3DRS_POINT_SIZE (FLOAT; default 1.0F; range >= 0.F)

Size to use for point size computation for cases in which point size is not specified for each vertex. Value is not used when vertex contains point size. Value is in screen space units if D3DRS_POINTSCALEENABLE false, else in world space units.

D3DRS_POINT_SIZE_MIN (FLOAT; default 1.0F; range >= 0.F)

Minimum size of point primitives. Point primitives are clamped to this size during rendering. Note that setting this to values smaller than 1.0 will result points dropping out (when the point does not cover a pixel center and antialiasing is disabled) and/or being rendered with reduced intensity (when antialiasing is enabled). Value is always expressed in screen space units.

D3DRS_POINT_SIZE_MAX (FLOAT; default MaxPointSize cap; range >= 0.F)

Maximum size of point primitives. Point primitives are clamped to this size during rendering. Value is always expressed in screen space units.

D3DRS_POINT_SPRITE_ENABLE (BOOL; default FALSE)

When TRUE, texture coordinates of point primitives are set such that full textures are mapped on each point. When FALSE, the vertex texture coordinates are used for the entire point.

D3DRS_POINT_SCALE_ENABLE (BOOL; default FALSE)

Controls computation of size for point primitives. When TRUE, the point size is interpreted as a world space value, and is scaled by the distance function and the frustum->viewport Y axis scaling to compute the final screen space point size. When FALSE, the point size is intrepreted as screen space and used directly.

D3DRS_POINT_SCALE_A (FLOAT; default 1.0F; range >= 0.F)

D3DRS_POINT_SCALE_B (FLOAT; default 0.0F; range >= 0.F)

D3DRS_POINT_SCALE_C (FLOAT; default 0.0F; range >= 0.F)

Controls for distance-based size attenuation for point primitives. Active only when D3DRS_POINT_SCALE_ENABLE is TRUE.

D3DRS_MULTISAMPLE_ANTIALIAS (BOOL; default TRUE)

Determines how individual samples are computed when using a multisample rendertarget buffer. When set TRUE, then the multiple samples are computed such that full-scene antialiasing is achieved (by sampling at different sample positions for each of the multiple samples). When set FALSE, the multiple samples are all written with the same sample value (sampled at the pixel center), which allows non-antialiased rendering to a multisample buffer. This renderstate has no effect when rendering to a single sample buffer.

D3DRS_MULTISAMPLE_MASK (DWORD; default 0xffffffff)

Each bit in this mask, starting at the LSB, controls modification of one of the samples in a multisample rendertarget. Thus, for a 8 sample rendertarget, the low byte contains the 8 write enables for each of the 8 samples. This renderstate has no effect when rendering to a single sample buffer.

This renderstate enables use of a multisample buffer as an accumlation buffer, doing multipass rendering of geometry where each pass updates a subset of samples.

D3DRS_COLORWRITEENABLE (UINT; default 0x0000000F)

Per-channel write enables for render target color buffer. A set bit results in the color channel being updated during 3D rendering. A clear bit results in the color channel being unaffected. This functionality is available if the D3DPMISCCAPS_COLORWRITEENABLE capabilities bit is set for the device. This renderstate does not affect clear.

Uses the following bit assignments:

#define D3DCOLORWRITEENABLE_RED (1L<<0)

#define D3DCOLORWRITEENABLE_GREEN (1L<<1)

#define D3DCOLORWRITEENABLE_BLUE (1L<<2)

#define D3DCOLORWRITEENABLE_ALPHA (1L<<3)

Appendix: Fixed Function Vertex Processing

Device State Controls

The following set of device state controls the fixed function vertex processing. These controls do not have any effect when using programmed vertex shaders (except as indicated below).

IDirect3DDevice8::SetRenderState

D3DRENDERSTATE_SPECULARENABLE *

D3DRENDERSTATE_FOGSTART **

D3DRENDERSTATE_FOGEND **

D3DRENDERSTATE_FOGDENSITY **

D3DRENDERSTATE_RANGEFOGENABLE

D3DRENDERSTATE_LIGHTING

D3DRENDERSTATE_AMBIENT

D3DRENDERSTATE_FOGVERTEXMODE

D3DRENDERSTATE_COLORVERTEX

D3DRENDERSTATE_LOCALVIEWER

D3DRENDERSTATE_NORMALIZENORMALS

D3DRENDERSTATE_DIFFUSEMATERIALSOURCE

D3DRENDERSTATE_SPECULARMATERIALSOURCE

D3DRENDERSTATE_AMBIENTMATERIALSOURCE

D3DRENDERSTATE_EMISSIVEMATERIALSOURCE

D3DRENDERSTATE_VERTEXBLEND

IDirect3DDevice8::SetTransform

IDirect3DDevice8::SetMaterial

IDirect3DDevice8::SetLight

IDirect3DDevice8::LightEnable

* - also controls addition of specular color in pixel pipeline

** - start/end/density also control pixel fog density computation

Functional Description

[descriptions/equations for fixed function vertex processing]

Vertex Shader Program

[equivalent vertex shader function program]

Appendix: Debugging Support

[debug monitor]

Vertex

Buffer

Another

Vertex

Buffer

A Third

Vertex

Buffer

Vertex

Vertex

Processing

Clip/Setup/Rasterize

SetStreamSource

(attach vertex

components to

streams)

Stream 0 Loader

Stream 1 Loader

Stream 2 Loader

DrawPrimitive

(load vertex components to form vertices and render)

Microsoft Corporation Confidential
28

