DirectShow ASF Writer

A sink filter which uses the Windows Media SDK (WMSDK) to write media streams to an Advanced Streaming Format (ASF) file.

Deliverables:

· qasf.dll - the writer filter (CLSID_AsfWriter) will be combined with the reader filter and placed into a single, self-registering dll. Although they’re currently in the separate dlls asfwrite.dll and asfread.dll. Does it matter?? The writer filter will also support a single property page (CLSID_AsfWriter) to allow for selection of an ASF profile from the WMSDK’s system profile list. The selected profile determines the attributes for the output file.

Filter specifics:

The writer filter supports the following interfaces:

· IFileSinkFilter2 - allows for output file name specification

· ISpecifyPropertyPages - expose its property page

· IConfigAsfWriter – new interface which allows filter to be configured based on a profile id

· IPersistStream – allows filter to persist configuration data

· IMediaSeeking Not currently supported. Probably only necessary if we need to report consumption progress. Do we? Will it mean anything since we’re just giving to the wmsdk and would really need them to tell us how much they’ve written?

The writer filter will configure its input pin count and type based on the ASF profile it loads when its IConfigAsfWriter::ConfigureFilterWithProfileId() method is called. It will create exactly the number of input pins as the output stream count in the ASF profile and the major type for each input pin will be set to match the major type of ata corresponding output stream and thereafter restrict connections to be of that major type.

For a successful transition of the filter into the Paused state from a Stopped state the filter will require that

· all of its input pins are connected, else it’ll return the error E_FAIL (??)

· it has been configured with a destination filename, else it’ll return the win32 error ERROR_INVALID_NAME(converted to an HRESULT)

· the WMSDK’s IWMWriter::BeginWriting method is successful

New interfaces supported:

IConfigAsfWriter is supported by the filter and contains the following methods:

· ConfigureFilterUsingProfileId(DWORD dwProfileId) – Have the filter configure itself for the passed in WMSDK profile id. This includes creating the appropriate number of input pins and type. Filter must be stopped to use and currently must not be connected. Is requiring to be unconnected too strict? Not hard to fix.
· GetCurrentProfileId(DWORD *pdwProfileId) – Find out which profile id the filter is currently configured to use.

· ConfigureFilterUsingProfile(IWMProfile * pProfile) – Have the filter configure itself for the passed in WMSDK profile. Using this method, advanced users can define their own profiles and pass them to the filter or take the writer’s current profile and modify it. Filter must be stopped to use and currently must not be connected. Is requiring to be unconnected too strict? Not hard to fix.
· GetCurrentProfile(IWMProfileDWORD **ppProfile) – Get the current profile from the writer filter.

Input stream types supported:

Although the primary source of input streams to the writer is expected to from a file, the writer should also be capable of sourcing live data or capture streams to an ASF file.

Known Limitations:

The writer will not support appending data to the end of an existing ASF file.
Dependencies:

WMSDK - The filter requires a valid install of the WMSDK and its underlying dependencies, including a valid ASF system profile list.

DRM - ?? Assume these dependencies are same as WMSDK dependencies.

Issues:

Encryption, filter keying mechanism is dependent on the WMSDK decisions. Still don’t know how this will work. Can the filter be registered as a standard DirectShow filter that is usable by any DShow application or do we need to restrict its use to known apps?

Video-only profiles – will the WMSDK support this and present with video-only profiles or will we need to insert low bitrate silence streams?

