Title: AVI file writer filter

Owner: Syon Bhattacharya

Last Saved: 10/05/95 2:17 PM
Revision: 3
Document Name: Mm_spec
Location:

DISCLAIMER: The features described in this specification are subject to change without notice due to unforeseen implementation complications, schedule constraints, beta test feedback and usability testing. Nothing in this document should be interpreted as a contractual obligation by Microsoft to meet specific dates, testing procedures or product specifications.

This document is MICROSOFT CONFIDENTIAL
2Overview

Feature Description
2
End User Benefits
2
Implementation
3
Assumptions
3
File Writer Implementation
3
AVIMux
3
Restrictions
4
some of the stuff below is obsolete
8
Design Details
12
CFileIo
12
CImperfectBufIo
13
CAviWrite
13
CAviDest
14
CAviDest::CAviInput
14
Data structures
15
Data Flow
15
Sample Code
15
Dependencies
15
Constraints
15
Platform Dependencies
15
Internationalization
15
Future versions
15
Testing
15
Functionality Testing
15
Compatibility Testing
15
Performance Testing
15
Error condition testing
16
Deadlock Potentials, if any
16
Related Documents
16

Overview

This document describes implementation details for the AVIMux and file writer filters. Use these filters to output an AVI file containing the data received on the input pins. This document assumes knowledge of Quartz and the AVI file format.

Feature Description

· The file writer filter can be replaced with a component which writes to a stream in a compound document. The AVImux is the file type specific component.

· The AVIMux outputs a file in the new AVI file format with a two level index. It can be configured to output a file compatible with existing AVI readers.

· The AVImux accepts any number of inputs, up to the limit of the AVI file format. Each input stream corresponds to one AVI stream.

· These filters are designed to achieve a high throughput for video capture to a pre-allocated file. To maximize disk bandwith utilization, the filter uses unbuffered, asynchronous disk writes (if available) without seeking when running.

· Interleave streams for efficient and streaming playback.

End User Benefits

· The filter can be used to record a video editing session (eg a filter in an ISVs video editing system).

· Video capture (ISVs and end users).

[image: image1.wmf]file writer

avi mux

Implementation

Assumptions

File Writer

· Filename set through IFileSinkFilter::SetFileName and can be changed when graph stopped

· When the file writer is given a filename, it changes the values reported to GetAllocatorRequirements to match the sector sizes and requests a reconnect upstream. The filewriter currently does not provide an allocator.

· The filewriter writes samples as they arrive in the Paused and Running states.

· The file writer uses IMemInputPin to transport data. The stream times on samples (GetTime()) represent byte offsets.

· The filewriter refuses samples with S_FALSE after it encounters an error or EndOfStream.

· The filewriter signals errors to the graph using NotifyEvent. The filewriter may do this after returning from Receive and accepting additional samples.

· The filewriter writes all samples it has accepted when it is stopped with IMediaFilter::Stop and refuses any new samples. It blocks the Stop() call until it commits all samples to disk but it may signal the graph (EC_COMPLETE) earlier.

· The input pin of the filewriter exports IStream and supports a subset of its methods. These are available even when the graph is stopped. Release the interface to close the file handle. No sector or memory alignment requirements are negotiated for IStream.

· On Windows95, the file writer queues writes on a separate thread. The IMemInputPin::Receive() call can block on both Windows95 and Windows NT.

AVIMux

· The AVIMux creates a variable number of input pins supporting IMemInputPin and one output pin using both IStream and IMemInputPin.

· Accepts any stream with MajorType in the FOURCCMap space.

· Samples with negative time stamps are discarded.

· Audio streams are handled specially, all other streams are handled like video (frame based)

· Video streams should have the nAvgTimePerFrame entry set in VIDEOINFO structure of the format block. It is used to determine which frames were dropped by the source.

· Initial frames: AVIMux records start times of all streams, normalizes streams so earliest stream starts at t=0 then normalizes all streams so that first video stream starts on a frame boundary.

· AVIMux reconnects input pins when the output pin is reconnected to renegotiate alignment requirements.

· GetAllocatorRequirements() on input pins reports a prefix of 8 and alignment from File writer. The prefix is used to reserve space for the RIFF headers.

· AVIMux generally issues one write per sample using IMemInputPin downstream.

· In NotifyAllocator(), the AVIMux determines if samples on a stream need to be copied. Data must be not be read-only and must have the requested alignment and prefix.

· The AVIMux does not negotiate a suffix on input streams’ allocators (for RIFF/AVI ‘JUNK’ chunks). If it’s using an upstream allocator, the AVImux may issue two writes – one write for the data, and one sector for padding.

· All this goes away if the AVIMux is using buffered I/O.

Restrictions

· Time elapsed in any stream will not exceed xxx.

· Number of samples in any stream will not exceed xxx. (this can be detected). This is determined by the amount of space preallocated at startup for the index.

· Size of sample will not exceed xxx. (this can be detected)

· Will not exceed maximum number of pending asynchronous file requests.

some of the stuff below is obsolete

Design Details

The following classes are defined: CFileIo, CImperfectBufIo, CAviWrite, CAviDest, CAviInput, CAviAllocator.

CFileIo

The CFileIo class encapsulates the interface to file I/O. It supports writing in buffered (through the operating system), unbuffered, synchronous and asynchronous modes.

· The implementation uses a separate thread that waits on a Win32 completion port to process asynchronous events.

· The caller specifies a callback to call when an asynchronous write completes.

· CFileIo maintains a fixed size pool of WriteRequest objects which contain OVERLAPPED structures necessary for completion ports.

· CFileIo handles the different file access modes by creating two handles to the file; one file handle is used for buffered, synchronous I/O, the other for unbuffered, asynchronous I/O.

· If an error is detected (during the completion event), a flag is set and subsequent writes will fail.

· All calls should be serialized by the caller.

Public methods:

BOOL SetMaxPendingRequests(ULONG cRequests);

Set the count of outstanding write requests. This corresponds to the number of buffers the caller has allocated.

BOOL Create();

Create() creates the file and starts the worker thread. SetMaxPendingRequests() needs to should be called before.

BOOL StreamingStart(ULONGLONG ibFile);

Start streaming at ibFile, which must be aligned, in the file. StreamingGetFilePointer(), StreamingSeek(), and SreamingWrite() calls can be issued in streaming mode.

BOOL StreamingEnd();

Ends streaming mode. Blocks until all pending writes complete.

BOOL StreamingGetFilePointer(ULONGLONG *pibFile);

BOOL StreamingSeek(ULONG cbSeek);

BOOL StreamingWrite(
 BYTE *pbData,
 DWORD cbData,
 FileIoCallback fnCallback,
 void *pMisc);

StreamingWrite() issues an asynchronous write and calls fnCallback on completion or error. pMisc is an argument passed to the callback. pbData, and dwSize must be aligned on the boundaries returned in GetMemReq() below. The write operation fails if a previous write failed. Under Windows, this call blocks until the write operation completes.

BOOL Close();

Close() closes the file and the worker thread, and resets its internal state. Can only be called when not streaming (ie StreamingEnd() was called).

BOOL SynchronousWrite(
 DWORDLONG dwlPos,
 BYTE *pbData,
 DWORD dwSize);

BOOL SynchronousRead(
 DWORDLONG dwlPos,
 BYTE *pbData,
 DWORD dwSize);

void GetMemReq(
 ULONG* pAlignment,
 ULONG *pcbPrefix,
 ULONG *pcbSuffix);

Returns the alignment requirements for write and seek operations.

static void NullCallback(void *pMisc);

CImperfectBufIo

The CImperfectBufIo class uses the same interface as CFileIo, but reports an alignment of 1 and copies incoming samples to a larger buffer. The benefits are that no space is wasted in JUNK chunks and performance can better than the operating system’s own buffering.

The buffering is imperfect because the class may write over the data in the file before and after a streaming write. This behavior is acceptable in the AVI file writer because thesamples are the first thing to be written in streaming mode.

CAviWrite

The CAviWrite class encapsulates all the specifics of the AVI file format. On startup, CAviWrite prepares the file for streaming and on shutdown it fills in the structures omitted.

RIFF structure

· The AVI header is maintained in memory as the on disk structure and is output to disk when the file is closed (on the pause to stop transition).

· Keeping the structure in memory as it is on disk requires padding (“JUNK” chunks) to ensure all the structures are aligned on 32 bit DWORDs. The AVI format only guarantees that structures are aligned on 16 bit WORDS. AVI chunks that are not aligned on 16 bit words can be aligned for free (no junk chunks).

· CAviWrite expects incoming samples to be aligned on DWORDs or CFileIo’s requirments, whichever is greater. Each sample must be padded on either size. The padding in front of the sample is used for the RIFF chunk header. The padding at the back is used for a JUNK chunk needed to pad the file to sector boundaries.

Options

The Avi file writer supports the following options through registry entries in "HKEY_CURRENT_USER\\ Software\\Microsoft\\Multimedia\\AviWriterFilter”:

· cbSubIndex

· cbSuperIndex

· cbOuterRiff: Size of the outermost RIFF chunks. Should be 1 Gb to remain compatible with older AVI file readers.

· cbHeaderJunk: amount of junk left in the header after the ‘dmlh’ junk for editing.

· cbBuffer

· cBuffers

· bBufferedIo

Incoming data

A StreamInfo structure is used to keep track of all of the per-stream information including a copy of the MediaType structure, necessary to compute stream rates, sample counts, etc. This structure is updated for each sample received. For each sample:

· When each sample received, it is written to disk

· indexed (possibly triggering a write)

· the size of the outermost RIFF chunk is checked (possibly increasing the file’s seek offset if a new RIFF chunk must be started).

· the first chunk is a special case because space needs to be left for the old style index.

Index

The super index and the current sub-index for each stream are kept in memory. The CAviAllocator allocator is used to allocate buffers for the subindex chunks.

· When a subindex is filled, it is output at the current position in the file and a new one is allocated. This means the index is after the data it indexes.

· When the file is closed, the sub indexes are propagated up, one stream at a time, so that the index chunk is before the data it indexes. During the initialization step, space is allocated for the first subindex chunks at the very beginning of the ‘movi’ chunk. This space may be “junked” if there is one subindex, and it fits in the space allocated for the superindex.

· During the propagation step, the old format index (idx1) is constructed. The CWalkIndex class is used to read index entries and propagate subindex chunks.

Public methods

CAviWrite(TCHAR *szName);

void GetMemReq(ULONG* pAlignment, ULONG *pcbPrefix, ULONG *pcbSuffix);

Return CAviWrite’s requirements on incoming samples.

BOOL Initialize(int cPins, MediaType **rgpMt, ULONG *rgcBuffer);

Initialize CAviWrite, create the output file, and prepare to receive samples. rgpMt is an array of pointser to media types for the connected pins (NULL if the pin is not connected). rgcBuffer is an array containing the number of buffers allocated on the pin's allocator.

BOOL Close();

HRESULT Receive(int pinNum, IMediaSample *pSample);

Each sample is written through this method. Calls from the different pins are serialized at the filter.

static FOURCC MpVideoGuidSubtype_Fourcc(const GUID *pGuidSubtype);

Maps media subtype to a FOURCC code for the AVI file; returns 0 if mapping is unknown.

CAviDest

The CAviDest class implements the filter and behaves like a rendering filter. It inherits CBaseMediaFilter and IFileSourceFilter. On startup, the filter creates one output pin. If a pin reports that it is connected, and there are no more free pins, the filter creates a new pin.

· The filter initializes and closes CAviWrite on stop -> pause and pause -> stop transitions.

· The filter does not distinguish between the paused and stopped states; it is the source filter's responsibility.

· Much of the pin's behavior is routed through the filter. In particular, receives are serialized at the filter.

CAviDest::CAviInput

The CAviDestInput class implements the input pin. It accepts any stream which can be put in an AVI file as determined by MpVideoGuidSubtype_Fourcc.

· When a connection is made or broken, it notifies the filter so that the filter can create another pin.

· When a stream reports EndOfStream(), and there are no more active streams, a pin notifies the filter that the run is complete.

Allocator

· The pin would like to use the source filter's allocator as this saves a memory copy.

· In order to use the source filter's allocator, the input pin checks that it meets the size, alignment, and padding requirements set at pin creation.

· The pin is responsible for copying the sample to its own allocator if it cannot use the source filter's.

Data structures

Data Flow

Sample Code

Use the “sample code” style for sample code.

Dependencies

· Relies on certain behavior of base classes.

· Johnkn’s aviriff.h.

Constraints

· Currently, the file writer does not handle MIDI.

· Streams are not synchronized in the output file; samples are output in the order received.

· Streams will be recorded at a constant rate.

Platform Dependencies

Relies on Win32 API calls. Tests whether CreateIoCompletionPort() succeeds to determine whether asynchronous I/O can be used.

Internationalization

Does regQuartz media type contain language information? Currently, the language field in the AVI file is set to 0.

Future versions

Error recovery. Handle out of disk space errors by truncating the file and leaving it in a consistent state.

Coalescing. Copying small data streams (small audio bytes, text, RIFF headers) on the end of other samples.

Coalescing. Is there any point in coalescing large chunks by programming the allocator to return adjacent blocks of memory for successive samples which could be written in one write operation? 500k is a good target size, but video capture case is optimal only with use of the source filter’s allocator.

Aborts (Adobe)

Testing

Functionality Testing

· Features tested by creating a Quartz graph in GraphEdit which uses that feature/code path.

Compatibility Testing

· Compatibility with existing AVI readers. Output files were tested with MediaPlayer in Windows NT 3.51 and with the MCI AVI player.

Performance Testing

· Performance as a percentage of disk bandwidth on a particular Windows NT system.

Error condition testing

· Errors propagate up. Each has been tested, but more work is needed.

Deadlock Potentials, if any

· Each pin calls the filter; the filter serializes calls.

· The file I/O worker thread blocks on the Completion port. The filter side blocks on an event from the worker thread.

Related Documents

AVI file format: MSDN->Product Documentation -> SDKs -> Video for Windows Development

�

Filename: avispec.doc
Microsoft Confidential
Title_of_the_doc

Owner: _
Page 3 of 16
Revision: 48

