DEXTER
1. Introduction

Dexter is a system for editing various bits of different media together from different sources, including doing mixing and special effects and transitions for audio and video data types. It consists of several parts. At the lowest level, there is a collection of filters that can be put together in a DirectShow filtergraph, and specially programmed to accomplish any editing task desired (the FILTER COLLECTION). There is also a high level API, where an app can specify at a very high level what editing task is to be performed, such as "this piece of video dissolves to this other piece of video, and a third comes in from the side" and this information can be stored and retrieved (The TIMELINE DATABASE). There is also an engine that reads the database and constructs a filtergraph to accomplish that task, bridging the 2 previous components mentioned (The RENDER ENGINE). In the future, we will probably see a component to read and write AAF files from the information in the timeline database. We also have testing tools to create editing projects from XML text files (you can type a description of your editing project in plain english!), and a simple VB app somewhat like Adobe Premiere you can use to make editing projects. Pretty cool, eh?

2. Using and Testing Dexter

The easiest way to play with Dexter is through the XML parser test app, XMLTLTST. You can build this app in the “dexter\test\xmltltst” directory (make sure you’ve built in the “dexter” directory first).

Usage: XMLTLTST /n input.xtl [output.grf] [output.xtl]

If you just type:

XMLTLTST filename.xtl

the app will execute the project described in the file, and render a preview to the screen. (There is no support at this time for creating AVI or ASF files of the project from XML)

XMLTLTST filename.xtl filename.grf

will also create a .grf file of the project, that can later be played with MediaPlayer where you can seek around in it., or load it into Graphedt to alter the graph to save the project in an AVI file, etc.. The "/n" flag will skip playing a preview of the file, and only create a .grf file for you

XMLTLTST filename.xtl output.xtl

This will save a copy of filename.xtl back out as output.xtl, after sending it through our load and save code, testing our persistance of files. It won't look identical, but it should be functionally identical.

You can have as many .grf or .xtl output arguments as you want.

One of the basic units of an editing project is a track. A track consists of a number of clips, one after the other, that cannot overlap. For instance, three clips or pieces of data coming from three different sources put back to back would make up a track. For video or audio tracks, if there are gaps between the clips, that part of the track is transparent and you will hear or see the contents of the tracks underneath. If there is no content on any track for a given period of time, black or silence will be used to fill it. You are also allowed to have one or more 1-input video or audio effects on a portion of a clip or on a portion of a track. (If you want the whole sequence in black and white, it's easier to put the B&W effect on the whole track instead of 3 times on each of the clips.) The effects are allowed to overlap. One important audio effect supported is a crossfade, where you can vary the output volume over time.

For video or audio projects, you can combine tracks to make a composition. Tracks are layered on top of each other, and you will only see the top layer. If there is no content in one track, you will see the content of the layer beneath it. A track may have one or more transitions on it, where that track's contents will be blended somehow with the total output of the layers beneath it. These transitions may not overlap. For audio projects, the only logical transition supported is a mixer, but video has countless possible transitions.

A composition may be used as a track in another composition. This allows for arbitrary complexity. Compositions also may have effects and transitions associated with them (for example to make an entire project B&W, or fade an entire project in from silence).

A timeline can produce any number of streams, based on how many top level composition nodes it has (for instance 1 video stream and 2 audio streams). Each top level node is an editing project in itself, and a separate subgraph is built for each of them, with a switcher and other supporting filters.

SYNTAX:

<timeline> : the main project tag

<composite> : identifies a project that is to be a track of another parent project

<group type="video"> : identifies a top-level project of the timeline that represents one output stream of either "video" or "audio"

<composition> : one or more tracks collected as a composition can be treated as a track in another composition

<track> : a track

<clip src="filename.ext" tlstart="a" tlstop="b" mstart="c" mstop="d"> : a piece of media placed on the timeline from a to b, consisting of the piece of that file from c to d

<effect clsid="{xxxxx}" start="a" stop="b"> : a one input Direct X Video Transform lasting from a to b

<transition clsid="{xxxxx}" start=a" stop="b" direction="a2b"> : a two input Direct X Video Transform lasting from a to b and either transitioning from a to b, or from b to a.

As with all XML, if a tag is fully specified, it ends with a "/" before the closing ">". If other lines come in between, there is no "/" in the tag, but a closing tag beginning with a "/" is required.

EG:
<tag1/>

<tag2>

<subtag2/>

</tag2>

RULES:

· clips within a track cannot overlap

· an effect can be on a clip, track, or composition. There can be multiple effects which can all overlap

· a transition can be on a track or composition. There can be multiple transitions, but they cannot overlap.

· A transition on the first track means black is the other source.

· Effects and Parameters can have arbitrary properties set on them (IDispatch will be called on the DirectX Transform with your property settings)

.XTL SYNTAX: the values shown in quotes are in most cases, the default value if that parameter is left out.

// <timeline>

// output="foo.avi" (default is preview) (not yet implemented)

// duration = "time" (optional)

//

// <group>

// Name="Project X" (Switch will get this name)

// FrameRate="15.0" !!! anything with more than seven decimal

//

 digits won't work! (overflow)

// PreviewMode="1"
allow drop frames

// type="video"

// Width="320"

// Height="320"

// BitDepth="16" (or 24 or 32)

// type="audio"

// SamplingRate="44100"

// priority="n" (optional)

//

// (any of the below can have Mute="On" to make that component act as if it

// wasn't there)

//

// <composite>

// <track>

//

// <daclip> (uses DA Source filter)

// <clip>

// src="file" (given to the source filter)

// tlstart = "time"

// tlstop = "time"

// mstart = "time"

// mstop = "time" (optional)

// FrameRate = "0" (used only for dib sequences... what is its fps? The

//

 default, 0, means to disable dib seq (use only that 1

//

file), so to enable dib sequences, you must set this

//

parameter)

// !!! anything more than seven decimal digits won't work! (overflow)

// StretchMode = "Stretch" (Stretch, Crop or PreserveAspectRatio)

// clsid = "clsid" (optional specific src filter to use - not used if

// "category" or "instance" are specified)

// category = "clsid" (optional - default is "DShow Filters" category)

// instance = "friendly name" (optional - looks in "category" for it)

//

// <effect>

// clsid=""

// start="time"

// stop="time"

//

// <transition>

// clsid=""

// start="time"

// stop="time"

// SwapInputs="0"

// cutpoint="time" (not yet implemented)

//

// Effects and transitions can have a <param> sub tag, to specify parameters

// you can set on that DirectXTransform. Most transitions support "progress",

// to specify how much of A vs. B you want to see. Most other possible

// parameters are transform specific.

//

//

// Our SMPTE wipe DXT that is part of Dexter supports the following parameters:

// (more information needs to be written about this)

//

// "MaskName" - if not NULL, use this JPEG as the wipe instead of a standard

// SMPTE wipe

// "MaskNum" - which SMPTE wipe # to use (see TedWi for chart of wipes)

// "ScaleX" - stretch the shape of the wipe

// "ScaleY" - stretch the shape of the wipe

// "OffsetX" - have the transform start off centre

// "OffsetY" - have the transform start off centre

// "ReplicateX" - duplicate the shape this many times horizontally

// "ReplicateY" - duplicate the shape this many times vertically

// "BorderColor" - colour of border between A and B

// "BorderWidth" - width of border between A and B

// "BorderSoftness" - additional width to be blurry

//

// The value of the parameter can change over time, jumping to a new value at

// a new time, or interpolating from the last point to a new value at a new

// point. Here's a wacky example of a wipe effect that flies around wildly

// instead of going linearly from left to right as it would have done by

// default: All parameter times are relative to the start of the effect

// or transition

//

//<transition clsid="{AF279B30-86EB-11D1-81BF-0000F87557DB}" start="2" stop="9">

// <param name="progress" value="0.0">

// <at time="1" value="0.5"/>

// <at time="2" value="1.0"/>

// <linear time="5" value="0.0"/>

// <linear time="6" value="1.0"/>

// <linear time="6.5" value="0.0"/>

// <linear time="7.0" value="1.0"/>

// </param>

//</transition>

//

// This example runs the progress backwards... eg. a left to right wipe

// becomes a right to left wipe, starting with all new video and wiping back

// to old video:

//

//<transition clsid="{AF279B30-86EB-11D1-81BF-0000F87557DB}" start="2" stop="8">

// <param name="progress" value="1.0">

// <linear time="6" value="0"/>

// </param>

//</transition>

//

// The first value on the same line as the parameter name is the value at time

// 0, and will always be the value unless other values are specified as

// sub tags underneath it. "Progress" is a parameter that you will likely

// want to vary over time. The SMPTE DXT parameters are not...

// you would simply say:

//

//<transition clsid="{dE75D012-7A65-11D2-8CEA-00A0C9441E20}" start="2" stop="4">

// <param name="MaskNum" value="107"/>

// <param name="BorderWidth" value="3"/>

//</transition>

//

// The above example uses the CLSID of the SMPTE DXT. By default is does a

// left to right wipe with no border.

//

// Here's a fun example: A 2x3 matrix of tall skinny hearts with the border

// colour changing dynamically!!!

//

//<transition clsid="{dE75D012-7A65-11D2-8CEA-00A0C9441E20}" start="2" stop="4">

//
 <param name="MaskNum" value="130"/>

//
 <param name="ScaleY" value="3"/>

//
 <param name="ReplicateX" value="2"/>

//
 <param name="ReplicateY" value="3"/>

//
 <param name="BorderColor" value="65280">

//

<at time=".5" value="16711680"/>

//

<at time="1" value="255"/>

//

<at time="1.5" value="65535"/>

//
 </param>

//
 <param name="BorderWidth" value="5"/>

//
 <param name="BorderSoftness" value="5"/>

//</transition>

//

//

// Using parameters with the audio mixer filter is how you change the volume

// of an audio clip, track, composite, or group. Use the CLSID of the

// Audio Mixer filter (CLSID_AudMixer) and use the parameter name "vol".

// BE CAREFUL using values > 1 to increase the volume, you will probably clip

// the audio and distort the sound. Only decreasing the volume is recommended.

//

// This example sets the volume of an object to 1/2 volume

//

// <!-- this effect can be on a clip, track, composite or group-->

// <effect clsid="{036A9790-C153-11d2-9EF7-006008039E37}" start="0" stop="5">

// <param name="vol" value=".5"/>

// </effect>

//

// This example fades the volume out

//

// <effect clsid="{036A9790-C153-11d2-9EF7-006008039E37}" start="0" stop="5">

// <param name="vol" value="1.0">

// <at time="5" value="0"/>

// </param>

// </effect>

//

EXPLANATIONS:

Some of the tags are straightforward, and will be obvious once you look at an example. Here are some of the less common flags:

<clip src="foo.ext">

A source clip can be any streaming media type that DShow supports, eg. avi, asf, mpg, mov, wav, etc. It can also be a still image for video... .bmp, .dib, .jpg and .jpeg are the supported still image formats. All these objects have timeline times (tlstart and tlstop). Everything but still images have media times too (mlstart and mlstop).

Sequences of still images are also supported.... EG: If you specify a filename of "pict098.jpg" and there exists files called "pict099.jpg" "pict100.jpg" etc., every frame, a new picture will be sent, instead of the same image every frame. In order to get this feature, you must specify the frame rate of the sequence (at what rate playback of the sequence will look "normal") with the FrameRate parameter, otherwise, just that one individual picture will be used.

Since all clips are stretched to the group's size, you have 3 choices about how to stretch a particular clip, using the StretchMode parameter. If nothing is specified, "Stretch" is assumed. "Stretch" means stretch the video to the new size; aspect ratio may not be preserved. "Crop" means take a chunk out of the centre of the source clip that is the same as the group size, using black around it if it is too small. No stretching is done. Finally, "PreserveAspectRatio" will stretch the clip to the new group size, but preserve the aspect ratio, putting black around the edges that need extra padding.

<transition SwapInputs="1"/>

Optionally switches the inputs to the transition around.

EG: With SwapInputs="1" a wipe that normally has the new video wipe in from the left, will have the old video wipe in from the left overtop the new vide.

This works well with the above example of running the progress backwards, so you can make a left to right wipe go right to left (by running the progress backwards) and have the old video on the left and the new video on the right (by swapping the inputs). Doing one without the other typically looks wierd.

<group type="video" FrameRate="15" Width="320" Height="240" BitDepth="16"/>

These are the defaults. This determines the format of the video coming out of the switch. BitDepths supported so far are only 16 (that will mean 555), 24, and 32. Anything else will probably crash.
<group type="audio" SamplingRate="44100"/>

(This is the default). This determines the format of the audio coming out of the switch. (only 8000, 11025, 22050, 32000, 44100, and 48000 are allowed right now, I think. anything else will crash)

<clip> mstop and tlstop are optional, but one of the two must be specified. If one is left out, it assumes a normal rate of speed for playback.

<group Name="Project X"/>

This will cause the switcher for that group to be named that name, so you can do a FindFileByName in the filter graph to get the switcher for that group (each group uses a big switcher). Then getting the first output pin of that filter will give you the main output stream of that group. This is for simplicity.

<group PreviewMode="0">

Normally, if you are previewing your project, and your effects and transitions are slow, so the project cannot keep up in real time, frames will be dropped to keep synchronization good (making the video look choppy). (When writing to a file, frames will never be dropped). If you force PreviewMode=0, then you will never drop frames, even when previewing to the screen, so you may see the video play very slowly out of sync with the audio. Only slow effects and transitions are skipped in preview mode, if you have a slow decompressor, or data is coming over a slow network connection, frames will not be able to be dropped.

<clip clsid="{xxx-xxx....}"/>

Instead of using the default file source filter based on the filename you give, this will instantiate a particular source filter. If you still give a filename using src="foo.ext", it will pass that filename to the filter using IFileSourceFilter.

<clip category="{xxx-xxx...}" instance="USB Camera #1"/>

This will choose a source filter by looking in filter category {xxx-xxx...} (for instance, the VideoCapture Filters category... default is the regular DShow Filters category) and use the source filter with the given friendly name given by "instance". If no "instance" is given, the first filter in the category is used.

mute="1"

Any object can be muted. This will turn that element and all of its children off (ie. all of the clips and effects and transitions of a track will be turned off when the track is turned off).

CURRENT LIMITATIONS:

· only audio and video types are supported

· only video supports transitions... there is always a default audio transition to mix all overlapping audio

· Video effects and transitions must be DirectX Transforms

· Audio effects can be any direct show filter

· There is a special volume changing audio effect that is directly supported by Dexter

Example 1:

This is the simplest possible project that simply plays 10 seconds of an avi file (the 10 seconds from 30 to 40 seconds into the movie) with accompanying audio. The audio will be at half volume.

(Two streams are generated, one for each group). You can have more than one group with each type of media, for instance to author an ASF file with mutliple video streams, but typically you will want one group of each type.

In this example, the video is 640x480 24bit RGB at 7.5 frames per second, and the audio is 48kHz.

Also note that mstop is left out from the video clip and tlstop is left out from the audio clip, since they can be computed using the other numbers and assuming normal rate playback.

<timeline>

 <group type="video" FrameRate="7.5" Width="640" Height="480" BitDepth="24">

 <track>

 <clip src="c:\foo.avi" tlstart="0" tlstop="10" mstart="30" />

 </track>

 </group>

 <group type="audio" SamplingRate="48000">

 <track>

 <clip src="c:\foo.avi" tlstart="0" mstart="30" mstop="40" >

<param name="vol" value=".5"/>

 </clip>

 </track>

 </group>

</timeline>

Example 2:

This plays the video and audio at half speed (20 seconds of source material have 40 seconds in which to play)

<timeline>

 <group type="video">

 <track>

 <clip src="c:\foo.avi" tlstart="0" tlstop="40" mstart="30" mstop="50" />

 </track>

 </group>

 <group type="audio">

 <track>

 <clip src="c:\foo.avi" tlstart="0" tlstop="40" mstart="30" mstop="50" />

 </track>

 </group>

</timeline>

Example 3:

This plays three 10 second clips of video back to back, with 1 second of black space between each clip. Remember, a track can have multiple clips on it, as long as the clips don't overlap. The first clip plays normally. The second clip show a single still frame from that video for 10 seconds, and the third clip is a JPEG compressed bitmap displayed for 10 seconds.

<timeline>

 <group type="video">

 <track>

 <clip src="c:\foo.avi" tlstart="0" tlstop="10" mstart="30" mstop="40" />

 <clip src="c:\bar.avi" tlstart="11" tlstop="21" mstart="15" mstop="15" />

 <clip src="c:\blah.jpg" tlstart="22" tlstop="32" />

 </track>

 </group>

</timeline>

Example 4:

This is the same as example 3, except that the first 5 seconds of clip#2 will be upside down. If you changed Mute to 1, it would no longer be upside down, as that effect would not really be there.

<timeline>

 <group type="video">

 <track>

 <clip src="c:\foo.avi" tlstart="0" tlstop="10" mstart="30" mstop="40" />

 <clip src="c:\bar.avi" tlstart="11" tlstop="21" mstart="15" mstop="15" >

<effect clsid="{B05A941C-3CE1-11D2-952A-00C04FA34F05}" start="11" stop="16" Mute="0"/>

 </clip>

 <clip src="c:\blah.jpg" tlstart="22" tlstop="32" />

 </track>

 </group>

</timeline>

Example 5: This is the same as #3, except that all three clips will be upside down, since the effect is on the whole track, and not just an individual clip

<timeline>

 <group type="video">

 <track>

 <clip src="c:\foo.avi" tlstart="0" tlstop="10" mstart="30" mstop="40" />

 <clip src="c:\bar.avi" tlstart="11" tlstop="21" mstart="15" mstop="15" />

 <clip src="c:\blah.jpg" tlstart="22" tlstop="32" />

 <effect clsid="{B05A941C-3CE1-11D2-952A-00C04FA34F05}" start="0" stop="32" />

 </track>

 </group>

</timeline>

Example 6: This project has two tracks. Whenever tracks overlap, the track specified last has priority, so in this case, bar.mpg will be seen for the first 10 seconds, and after that, the last 2 seconds of foo.mpg.

<timeline>

 <group type="video">

 <track>

 <clip src="c:\foo.mpg" tlstart="0" tlstop="12" mstart="30" mstop="42" />

 </track>

 <track>

 <clip src="c:\bar.mpg" tlstart="0" tlstop="10" mstart="12" mstop="22" />

 </track>

 </group>

</timeline>

Example 7: In this example, you will see the 2 clips in track 2 play, and in the 1 second gap between them, you will see the clip from the first track peek through.

<timeline>

 <group type="video">

 <track>

 <clip src="c:\foo.avi" tlstart="0" tlstop="20" mstart="30" mstop="50" />

 </track>

 <track>

 <clip src="c:\bar.mpg" tlstart="0" tlstop="10" mstart="12" mstop="22" />

 <clip src="c:\blah.mov" tlstart="11" tlstop="20" mstart="12" mstop="21" />

 </track>

 </group>

</timeline>

Example 8: Now there is a transition specified during the overlapping period of 2 tracks, so you will see the first clip fade to the second clip. You will also hear the audio tracks mixed during the overlapping period.

<timeline>

 <group type="video">

 <track>

 <clip src="c:\foo.avi" tlstart="0" tlstop="10" mstart="30" mstop="40" />

 </track>

 <track>

 <clip src="c:\bar.mpg" tlstart="7" tlstop="15" mstart="12" mstop="20" />

 <transition clsid="{2A54C913-07AA-11D2-8D6D-00C04F8EF8E0}" start="7" stop="10" />

 </track>

 </group>

 <group type="audio">

 <track>

 <clip src="c:\foo.avi" tlstart="0" tlstop="10" mstart="30" mstop="40" />

 </track>

 <track>

 <clip src="c:\bar.mpg" tlstart="7" tlstop="15" mstart="12" mstop="20" />

 </track>

 </group>

</timeline>

Example 9: Here you will see the first clip fade to the second clip, and then fade back to the first clip (by swapping the inputs of the last transition)

<timeline>

 <group type="video">

 <track>

 <clip src="c:\foo.avi" tlstart="0" tlstop="20" mstart="30" mstop="50" />

 </track>

 <track>

 <clip src="c:\bar.mpg" tlstart="5" tlstop="15" mstart="12" mstop="22" />

 <transition clsid="{2A54C913-07AA-11D2-8D6D-00C04F8EF8E0}" start="5" stop="8" />

 <transition clsid="{2A54C913-07AA-11D2-8D6D-00C04F8EF8E0}" start="12" stop="15" SwapInputs="1" />

 </track>

 </group>

</timeline>

Example 10: An example of compositions. Here you will see example 9 fade into example 5, with each example treated as if it was a track. You'll see example 9 from 0 to 15 seconds, then a fade for 5 seconds, and after 20 seconds, you'll see only example 5. This is an example of a transition being on a composition.

<timeline>

 <group type="video">

 <composition>

 <track>

 <clip src="c:\foo.avi" tlstart="0" tlstop="20" mstart="30" mstop="50" />

 </track>

 <track>

 <clip src="c:\bar.mpg" tlstart="5" tlstop="15" mstart="12" mstop="22" />

 <transition clsid="{2A54C913-07AA-11D2-8D6D-00C04F8EF8E0}" start="5" stop="8" />

 <transition clsid="{2A54C913-07AA-11D2-8D6D-00C04F8EF8E0}" start="12" stop="15" SwapInputs="1" />

 </track>

 </composition>

 <composition>

 <track>

 <clip src="c:\foo.avi" tlstart="0" tlstop="10" mstart="30" mstop="40" />

 <clip src="c:\bar.avi" tlstart="11" tlstop="21" mstart="15" mstop="15" />

 <clip src="c:\blah.avi" tlstart="22" tlstop="32" mstart="12" mstop="32" />

 <effect clsid="{B05A941C-3CE1-11D2-952A-00C04FA34F05}" start="0" stop="32" />

 </track>

 <transition clsid="{2A54C913-07AA-11D2-8D6D-00C04F8EF8E0}" start="15" stop="20" />

 </composition>

 </group>

</timeline>

Example 11: Here, you will see a dib sequence play. The dib sequence is stated as being a 15fps sequence, so 15 pictures played within a one second duration would look normal. In this case, the final project is an 8 frame per second project, so basically, every other jpg file in the sequence will be played at 8 fps as a result of this project (which will only last one second). Also, the pictures will not be stretched normally to the group size, an aspect ratio preserving stretch will be made.

<timeline>

 <group type="video" Width="640" Height="480" FrameRate="8" >

 <track>

 <clip src="c:\ski001.jpg" tlstart="0" tlstop="1" FrameRate="15" StretchMode="PreserveAspectRatio" />

 </track>

 </group>

</timeline>

Congratulations. Now you understand XML.

The chapters after this one might contain WAY more detail than you care to read. They were mostly written in case I die, so someone will be able to figure out how it all works. If you want more intimite detail about how Dexter works, you can read on.

3. The Filter Collection
Video, audio and other data can come from any source. Any DShow stream can be used as input. MPEG, QuickTime, and AVI files of different sizes, frame rates and compression types can be mixed at will. There are no limitations. Every stream is converted to be the same format before the pieces are editing together and mixed. For video, everything is the same bit depth, frame rate, and frame size. For audio, it is the same sampling rate, channels, and bit count. All of the inputs go into a big switcher, whose outputs are connected to various special effect, or mixer filters (for video and audio), which are re-routed back into the mixer. The last output of the mixer is connected to some rendering filters, to preview or write the result to a file. So the special filters that are used to make an editing graph are:

1) GENERATE BLACK VIDEO - for when you want black in your presentation

2) GENERATE STILL VIDEO - for putting still images in your presentation

3) SILENCE - for when there is no audio in a portion of your presentation

4) STRETCH VIDEO - to resize video

5) FRAME RATE CONVERTER - to correct the frame rate of a video

6) AUDIO REPACKER - to break the audio stream into equal size packets

7) BIG SWITCH - the brains

8) DIRECTX TRANSFORM WRAPPER - hosts one or more DirectX Transforms for video effects

9) AUDIO MIXER - mixes several audio streams

For example, in a video editing project, each source file being used would be a graph looking like this, whose output would go into one of the inputs of the big switch. The first three filters, you are familiar with.

The STRETCH VIDEO filter is programmed with the interface IResize (which sets the media type to accept, for instance, RGB32, and the size to resize to, for instance, 320x240). There is also a property page you can use from graphedit instead of programming the filter, which can set the output size. If you use the property page and do not program the filter, it will only accept RGB32.

The FRAME RATE CONVERTER filter is programmed with the interface IFrmRateConverter. This sets the output frame rate to generate, as well as the media start/stop times and the skew. What are those? Let's say for the first 10 seconds of your presention, you want to see the portion of this file from 30 to 40 seconds. The media start and stop times will be 30 and 40 seconds, since that is the piece of this video you are interested in. The skew is the offset to add to the media start time to get the project time. In this case, this piece of video starts at the beginning of the project, or time 0, so the skew is -30. You should always have a frame rate converter in this stream, even if the original source video is already the correct frame rate. There may be errors or mistakes in the stream, and the frame rate converter will correct them.

[image: image1.png]Fil Source
(Asyne)

A1 Spliter

Video [T

SteetchVidea

Frame Rate

Decompressor

Converter

An audio source stream would look like this: There may be one or more ACM converters to decompress the audio stream and convert it to a given format. The AUDIO REPACKER will break all the audio streams up into equal size packets, say 1/30 of a second. This is programmable through the IAudRepack interface. Like the frame rate converter for video streams, every audio stream must have an audio repacker to pack the audio streams all the same way.

[image: image2.png]Fil Source
(Asyne)

Audio

acm

udio Repacker

A1 Spliter

Decompressor

If you are using black video as a source, or silence, the stream would consist only of that one filter. It will produce the data at the correct format without needing any other filters. BLACK supports the IGenVideo interface on its output pin, and SILENCE supports the ISilence interface on its output pin. You can set the output format, frame/sample rate, and start time and duration with this interface. This way you do not need a frame rate or sample rate converter. For instance, if you need black video from 20 to 30 seconds in your presentation, you would set a start time of 20 and a duration of 10 seconds.

If you are using a still image as a source, that image will be repeated over and over at a certain frame rate. BMP, JPG and GIFs are supported at the moment. You may still need a STRETCH VIDEO filter to resize it. STILL VIDEO supports IGenVideo on its output pin, and you can set the frame rate, start time and duration. You can also give it your own raw bits to produce, instead of a file name.

You can also get video or audio from any other source in DShow. Just remember to convert it to the proper uncompressed format, and frame rate convert the video or repack the audio.

The BIG SWITCH

The big switch supports the interface IBigSwitch. With this interface, you set the media type for the connections, the frame rate it will receive (the same frame rate all the frame rate converters are set to), the project duration, the number of inputs and outputs, and most importantly you program the switch matrix.

Let's start with a simple example. We want to play 10 seconds of video from stream 1, and then cut to 10 seconds of video from stream 2. Here is a picture:

[image: image3.png]From Stieam1 ——|

FromSteam2 ——

Big Swich

Video Rendrer

The project length is 20 seconds.

Input pin 0 would be programmed like this: At time 0, connect to output 0. At time 10, connect nowhere.

Input pin 1 would be programmed like this: At time 10, connect to output 0. At time 20, connect nowhere.

The DIRECTX TRANSFORM WRAPPER

The DirectX Transform wrapper filter supports the IAMMixEffect interface. You can program it to know what media type to accept, how many inputs (1 or 2) and queue up a bunch of effects. Each effect has a lifetime... for instance the wrapper might act as a wipe from 0 to 10 seconds, and as a dissolve from 10 to 20 seconds. Within the lifetime, each effect has an active period. For instance, the wipe may be active from 4 to 6 seconds, and the dissolve may be active from 11 to 14 seconds. For a one input effect, before the active time, no processing will be done. During the active period, either a fixed amount of processing will be done, or a variable amount, changing throughout the active period (arbitrarily and user-settable). After the active period, no processing will be done. For a two input effect, before the active time, the first input will be presented. During the active time, the transition between the first and second inputs will either be a fixed amount, or arbitrarily variable. After the active time, the second input will be presented.

The Big Switch and the DirectX Transform Wrapper do not have property pages, and cannot be played with in graphedit since there is no way to call the interfaces to program them. You will need to compile them specially to create a switch or fx wrapper to suit your purpose. (The switch is located in filterus\dexter\switch. The DXT wrapper is found in filterus\dexter\dxt\dxtwrap). You will find code in these filters inside #IFDEF TEST that you can change to suit your needs, and then you will be able to make editing graphs using graphedit. When you save an editing graph, it will remember all of the settings of every filter when it is re-loaded.

Here is a more complicated example of a video editing project, using transitions and effects.

Our project will be 10 seconds long. Clip A lasts from 0 to 6 seconds. Clip B lasts from 4 to 10 seconds. Clip A is the 6 second portion of "foo.avi" from 20 to 26 seconds. Clip B is the 6 second portion of "bar.avi" from 13 to 19 seconds. Where Clip A and B overlap, there will be a wipe effect, with B coming in from the left. This entire project will be fading in from black, with black only at 0 seconds, and finally the full video showing at 10 seconds. Also, the middle 4 seconds of Clip A (from 1 to 5 seconds) will have a black and white effect on it (only the first and last second will be in the original colour). Thus Clip A will switch from B&W to colour in the middle of the wipe.

This is the graph that will do this task.

[image: image4.png]Back | g Ditect Transfom
Souce o Wispper 1 Tox
Cips — 1 1 DitectX Transform
Wiapper 2 — 1oy
2
CipB —{ 2 Big Swich
®— 3 3 Ditect Transform
Wispper 3 T 10z
4
vo— 4
. s 5 Video Rendrer

NOTE: The real switcher has output#0 as the main stream output, in this example it is the last output pin that is the main stream output. In real life, though, it is always pin #0.

There are probably many ways to program this graph. I will demonstrate 2 of them

METHOD 1

- All relevant filters are programmed to accept RGB32, and to output 15fps (or whatever you'd like)

- BLACK source is set to output 10 seconds of black, starting at time 0

- CLIP A's frame rate converter has MediaStart=20, MediaStop=26, Skew=-20

- CLIP B's frame rate converter has MediaStart=13, MediaStop=19, Skew = -3

- DXT Wrapper 1 has lifetime 1 to 5, active time 1 to 5, the B&W effect is chosen (set to always be full B&W during the active period)

- DXT Wrapper 2 has lifetime 4 to 6, active time 4 to 6, the WIPE transition is chosen (set to vary linearly between A and B)

- DXT Wrapper 3 has lifetime 0 to 10, active time 0 to 10, the DISSOLVE transition is chosen (set to vary linearly between A and B)

- Switch input 0 is programmed as follows: at time 0 output to 3. at time 10 no output

- Switch input 1: at time 0 output to 4. at time 1 output to 0, at time 5 output to 1, at time 6 no output

- Switch input 2: at time 4 output to 2, at time 6 output to 4, at time 10 no output

- Switch input 3: at time 1 output to 4, at time 4 output to 1, at time 5 no output

- Switch input 4: at time 4 output to 4, at time 6 no output

- Switch input 5: at time 0, output to 5, at time 10 no output

METHOD 2

- All relevant filters are programmed to accept RGB32, and to output 15fps (or whatever you'd like)

- BLACK source is set to output 10 seconds of black, starting at time 0

- CLIP A's frame rate converter has MediaStart=20, MediaStop=26, Skew=-20

- CLIP B's frame rate converter has MediaStart=13, MediaStop=19, Skew = -3

- DXT Wrapper 1 has lifetime 0 to 6, active time 1 to 5, the B&W effect is chosen (set to always be full B&W during the active period)

- DXT Wrapper 2 has lifetime 0 to 10, active time 4 to 6, the WIPE transition is chosen (set to vary linearly between A and B)

- DXT Wrapper 3 has lifetime 0 to 10, active time 0 to 10, the DISSOLVE transition is chosen (set to vary linearly between A and B)

- Switch input 0 is programmed as follows: at time 0 output to 3. at time 10 no output

- Switch input 1: at time 0 output to 0. at time 6 no output

- Switch input 2: at time 4 output to 2, at time 10 no output

- Switch input 3: at time 0 output to 1, at time 6 no output

- Switch input 4: at time 0 output to 4, at time 10 no output

- Switch input 5: at time 0, output to 5, at time 10 no output

Study these examples carefully.

(!!!!!!) Audio examples using the mixer and repacker will be given when it works.

COMPILING DEXTER

If you are able to build any part of DirectShow, you can build Dexter. You will need the NT build environment set up, and to be enlisted in the DShow tree.

1. "iebuild" in the private\dxmdev\dshowdev directory of the NT build environment

2. "iebuild" in the makesdk directory of the quartz tree

3. "iebuild" in the sdl\classes\base directory of the quartz tree

4. "iebuild" in the filterus\dexter directory of the quartz tree. This contains all of the dexter code

5. "iebuild" in the compdlls\qedit directory of the quartz tree. This will create qedit.dll in libd\i386 (a debug version)

6. "regsvr32" qedit.dll on a machine to install it. You will need msvcrtd.dll (the debug c runtime) in order to use the debug dexter.

If you wish to write programs using the dexter filters and interfaces, you will need to include the qedit_i.c file (created when you compiled filterus\dexter\idl) in your program, and link with ????? (!!! how does this work???)

4. The Timeline Database
The following interfaces are available for an application to describe an editing project: IAMTimeline, IAMTimelineObj, IAMTimelineTrack, IAMTimelineSrc, IAMTimelineEffect, IAMTimelineTrans, IAMTimelineComp, IAMTimelineEffectable, IAMTimelineTransable, IAMTimelineNode, IAMTimelineXFade, and finally IAMTimelineHelper which is even higher level to help you do common tasks.

(!!!) Eric can put more detail here about using these APIs. For now, read the interface descriptions in the idl file (start with the high level IAMTimelineHelper) and look at the XML reader code that uses these APIs to see how it's done. \filterus\dexter\test\xmltl.

5. The Render Engine
The render engine reads the timeline database and builds a filtergraph to execute the project. It supports IRenderEngine, and you basically tell it what timeline you are using, and it can build a graph for you. You can set the output frame rate and size for video streams, or output format for audio streams. It also tells you all of the outputs of the graph (for instance maybe your project produces 1 video stream and 2 audio streams, by having 3 top level compositions in the timeline). You will be able to render these outputs, perhaps much like the capture graph builder, and send the output to be previewed, or to be written to a file, or transmitted somewhere, using any DShow rendering filters available.

(!!!) Eric can put more detail here, there are other things it can do. See the idl file for more details. Not everything is implemented yet.

6. Testing tools
After reading this document, you can learn the details of the interfaces by reading our idl file, in filterus\dexter\idl\qedit.idl.

There is a tool to take a text file with extended XML and execute that project by building a timeline, and calling the render engine. It is found in filterus\dexter\test\xmltl. This is described in chapter 2.

We also have a VB app (!!! NOT CHECKED IN YET!) which has a crude user interface you can use to build editing projects. This will be improved as time goes by.

Testing this project will involve the following:

1) Using the XML text file tool to create projects

2) Using the VB app

3) Making projects in Graphedit, which will involve custom compiles of the switcher and DXT wrapper at this point.

4. Writing applications to test the timeline and render engine APIs to do specific editing projects. (Be creative! There are unlimited possibilities.)

5. Writing applications to build filtergraphs directly to perform editing tasks without using the timeline or render engine APIs (such as the examples in section 2). This is less important than #4.

Please see DannyMi with any questions. This is a fun and exciting project, and I hope everyone that becomes involved will really enjoy their time spent with it.

_981236039

_981236043

_981233103

