DirectX Media Objects

Microsoft Confidential

[image: image1.wmf]â

DirectX Media Objects

Last Revised: 3/17/2000
Microsoft does not make any representation or warranty regarding this specification or any product or item developed based on this specification. Microsoft disclaims all express and implied warranties, including but not limited to the implied warranties of merchantability, fitness for a particular purpose and freedom from infringement. Without limiting the generality of the foregoing, Microsoft does not make any warranty of any kind that any item developed based on this specification, or any portion of it, will not infringe any copyright, patent, trade secret or other intellectual property right of any person or entity in any country. It is your responsibility to seek licenses for such intellectual property rights where appropriate. Microsoft shall not be liable for any damages arising out of or in connection with the use of this specification, including liability for lost profit, business interruption, or any other damages whatsoever. Some states do not allow the exclusion or limitation of liability for consequential or incidental damages; the above limitation may not apply to you.

No part of this document may be reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopying and recording, for any purpose without the express written permission of Microsoft Corporation.

Microsoft, Windows and the Win32 are registered trademarks; Windows NT, DirectX and DirectShow are trademarks of Microsoft Corporation. Other brands and names are the property of their respective owners.

Copyright (1999-2000 Microsoft Corporation. All Rights Reserved.

Table of Contents

2Table of Contents

Overview
3
Motivation
3
Interfaces
3
IMediaObject interface
4
Media types
4
Data flow
5
IMediaObject methods and structures
8
IMediaObjectInPlace Interface
20
IMediaBuffer Interface
21
IMediaBufferDeferred Interface
22
Registration APIs
23
Media Type Helpers
26
Appendices
27
Suggested Future Additions
27
Other interfaces
28
DirectShow™ Wrapper Filter
32
Testing
33
Issues
33
Revision History
33

Overview

DirectX™ Media Objects (hereafter referred to as “Media Objects” or “DMOs”) are COM objects which process multimedia data and support the IMediaObject interface.

Media Objects will be built for the following types of multimedia processing:

· Audio and video effects

· Audio and video compressors

· Audio and video decompressors

Motivation

Media Objects implement low level streaming functionality.

A Media Object should be implemented whenever possible instead of either a DirectShow filter or a VCM (Video Compression Manager) or ACM (Audio Compression Manager) codec.

Media objects are preferred to DirectShow filters because:

· They can be used without DirectShow filter graphs, which means they’re available to more applications.

· They are generally smaller because they don’t have to implement all the DirectShow interfaces.

· They are more testable because their behavior is synchronous and simpler than a general DirectShow filter.

Media objects are preferred to ACM and VCM codecs because:

· They are COM-based hence can take advantage of the extensibility features of COM via QueryInterface

· They can implement a more general streaming model allowing 0 or more input buffers for every 0 or more output buffers.

· They have superior registration by type, which ACM lacked.

Interfaces

The central interface on which all Media objects are based in the IMediaObject interface. This interface provides all of the necessary functions for querying the input and output types of the media object, setting up the input streams, and processing the data in the object. All Media Objects must support the IMediaObject interface.

Media Objects use a standard reference-counted object to represent each buffer of data entering or leaving the object. These objects are accessed using the IMediaBuffer interface. This allows Media Objects to share buffers, reducing the amount of data copying required in the system. IMediaBuffer is mandatory and must be supported by the object implementing the data buffer. The optional IMediaBufferDeferred interface can also be supported. This interface extends IMediaBuffer by allowing the Media Object or application to determine if the entire contents of the buffer are a constant value. This can provide major performance gains to causes like silence in an audio buffer. This is described more fully below.
If a Media Object wishes to persist its current state so it can be saved and then reloaded at a later time, then the Media Object must support the IPersistStream interface. This is a standard COM interface, and documentation for this interface is not included in this document.

If a Media Object supports a set of static properties that do not vary over time, then these properties should be set and queried using the standard IPropertyBag2 interface. This allows the user to query the properties, their types, and set them through a standard interface. If the Media Object wishes to provide property pages for use by other applications, it does this by implementing the ISpecifyPropertyPages interface.

IMediaObjectParams is a new interface that provides support for run-time varying properties. For example, audio effects filters often require that properties such as volume or wet/dry mix vary over time following a precise curve. By specifying the starting and ending times and values of a property and the curve to follow between these points, the filter can perform sample-accurate settings of the parameter. This interface is documented below.

There is a class of Media Objects, including most audio processing effects, in which the size of the input and output buffers is exactly the same. In such case, the Media Object can support the IMediaObjectInPlace interface. This interface is a simplified version of IMediaObject, since the number of input and output buffers is fixed at one. Note that the semantics of IMediaBuffer reference counting change when using the in-place interface. Any Media Object implementing IMediaObjectInPlace must also implement IMediaObject.
IMediaObject interface

All Media Objects support the IMediaObject interface.

The IMediaObject interface models the Media Object as a set of input streams and a set of output streams each identified by a 0-based index.

The application can enumerate the types of data that each stream can process and select the type of data it wishes to use on each stream. The DMO_MEDIA_TYPE structure is used to identify all types of multimedia data.

The IMediaObject::ProcessInput() method passes in input buffers. The IMediaObject::ProcessOutput() method passes in output buffers and invokes the Media Object's processing.

Return code testing

All methods in the IMediaObject interface return an HRESULT. Applications should use the SUCCEEDED() and FAILED() macros for testing return codes unless they are checking for specific docoumented success codes. This will allow some small amount of expansion of informative success codes in the future.

Media types

The media types which an input stream will accept are enumerated with the GetInputType() method. Generally GetInputType() will return a Media Type with a NULL format block. SetInputType() can be called to test if an media type can be processed by an input stream and SetInputType() sets the type for a stream. The same process is followed for output streams using GetOutputType(), and SetOutputType(). Some streams may not enumerate any types until other streams have had their type set - for instance, often a decoder with one input stream and one output stream might only enumerate types for its output stream when the type for its input stream has been set by calling SetInputType().
GetInputType() and GetOutputType() return types in preference order with the most preferred type first.

The set of types enumerated by GetInputType() and GetOutputType() and the types which can be set by SetInputType() and SetOutputType() for a given stream index can vary depending on the types already defined for other streams. SetInputType() and SetOutputType() will only succeed if the type specified as acceptable along with types already set for other streams and the type being set if consistent with any unflushed data held by the Media Object. Generally the application will set the input type for a decoder first and the output type for an encoder first and then either pick a suitable type from the enumerated types on the other stream or try to set its preferred type.
The type for a given input or output stream can be cleared by setting the DMO_SET_TYPEF_CLEAR flag for the SetInputType()/SetOutputType() call. This allows, for example, new types to be set which are incompatible with the types set on other input or output streams.

A Media Object will not process data if types are not set for all its non-optional streams.
Data flow

The application supplies data to a Media Object in the ProcessInput() method. An object may actually process some data in this call if it does not need an output buffer.

If the Media Object needs to hold on to the data in order to generate output in the next call to ProcessOutput() the Media Object calls AddRef on the IMediaBuffer passed in and saves any additional data. This is the normal case.

When the Media Object is done with an input buffer it calls Release().

Media objects generate output data in the ProcessOutput() call. The ProcessOutput() call is synchronous, all output which can be generated from the input data currently held by the object and which fits in the output buffers passed in must be generated by the time the media object returns from ProcessOutput(). For Media types which require complete samples to be generated the output buffer may not be filled if there is not room for another complete sample, even if more input can be processed.

Each output buffer is a structure that contains

· a pointer to an IMediaBuffer interface

· optionally a timestamp

· optionally a time length

· Data flow flags

The IMediaBuffer interface encapsulates each data buffer. It is used to manage lifetime of input buffers and output.

Objects can call AddRef() on the IMediaBuffer interface to hold an input buffer after returning from the call to ProcessInput(). Generally this is done for one of 2 reasons:

· Not all the input can be processed with the current set of output buffers so the object saves a pointer to the buffer rather than taking an internal copy.

· The Media Object has special requirements for lookahead using the raw data.

Media objects keep the flow of data going either by generating more output from the input they've already received or by accepting more input (or both). Thus whenever ProcessOutput() is called either

at least one input stream has the DMO_INPUT_STATUSF_ACCEPT_DATA flag set

or

at least one output stream has the DMO_OUTPUT_DATA_BUFFERF_INCOMPLETE flag set

or both.

An input stream which does not implement lookahead(see Lookahead) should Release the media buffer for an input stream once that stream can accept input again. In particular for a Media Object with a single input stream which does not implement lookahead if no output stream indicates DMO_OUTPUT_DATA_BUFFERF_INCOMPLETE then the input stream should have released any media buffer it was holding.

Output Buffer handling

Data can be inserted in output media buffers by adding the current length to the current buffer position and inserting data between that position and the maximum length of the buffer.

Media Objects notify the application of data delivered in output buffers by calling IMediaBuffer::SetLength() inside the ProcessOutput() method to set the length to the total length of data in the buffer.

Buffer sizes

Input and output buffer size requirements for a given Media Object can be queried by calling GetInputSizeInfo() and GetOutputSizeInfo(). These calls return the minimum buffer size required to guarantee that some data is processed. These methods should be called after the media type has been set for all streams to allow the correct sizes to be returned for the types set.

For some media types the input buffer is defined to contain a single sample - for example:

· Uncompressed video

· Some compressed video formats

For some media types the input buffer is defined to contain complete audio samples - for example

· Uncompressed audio

· Some compressed audio formats

When the input cannot be guaranteed to hold sufficient data to process a sample the media object should buffer data internally until it has sufficient data to generate output data. For fixed bitrate content the media object may also be able to set a minimum buffer size consistent with latency requirements to generate output data but generally for variable bitrate content the Media Object should implement the buffering strategy.

Incomplete status

If a call to ProcessOutput() results in the Media Object being unable to generate all the output data for the associated input data the Media Object sets the 'incomplete' status (DMO_OUTPUT_DATA_BUFFER_INCOMPLETE) in the buffer headers associated with any output streams that need extra buffers.

The application should generally call ProcessOutput()until no output buffer has the 'incomplete' status before calling ProcessInput() again.

A special case arises with video effect and mixer objects. In order to correctly interleave multiple streams without having to buffer frames internally the mixer/effect should only complete the input buffer(s) with the earliest stop time in the ProcessOutput() call.

Discontinuities

Some Media Objects need to output extra data when the input data comes to an end or there is a logical break in the input data. This includes some audio encoders which can generate partial samples, encoders which perform lookahead and some decoders which defer reference frames (so the first frame decode generates no output and the last frame decode forces out the last reference frame). In this case the Discontinuity method is called for the input stream.

For Media Objects which buffer data internally or generate partial samples only at the end of the data the Media Object must pay attention to the Discontinuity() method.

The meaning of the Discontinuity() method for the media object is that all input must be processed as far as possible given that no more input will be received on the stream(s) on which the Discontinuity() method has been called.

When the application using a Media Object uses the Discontinuity() method ProcessOutput() must be called repeatedly until all output data has been generated without passing in more data for that input stream.

Processing of a discontinuity for an input stream is defined to be complete when the input stream can return DMO_INPUT_STATUSF_ ACCEPT_DATA from the GetInputStatus() method.

Lookahead

In some rare cases objects will want to hold on to multiple input buffers. In this case the media object sets the DMO_INPUT_STREAM_INFOF_HOLDS_BUFFERS flag in its GetInputStreamInfo(). In addition the object sets the pcbMaxLookahead output value from GetInputSizeInfo() so that the application knows in advance how much of its data can be held at a time.

When a discontinuity occurs on an input stream which implements lookahead and all output has been processed for that stream all the samples held by that stream must be released.

Serialization

Media Objects should perform their own serialization. Media buffers are assumed to only ever have one owner so can assume they will never be called from more than one thread simulataneously except possibly for calls to AddRef() and Release() which should be MultiThread safe.

Timestamps

In general it is not required to supply timestamps for input buffers. However, if timestamps are supplied for input buffers a DMO should generate them where appropriate (ie on sample boundaries) on output buffers.

Optional Streams and Discarding Data

An output stream may be labeled as optional by returning the DMO_OUTPUT_STREAMF_OPTIONAL flag from GetOutputStreamInfo() for that stream.

An output stream may be labeled as discardable by returning the DMO_OUTPUT_STREAMF_DISCARDABLE flag from GetOutputStreamInfo() for that stream.

Optional streams are Discardable.

An Optional stream is generally a secondary stream which contains extra information or data not needed for all applications. An application environment can use the Optional property to ignore a stream when doing default processing. The media type does not have to set for an Optional stream if the application does not process data for that stream.
A Discardable stream is a stream which may be partially or wholly discarded by the application.

Data is discarded from Optional and Discardable streams by calling ProcessOutput() with the DMO_PROCESS_OUTPUT_DISCARD_WHEN_NO_BUFFER set and additionally setting the pBuffer member of the output buffers parameter to NULL.

Note: A DMO can discard data for an output stream in ProcessOutput() when the DMO_PROCESS_OUTPUT_DISCARD_WHEN_NO_BUFFER flag is set and the corresponding pBuffer is NULLThis even when the stream is neither Discardable nor Optional but the DMO is not in this case required to discard data.

Video Decoders should generally only discard one frame (or 0 if none are available) for every ProcessOutput() call when discarding.

Discarding data can be used either to completely ingnore a stream or, for example for video decoders, to optimize the processing of preroll or other ignored output.

IMediaObject methods and structures

Data buffers are wrapped inside an IMediaBuffer interface, a pointer to which is stored in each of the below structures. The IMediaBuffer interface contains a few simple methods to access the data pointer and the buffer’s length:

interface IMediaBuffer : IUnknown

{

 HRESULT SetLength(

 [in] DWORD cbLength

);

 HRESULT GetMaxLength(

 [out] DWORD *pcbMaxLength

);

 HRESULT GetBufferAndLength(

 [out] BYTE **ppBuffer, // not filled if NULL

 [out] DWORD *pcbLength // not filled if NULL

);

}

The value returned in *pcbLength is the number of bytes of valid data currently held by the buffer, NOT the allocation size of the buffer. The allocation size of the buffer can be obtained by calling GetMaxLength(). GetBufferAndLength() must place 0 in *pcbLength if SetLength() has not yet been called.

DMO_MEDIA_TYPE

{

GUID majortype;

GUID subtype;

BOOL bFixedSizeSamples;

BOOL bTemporalCompression;

ULONG lSampleSize;

GUID formattype;

IUnknown *pUnk;

ULONG cbFormat;

BYTE *pbFormat;

}

This defines the media type structure. This structure exactly matches the DirectShow AM_MEDIA_TYPE structure and is given here for reference.

majortype

Major type of the media sample.

subtype

Subtype of the media sample.

bFixedSizeSamples

If TRUE, samples are of a fixed size. This field is informational only. For audio, it is generally set to TRUE. For video, it is usually TRUE for uncompressed video and FALSE for compressed video.

bTemporalCompression

If TRUE, samples are compressed using temporal (interframe) compression. (A value of TRUE indicates that not all frames are key frames.) This field is informational only.

lSampleSize

Size of the sample in bytes. For compressed data, the value can be zero..

formattype

Guid specifying the format type. The pbFormat member points to the corresponding format structure. Format types include the following:

	Format type
	Structure pointed to

	FORMAT_MPEGVideo
	MPEG1VIDEOINFO

	FORMAT_VideoInfo
	VIDEOINFOHEADER

	FORMAT_WaveFormatEx
	WAVEFORMATEX

	FORMAT_MPEG2Video
	MPEG2VIDEOINFO

	FORMAT_VideoInfo2
	VIDEOINFOHEADER2

pUnk

Not used.

cbFormat

Size of the format block of the media type.

pbFormat

Pointer to the type of format structure specified in the formattype member.

Note that if formattype is not GUID_NULL or FORMAT_None (both mean no format block) then pbFormat cannot be NULL and cbFormat should not be 0.

DMO_OUTPUT_DATA_BUFFER

{

IMediaByffer

*pBuffer;

DWORD

dwFlags;

REFERENCE_TIME
rtTimeStamp;

REFERENCE_TIME
rtTimeLength;

}

	pBuffer
	Pointer to buffer wrapper interface

Can be NULL

	dwFlags (out)

This must be a combination of the following flag values (or 0)

DMO_OUTPUT_DATA_BUFFERF_TIME

rtTimestamp is valid

DMO_OUTPUT_DATA_BUFFERF_TIMELENGTH

rtTimeLength is valid

DMO_OUTPUT_DATA_BUFFERF_INCOMPLETE

Another buffer is required to continue process the input

DMO_OUTPUT_DATA_BUFFERF_SYNCPOINT

Syncpoint at the beginning of the data

	rtTimestamp
	Start time

	rtTimelength
	Length

HRESULT GetStreamCount(DWORD *pcInputStreams, DWORD *pcOutputStreams)

Returns the number of each type of stream. It is possible for objects to have no input streams or no output streams.

Parameters
	pcInputStreams
	Number of input streams

	pcOutputStreams
	Number of output streams

Return Values
	S_OK
	Success

	E_POINTER
	One of the parameters was NULL

	Failure code
	Some other failure

HRESULT GetInputStreamInfo(DWORD dwInputStreamIndex, DWORD *pdwFlags)

Returns information about an input stream. This information does not change for the lifetime of this stream.

Parameters
	dwInputStreamIndex
	Zero based index of input stream

	pdwFlags
	DMO_INPUT_INFOF_HOLDS_BUFFERS

The Media Object may hold on to multiple input buffers for this stream

Return Values
	S_OK
	Success

	E_POINTER
	pdwFlags was NULL

	DMO_E_INVALID_STREAM
	Stream index out of range

	Failure code
	Some other failure

HRESULT GetOutputStreamInfo(DWORD dwOutputStreamIndex, DWORD *pdwFlags)

Returns information about an output stream. This information does not change for the lifetime of this stream.

Parameters
	dwOutputStreamIndex
	Zero based index of output stream

	pdwFlags
	DMO_OUTPUT_STREAMF_WHOLE_SAMPLES

Output contains complete samples

DMO_OUTPUT_STREAMF_SINGLE_SAMPLE

Output contains 1 sample

DMO_OUTPUT_STREAMF_FIXED_SAMPLE_SIZE

Output samples are fixed size

DMO_OUTPUT_STREAMF_DISCARDABLE

Output can be discarded in ProcessOutput

DMO_OUTPUT_STREAMF_OPTIONAL

Processing this stream is optional

Return Values
	S_OK
	Success

	E_POINTER
	pdwFlags was NULL

	DMO_E_INVALID_STREAM
	Stream index out of range

	Failure code
	Some other failure

HRESULT GetInputType(DWORD dwInputStreamIndex, DWORD dwTypeIndex, DMO_MEDIA_TYPE *pmt)

Get the dwTypeIndex type for the input stream dwInputStreamIndex. The Media Type returned in pmt will be overwritten if the method is successful. The format block of the Media Type must be freed by calling MoFreeMediaType() on the DMO_MEDIA_TYPE structure. Often input types will contain a NULL format block.

The types are enumerated in preference order with the most preferred type corresponding to a type index of 0.

If the call is successful the caller should free the output media type by calling MoFreeMediaType() when it's done.

For convenience of implementation it's possible that some types will be enumerated which will fail when used in SetOutputType().

GetInputType() may return a partial type indicating a range of preferred types. When the format block is not specified the formattype GUID is set to GUID_NULL.

Parameters
	dwInputStreamIndex
	Zero based input stream index

	dwTypeIndex
	Zero based type index

	pmt
	Pointer to Media type to return

This can be NULL in which case the return value is S_OK if the dwTypeIndex is in range and S_FALSE if the dwTypeIndex is out of range.

Return Values
	S_OK
	Success

	S_FALSE
	Type index out of range

	DMO_E_INVALID_STREAM
	Stream index out of range

	E_OUTOFMEMORY
	Could not allocate format block or some other memory failure

	Failure code
	Some other failure

HRESULT GetOutputType(DWORD dwOutputStreamIndex, DWORD dwTypeIndex, DMO_MEDIA_TYPE *pmt)

Get the dwTypeIndex type for the output stream dwOutputStreamIndex. The Media Type returned in pmt will be overwritten if the method is successful. The format block of the Media Type must be freed by calling MoFreeMediaType() on the DMO_MEDIA_TYPE structure.

The types are enumerated in preference order with the most preferred type corresponding to a type index of 0.

If the input type is not set for some input stream this call may fail or return a type with a NULL format block.

If the call is successful the caller should free the output media type by calling MoFreeMediaType() when it's done.

For convenience of implementation it's possible that some types will be enumerated which will fail when used in SetOutputType().

GetOutputType() may return a partial type indicating a range of preferred types. When the format block is not specified the formattype GUID is set to GUID_NULL.

Parameters
	dwOutputStreamIndex
	Zero based output stream index

	dwTypeIndex
	Zero based type index

	pmt
	Pointer to Media type to return

This can be NULL in which case the return value is S_OK if the dwTypeIndex is in range and S_FALSE if the dwTypeIndex is out of range.

Return Values
	S_OK
	Success

	S_FALSE
	Type index out of range

	DMO_E_INVALID_STREAM
	Stream index out of range

	E_OUTOFMEMORY
	Could not allocate format block or some other memory failure

	Failure code
	Some other failure

HRESULT SetInputType(DWORD dwInputStreamIndex, const DMO_MEDIA_TYPE *pmt, DWORD dwFlags)

Set a Media Type for an input stream. This call is processed in the context of the types currently set for other streams (both input and output).
If the DMO_SET_TYPEF_TEST_ONLY flag is set the type for this stream is not set or changed.

If the DMO_SET_TYPEF_CLEAR flag is set then pmt should NULL and the type for this stream is removed.

At most one of DMO_SET_TYPEF_TEST_ONLY and DMO_SET_TYPEF_CLEAR can be set.
Parameters
	dwInputStreamIndex
	Zero based input stream index

	dmt
	Type to set

	dwFlags
	This must be a combination of the following flag values (or 0)

DMO_SET_TYPEF_TEST_ONLY

Just check if this type can be set, do not set it
DMO_SET_TYPEF_CLEAR

Clears the type so that no type is set for this stream

Return Values
	S_OK
	Type was set

	S_FALSE
	Type cannot be set

	DMO_E_TYPE_NOT_ACCEPTED
	Type is not acceptable

	Failure code
	Some other failure

	E_INVALIDARG
	Invalid argument

HRESULT SetOutputType(DWORD dwOutputStreamIndex, const DMO_MEDIA_TYPE *pmt, DWORD dwFlags)

Set a Media Type for an output stream. This call is processed in the context of the types currently set for other streams (both input and output).
If the DMO_SET_TYPEF_TEST_ONLY flag is set the type for this stream is not set or changed.

If the DMO_SET_TYPEF_CLEAR flag is set then pmt should NULL and the type for this stream is removed.

At most one of DMO_SET_TYPEF_TEST_ONLY and DMO_SET_TYPEF_CLEAR can be set.
Parameters
	dwOutputStreamIndex
	Zero based output stream index

	pmt
	Type to set

	dwFlags
	This must be a combination of the following flag values (or 0)

DMO_SET_TYPEF_TEST_ONLY

Just check if this type can be set, do not set it
DMO_SET_TYPEF_CLEAR

Clears the type so that no type is set for this stream

Return Values
	S_OK
	Type can be set

	S_FALSE
	Type cannot be set

	DMO_E_TYPE_NOT_ACCEPTED
	Type is not acceptable

	Failure code
	Some other failure

HRESULT GetInputCurrentType(DWORD dwInputStreamIndex, DMO_MEDIA_TYPE *pmt)

Get the Media Type for an input stream.

If the call is successful the caller should free the output media type by calling MoFreeMediaType() when it's done.

Parameters
	dwInputStreamIndex
	Zero based input stream index

	pmt
	Type returned here

The type must be freed by calling MoFreeMediaType() if this call was successful

Return Values
	S_OK
	Type was returned

	DMO_E_TYPE_NOT_SET
	Type is not set

	E_OUTOFMEMORY
	Format block could not be allocated

	Failure code
	Some other failure

HRESULT GetOutputCurrentType(DWORD dwOutputStreamIndex, DMO_MEDIA_TYPE *pmt)

Get the Media Type for an output stream.

If the call is successful the caller should free the output media type by calling MoFreeMediaType() when it's done.

Parameters
	dwOutputStreamIndex
	Zero based output stream index

	pmt
	Type returned here

The type must be freed by calling MoFreeMediaType() if this call was successful

Return Values
	S_OK
	Type was be set

	DMO_E_TYPE_NOT_SET
	Type is not set

	E_OUTOFMEMORY
	Format block could not be allocated

	Failure code
	Some other failure

HRESULT GetInputSizeInfo(DWORD dwInputStreamIndex, DWORD *pcbSize, DWORD *pcbMaxLookahead, DWORD *pdwAlignment)

Get buffer size and alignment requirements for a given input stream.

This method should be called after the types of all streams have been set using SetInputType() and SetOutputType().

pcbMaxLookahead is only used for objects which hold on to multiple input buffers for lookahead. In that case the application must allow for enough buffers so that this amount can be retained by the object in order to generate output. For example, if the application decides on a fixed buffer size of dwBufferSize then it should be prepared to allocate up to at least:

(*pcbMaxLookahead + 2 * (dwBufferSize - 1)) / dwBufferSize
buffers of that size to avoid running out of buffers. This number may be reduced if there are alignment requirements in the data.

Parameters
	dwInputStreamIndex
	Zero based input stream index

	pcbSize
	Returns buffer size

This is at least the minimum size required for processing

	pcbMaxLookahead
	Maximum size of data held by this object if it AddRefs multiple input buffers

Or 0.

	pdwAlignment
	Returns buffer alignment. 1 means no alignment requirement.

Return Values
	S_OK
	Call successful

	E_POINTER
	NULL pointer passed in

	Failure code
	Other failure

HRESULT GetOutputSizeInfo(DWORD dwOutputStreamIndex, DWORD *pcbSize, DWORD *pdwAlignment)

Get buffer size and alignment requirements for a given output stream.

This method should be called after the types of all streams have been set using SetInputType() and SetOutputType().

Parameters
	dwOutputStreamIndex
	Zero based output stream index

	pcbSize
	Returns buffer size

	pdwAlignment
	Returns buffer alignment. 1 means no alignment requirement.

Return Values
	S_OK
	Call successful

	E_POINTER
	NULL pointer passed in

	Failure code
	Other failure

HRESULT Discontinuity(DWORD dwInputStreamIndex)

Informs the Media Object that the data is discontinuous on input stream dwInputStreamIndex. This can occur (for example) because there is a large gap in the data, because no more data is expected, or because the format of the data is changing.

The Media Object should generate all output which can be generated from the data already received in calls to ProcessInput() on this stream before accepting more data on this stream.

Calling Discontinuity() more than once without intermediates call to ProcessInput() is equivalent to calling Discontinuity() once.

If the Discontinuity() method has been called on all input streams for a Media Object and all output has been processed from all the output streams by calls to ProcessOutput() then the Media Object is in the equivalent state to the flushed state. In this state all buffers must be released and no more output can be generated until ProcessInput() is called again. Also in this state calling Flush() has no effect.

Parameters
	dwInputStreamIndex
	0-based input stream index

Return Values
	S_OK
	Call was successful

HRESULT Flush()

Flush internally buffered data and reset any streaming state. Media types and other parameters such as latency are not changed.

All Media Buffers held by all streams must be released on return from this call.

Any incomplete processing of a discontiuity for any input stream is cancelled.

All streams should accept input after a Flush() call.

Parameters
	
	

Return Values
	S_OK
	Successful

	Failure code
	Failure

HRESULT AllocateStreamingResources()

Hint to allocate any resources necessary for processing. This method may not be called before the first call to ProcessOutput() and it is not required to support this method.

Parameters
	
	

Return Values
	S_OK
	Successful. Return this if the call is not implemented.

	Failure code
	Some failure occurred

HRESULT FreeStreamingResources()

Hint to free any resources necessary for processing.

Parameters
	
	

Return Values
	S_OK
	Successful. Return this if the call is not implemented.

	Failure code
	Some failure occurred

HRESULT GetInputStatus(DWORD dwInputStreamIndex, DWORD *pdwFlags)

Return input stream status.

Parameters
	dwInputStreamIndex
	0-based input stream index

	pdwFlags
	DMO_INPUT_STATUSF_ACCEPT_DATA

This stream is ready to accept data

The setting of this flag can only change as the result of one of the following calls:

ProcessOutput()

Discontinuity()

ProcessInput()

Flush()

Return Values
	
	

HRESULT ProcessInput(DWORD dwInputStreamIndex, IMediaBuffer *pBuffer, DWORD dwFlags, REFERENCE_TIME rtTimeStamp, REFERENCE_TIME rtTimeLength)

Deliver an input buffer for a stream. The Media Object should either process all the data inside this method or call IMediaBuffer::AddRef() to hold the buffer waiting for calls to ProcessOutput(). When the Media Object has generated all the output it can from this buffer it should call IMediaBuffer::Release() unless it needs the buffer for lookahead.

If the Media Object calls IMediaBuffer::AddRef() the appication should not reuse a buffer until the matching IMediaBuffer::Release() is called.

ProcessInput() can return S_FALSE to indicate there is no output (and therefore ProcessOutput() does not need to be called). This can save the application needlessly allocating buffers before output is available. It is not an error if ProcessInput() returns S_OK and there is no output data.

Parameters
	dwInputStreamIndex
	Zero based input stream index

	pBuffer
	Buffer containing data

Cannot be NULL

	dwFlags
	Must be a combination of the following flag valus (or 0)

DMO_INPUT_DATA_BUFFERF_TIME

rtTimestamp is valid

DMO_INPUT_DATA_BUFFERF_TIMELENGTH

rtTimeLength is valid

DMO_INPUT_DATA_BUFFERF_SYNCPOINT

Syncpoint at the beginning of the data

	rtTimeStamp
	Start timestamp in 100ns units

	rtTimeLength
	Length in 100ns units

Return Values
	S_OK
	Processed normally

	S_FALSE
	No output.

	DMO_E_NOTACCEPTING
	Data cannot be accepted until previous output has been processed by calling ProcessOutput()

HRESULT ProcessOutput(DWORD dwFlags, DWORD cOutputBufferCount, DMO_OUTPUT_DATA_BUFFER *pOutputDataBuffers, DWORD *pdwStatus)

Generate outputs from current input data. The status fields in the output data buffers are updated as a result of this call.

The IMediaBuffer pointers in the DMO_OUTPUT_DATA_BUFFER structures should not be held by AddRef after return from this call (ie their reference counts should be the same on exit as on entry).

ProcessOutput() places output starting at the end of the current data in the buffer. This means that if GetBufferAndLength returns a pointer pv and a length l the output will start l bytes beyond pv.
Output buffer status fields are undefined if this call returns a failure code.

After calling ProcessOutput() the application should check all output streams for the DMO_OUTPUT_DATA_BUFFERF_INCOMPLETE flag. It is possible, for instance, when there are multiple output streams, for a stream which did not report DMO_OUTPUT_DATA_BUFFERF_INCOMPLETE previously to report it after a subsequent call to ProcessOutput().

If the pBuffer member of a member of pOutputDataBuffers is NULL then depending on dwFlags:

If the DMO_PROCESS_OUTPUT_DISCARD_WHEN_NO_BUFFER flag is set in dwFlags then discard output data if possible. If the GetOutputStreamInfo() method for this stream returns either or both of the DMO_OUTPUT_STREAMF_DISCARD or the DMO_OUTPUT_STREAMF_OPTIONAL flags then some data must be discarded if there is any data available. If neither of these flags is returned by GetOutputStreamInfo() for this stream then it is legal to discard no data and behave as if the DMO_PROCESS_OUTPUT_DISCARD_WHEN_NO_BUFFER is not set, but better to discard if possible.

If the DMO_PROCESS_OUTPUT_DISCARD_WHEN_NO_BUFFER flag is not set then no data is output for this stream.

In both cases the output dwFlags member of the corresponding method of pOutputDataBuffers is updated to correctly reflect whether there is still data to output on this stream by setting the DMO_OUTPUT_DATA_BUFFERF_INCOMPLETE flag appropriately.
Parameters
	dwFlags
	DMO_PROCESS_OUTPUT_DISCARD_WHEN_NO_BUFFER

If the pBuffer member of one of the output buffer structures is NULL discard output data.

	cOutputBufferCount
	Count of input buffers - this should be the same as the number of output streams.

	pOutputDataBuffers
	Array of output data buffers of size cOutputBufferCount.

	pdwStatus
	The Media Object should return 0 here.

Return Values
	S_OK
	Processing was successful

	Failure code
	Failure in processing

HRESULT GetInputMaxLatency(DWORD dwInputStreamIndex, REFERENCE_TIME *prtMaxLatency)

Returns the maximum latency in time between input on the stream and the corresponding output timestamps. Thus, for example, if input timestamped at time T generates output for time T-Delta then this value is the maximum possible value of Delta for the media types defined. This value does not take into account input buffer size.

Parameters
	dwInputStreamIndex
	0-based input stream index

	prtMaxLatency
	Latency

Return Values
	E_NOTIMPL
	Not implemented. Assume 0 latency

	S_OK
	OK

	Failure code
	Failure

HRESULT SetInputMaxLatency(DWORD dwInputStreamIndex, REFERENCE_TIME rtMaxLatency)

Sets the maximum latency in time between input on the stream and the corresponding output timestamps. Thus, for example, if input timestamped at time T generates output for time T-Delta then this bounds the maximum possible value of Delta for the media types defined. This value does not take into account input buffer size.

Parameters
	dwInputStreamIndex
	0-based input stream index

	prtMaxLatency
	Latency

Return Values
	E_NOTIMPL
	Not implemented. Latency cannot be set.

	S_OK
	OK

	E_FAIL
	Latency cannot be set

HRESULT Lock(LONG lLock)

Acquire a lock so that multiple operations can be performed while keeping the Media Object serialized.

Parameters
	lLock
	TRUE – lock

FALSE - unlock

	prtMaxLatency
	Latency

Return Values
	S_OK
	OK

	E_FAIL
	Cannot lock

IMediaObjectInPlace Interface
For DMOs which are processing data with one input and one output, where the media types of the input and output are the same, and the processing can be done in place, the IMediaObjectInPlace interface can be used. This is a much simplified version of IMediaObject, requiring only the Process() call.. IMediaObjectInPlace is an optional interface provided for optimization only, all DMOs which support this interface must also support IMediaObject in order to support clients which do not use the optimized interfaces.

HRESULT Process(ULONG ulSize, BYTE *pData, DWORD dwFlags)

Performs an in-place processing on the ulSize bytes of data pointed to by pData. If dwFlags is set to DMO_INPLACE_NORMAL, then the input buffer is processed, and the DMO fills the buffer with the output data. If the DMO has an effect tail (for example, a reverb will continue to output data after the input data has reached silence), then S_FALSE is returned from the Process() command. The calling application should continue to call Process() until it’s input data is exhausted. At that point, if Process() returns S_FALSE the application should call Process() again, but with the input buffer zeroed appropriately for the media type and with dwFlags set to DMO_INPLACE_ZERO. This indicates to the Process() call that the buffer can be filled with tail data, ignoring the input buffer’s data. These calls should continue until Process() returns S_TRUE, indicating the DMO has finished processing the data. If the DMO has no tail, then Process() will always return S_TRUE.

Parameters
	ulSize
	Size of the data buffer

	pData
	Buffer to be processed

	dwFlags
	Buffer data flags

Return Values
	S_FALSE
	Process was successful, and there is still data in the effect to be processed.

	S_TRUE
	Process was successful, and there is no data remaining to be processed.

	E_FAIL
	Unable to process the buffer.

dwFlag Value
	DMO_INPLACE_NORMAL
	The buffer being passed in is data to be processed by the DMO

	DMO_INPLACE_ZERO
	The buffer being passed has its data zeroed. Any effects tail information will be stored in the buffer.

HRESULT Clone(IMediaObjectInPlace **ppMediaObject)

This method creates a new Media Object with the same state as the current objects and returns a pointer to the newly created object. This allows an application that needs multiple copies of the same object type to create them with minimal overhead.

Parameters
	ppMediaObject
	Pointer to the newly created object.

Return Values
	S_OK
	OK

	E_OUTOFMEMORY
	Insufficient memory for creating the new object

	E_INVALIDARG
	ppMediaObject is invalid or NULL

HRESULT GetLatency(REFERENCE_TIME*prtLatency)

Returns a REFERENCE_TIME value (1 tick = 100ns) that corresponds to the latency time required for the processing of the input buffer. Note that any changes to the parameters of the media object can affect this time, and it is up to the application to query the latency each time parameters change.

Parameters
	prtLatency
	Current latency, in REFERENCE_TIME

Return Values
	S_OK
	OK

	E_ INVALIDARG
	prtLatency is an invalid pointer or NULL

IMediaBuffer Interface

IMediaBuffer is the standard interface for data buffers passed into and out of Media Objects. All data buffers used for DMOs must support this interface.

HRESULT SetLength (DWORD cbLength)

This method allocates cbLength worth of bytes for use by the buffer. This sets the maximum number of bytes that the buffer can access. This method must be called before the buffer can be used, before this method is called the maximum length of the buffer must be 0.

<TODO – Should we provide guidelines on block allocations or force usage of the actual value?>

Parameters
	cbLength
	New length of buffer

Return Values

<TODO – Update return values>
	S_OK
	Success

	Failure code
	Some other failure

HRESULT GetMaxLength (DWORD * pcbMaxLength)

Returns the maximum number of bytes the buffer can hold. This is set by SetLength(). If SetLength() has not been called, this method must return 0.

Parameters
	pcbMaxLength
	Maximum length which the buffer can have

Return Values

<TODO – Update return values>
	S_OK
	Success

	Failure code
	Some other failure

HRESULT GetBufferAndLength (BYTE **ppBuffer, DWORD *pcbLength)

The value returned in *pcbLength is the number of bytes of valid data currently held by the buffer, NOT the allocation size of the buffer. The allocation size of the buffer can be obtained by calling GetMaxLength(). GetBufferAndLength() must place 0 in *pcbLength if SetLength() has not yet been called.

Parameters
	ppBuffer
	Pointer to media buffer (not filled if NULL)

	pcbLength
	Current data in buffer (not filled if NULL)

Return Values
<TODO – Update return values>
	S_OK
	Success

	Failure code
	Some other failure

IMediaBufferDeferred Interface

The IMediaBufferDeferred interface inherits directly from the IMediaBuffer interface, but adds one new method to allow deferred writes to the buffer. To illustrate how this would be used, consider the example of an 8k buffer of audio data that is entirely of value 0, which is common in audio mixing where many inputs may be silenced at various times during the mixdown. Using IMediaBuffer, the DMO would have to write 8k of 0 data into the buffer during the Process() call. If the buffer object supports IMediaBufferDeferred, however, this write can be delayed and possibly avoided.

If the application (or the next DMO to receive the buffer) QI’s the buffer for IMediaBufferDeferred, it can use the IsConstant() method to determine if the buffer’s content is entirely made up of a single value. If it is, then one call to GetBufferAndLength(NULL, &cbLength) provides the length of the buffer, and the entire contents of the buffer is now known without having to make the 8k write. If IMediaBufferDeferred is not supported by the next DMO or the app, then the call to GetBufferAndLength() with a non-NULL buffer pointer will cause the buffer to do the deferred write and pass on the data in a standard buffer. This allows for optimized data paths for constant buffers, while allowing safe interaction with all non-deferred buffer clients.

HRESULT IsConstant (DWORD *pdwValue)

The return value of IsConstant() is either S_TRUE if the buffer’s content is one constant value, or S_FALSE otherwise. If the buffer is of constant value, then pdwValue will be filled with the value. Note that this value is a DWORD, while not all Media Types use DWORD values. It is up to the caller to know the Media Type of the buffer and hence the actual size of the data. If the constant value cannot be represented in a single DWORD then IsConstant() must return S_FALSE and deferred buffer writes cannot be used.

Parameters
	pdwValue
	Set to constant value if buffer is constant

Return Values
	S_TRUE
	All values in buffer are a constant value

	Failure code
	Buffer contains non-constant data

Registration APIs

DMO_PARTIAL_MEDIATYPE

{

GUID type;

GUID subtype;

}

	type
	Major type for matching corresponding media types

GUID_NULL means match any type

	subtype
	Subtype for matching corresponding media types

GUID_NULL means match any subtype

HRESULT DMORegister(LPCWSTR szName, REFCLSID rclsidDMO, REFGUID rguidCategory, DWORD dwFlags, DWORD cInTypes, const DMO_PARTIAL_MEDIATYPE *pInTypes, DWORD cOutTypes, const DMO_PARTIAL_MEDIATYPE *pOutTypes)

Register a new object,its category and the media types it supports.

Parameters
	szName
	Registration name for this DMO. Names longer than 79 characters may be truncated.

	rclsidDMO
	Class ID the corresponding COM object for the DMO is registered under.

	rguidCategory
	Category of this object

	dwFlags
	This must be a combination of the following flag values (or 0).

DMO_REGISTERF_IS_KEYED

Object use is restricted to by key

	cInTypes
	Number of input types to register

	pInTypes
	Input types

	cOutTypes
	Number of output types to register

	pOutTypes
	Output types

Return Values
	
	

HRESULT DMOUnregister(REFCLSID rclsidDMO, REFGUID rguidCategory)

Unregister a media object from one or all categories.

Parameters
	rclsidDMO
	Class ID of the DMO

	rguidCategory
	Remove from this category

If this is GUID_NULL unregister this object from all categories

Return Values
	
	

HRESULT DMOEnum(REFGUID rguidCategory, DWORD dwFlags, DWORD cInTypes, const DMO_PARTIAL_MEDIA_TYPE *pInTypes, DWORD cOutTypes, const DMO_PARTIAL_MEDIA_TYPE *pOutTypes)

Enumerate Media Objects by category and/or by media type. GUID_NULL means match any GUID.

Parameters
	rclsidDMO
	Class ID the corresponding COM object for the DMO is registered under.

	rguidCategory
	Category of this object

	dwFlags
	This must be a combination of the following flag values (or 0).

DMO_REGISTERF_INCLUDE_KEYED

Include keyed objects

	cInTypes
	Number of input types to match

	pInTypes
	Input types

	cOutTypes
	Number of output types to match

	pOutTypes
	Output types

Return Values
	
	

HRESULT DMOGetTypes(REFCLSID rclsidDMO, DWORD cInTypesRequested, DWORD pdwInTypesSupplied, DMO_PARTIAL_MEDIATYPE *pInTypes, DWORD cOutTypesRequested, DWORD *pdwOutTypesSupplied, DMO_PARTIAL_MEDIATYPE *pOutTypes)

Retrieve all mediatypes registered for the DMO This method returns only those types supplied by the DMO to DMORegister; the DMO may expose additional types through GetInputType()/GetOutputType().

Parameters
	rclsidDMO
	Class ID of the DMO

	cInTypesRequested
	The number of structures pointed to by pInTypes

	pdwInTypesSupplied
	The number of structures at pInTypes actually filled in by the function

	pInTypes
	Points to an array of cInTypesRequested DMO_PARTIAL_MEDIATYPE structures

	cOutTypesRequested
	The number of structures pointed to by pOutTypes

	pdwOutTypesSupplied
	The number of structures at pOutTypes actually filled in by the function

	pOutTypes
	Points to an array of cOutTypesRequested DMO_PARTIAL_MEDIATYPE structures

Return Values
	S_OK
	Success. This value is returned even if the object did not register any types (*pdwInTypesSupplied and *pdwOutTypesSupplied are set to 0 in that case).

	S_FALSE
	Not enough room to return all registered mediatypes. Either pInTypes or pOutTypes was filled completely.

	E_FAIL
	DMO registration information for this CLSID could not be found

HRESULT DMOGetName (REFCLSID rclsidDMO, WCHAR szName[80])

Retrieve the DMO’s registration name. This is the name that the DMO passed to DMORegister.

Parameters
	rclsidDMO
	Class ID of the DMO

	szName
	Caller-supplied array of 80 Unicode characters. If the registered name is longer than 79 characters, it is truncated.

Return Values
	S_OK
	Success, a name was returned. This value is returned even if the name had to be truncated.

	S_FALSE
	No name could be found for this DMO (or the name was 0-length). szName[0] was initialized to ‘\0’ by this function.

	E_FAIL
	DMO Registration information for this CLSID could not be found.

Media Type Helpers

Use these functions to manipulate media types.

Media types initialized with MoInitMediaType must be freed with MoFreeMediaType.

Media types created with MoCreateMediaType must be freed with MoDeleteMediaType.

Media types copied using MoCopyMediaType must be freed using MoFreeMediaType.

Media types duplicated using MoDuplicateMediaType must be freed using MoDeleteMediaType.
HRESULT MoInitMediaType(DMO_MEDIA_TYPE *pmt, DWORD cbFormat)

Initialize a media type with a given size format block. pmt is assumed uninitialized on input and no attempt is made to free any media type previously in pmt.

Parameters
	pmt
	Where to initialize the media type

	cbFormat
	Size of format block to create

Return Values
	E_OUTOFMEMORY
	

HRESULT MoFreeMediaType(DMO_MEDIA_TYPE *pmt)

Free a media type previously initialized by MoInitMediaType.

On return the pbFormat field will be 0.

Parameters
	pmt
	Media type to free

Return Values
	
	

HRESULT MoCopyMediaType(DMO_MEDIA_TYPE *pmtDest, const DMO_MEDIA_TYPE *pmtSource)

Copy media types.

Parameters
	pmtDest
	Destination Media Type

	pmtSource
	Source Media Type

Return Values
	E_OUTOFMEMORY
	Could not allocate memory

HRESULT MoCreateMediaType(DMO_MEDIA_TYPE **ppmt, DWORD cbFormat)

Create a new media type structure.

Parameters
	ppmt
	Where to allocate the new media type

	cbFormat
	Size of format block

Return Values
	E_OUTOFMEMORY
	

HRESULT MoDeleteMediaType(DMO_MEDIA_TYPE *pmt)

Delete a media type allocated by MoCreateMediaType or MoDupicateMediaType() or returned by pointer from an API or interface method.

Parameters
	pmt
	Media type to delete

Return Values
	
	

HRESULT MoDupliateMediaType(DMO_MEDIA_TYPE **ppmtDest, const DMO_MEDIA_TYPE *pmtSrc)

Duplicate a media type.

Parameters
	ppmtDest
	New type

	pmtSrc
	Source

Return Values
	E_OUTOFMEMORY
	

Appendices

Suggested Future Additions

A method to get the object’s maximum latency. Latency here is defined as the “timestamp latency” between an input stream and the corresponding output stream for the same ProcessOutput() call. That is, it is simply an indication of how much data the object can buffer up, and does not take into account any wall clock processing time required by ProcessOutput().

At the very minimum, objects would support an object-global GetMaxLatency method, which would report the largest latency that exists in the object for any input-output path:

HRESULT GetMaxObjectLatency(REFERENCE_TIME *prtLatency)

To handle the more general case, it would be helpful to also be able to query the maximum expected latency between any two streams, e. g.,

HRESULT GetMaxStreamLatency(DWORD dwInputStreamIndex, DWORD dwOutputStreamIndex, REFERENCE_TIME *prtLatency)

Would return the maximum expected latency from input stream dwInputStreamIndex to output stream lOutputStreamIndex.

Other interfaces

IDMOQualityControl

The IDMOQualityControl interface is used to instruct a DMO to skip output samples in order to keep up with the media sink (renderer).

interface IDMOQualityControl : IUnknown {

 HRESULT SetNow(

 [in] REFERENCE_TIME rtNow

);

 HRESULT SetStatus(

 [in] DWORD dwFlags

);

 HRESULT GetStatus(

 [out] DWORD *pdwFlags

);

}

The rtNow parameter of the SetNow() method indicates the earliest data the application wishes to retrieve. The Media Object should strive to deliver data to be displayed at or beyond this time as quickly as possible. If the Media Object detects that it is getting further and further behind it should try skipping more data to catch up

The following pseudocode sketches one possible quality control implementation. Note that the rtNow value is timestamped in SetNow() in an attempt to keep the value reasonably valid over time.

SetNow (rtNow){

Query some wall clock timer, such as QueryPerformanceCounter()

Store the value returned by the wall clock timer;

Store the rtNow value;

}

ProcessOutput {

CurrentWallClockValue = Query the same wall clock timer as in SetNow();

OldWallClockValue = wall clock value stored by SetNow();

rtNow = rtNow value stored by SetNow();

rtTimeStamp = the timestamp of the sample we are about to produce;

if (rtTimeStamp <

 rtNow + CurrentWallClockValue – OldWallClockValue + ProcessingDelay)

Do not produce this output sample

else

Produce this output sample

}

Even if ProcessOutput() decides not to produce the current output sample, it must maintain enough information about the state of the stream to be prepared to produce the next sample
. This means that with some types of data (e.g, MPEG2 video) the DMO may still need to do some processing even if it is not going to produce the current output sample.

SetStatus() / GetStatus() are used to enable/disable the DMO’s quality control code. Only one flag is defined: DMO_QUALITY_STATUS_ENABLED.

When a DMO is created, its quality control status should default to disabled.

A DMO that supports this interface should always pay attention to SetNow() calls and remember the most recent rtNow value, even when quality control is disabled. I.e., the DMO must must always be prepared to perform quality control in case quality control is suddenly enabled without a new SetNow() notification. In other words, SetStatus() should mainly affect the operation of ProcessOutput(), not the operation of SetNow().

IDMOVideoOutputOptimizations

This interface, when implemented by a DMO, is used to negotiate DMO code optimizations that require caller side support. One such optimization occurs when a video decoder generates an output frame by applying deltas to the previous frame. Obviously such optimizations can only be made if the caller agrees to play by certain rules (in this case the caller has to be willing to supply an output buffer filled with the previous frame’s data). This interface provides a mechanism to negotiate such features. DMOs must not assume any such features unless they have been specifically negotiated via this interface.

interface IDMOVideoOutputOptimizations {

HRESULT QueryOperationModePreferences (

ULONG ulOutputStreamIndex,

DWORD *pdwRequestedCapabilities

);

HRESULT SetOperationMode (

ULONG ulOutputStreamIndex,

DWORD dwEnabledFeatures

);

HRESULT GetCurrentOperationMode (

ULONG ulOutputStreamIndex,

DWORD dwEnabledFeatures

);

HRESULT GetCurrentSampleRequirements (

ULONG ulOutputStreamIndex,

DWORD *pdwRequestedFeatures

);

}

All dwXxx and *pdwXxx parameters are flag masks and use exactly the same set of flags, DMO_VOSF_XXX, where VOSF stands for "Video Output Stream Flags".

The only flag currently defined by this specification is DMO_VOSF_NEEDS_PREVIOUS_SAMPLE. By passing this to SetOperationMode the caller that every output buffer passed to ProcessOutput() for this output stream will contain the data generated by the DMO in the previous ProcessOutput() call (except when the DMO explicitly agreed to wave the requirement this particular sample - see GetCurrentSampleRequirements).

All features are nogitiated on a per-stream basis. Hence every method in this interface has a ulOutputStreamIndex parameter (0-based). This interface is for output streams only.

QueryOperationModePreferences – called to find out which capabilities the DMO is interested in. The DMO places any capabilities it is interested in in the *pdwRequestedCapabilities bitmask.

HRESULT QueryOperationModePreferences (

ULONG ulOutputStreamIndex,

DWORD *pdwRequestedCapabilities

);

SetOperationMode - called after QueryOperationModePreferences to notify the DMO which features have been enabled on the caller side. The DMO should not assume that the features it requested in QueryOperationModePreferences will be honored until they have been confirmed via SetOperationMode.
HRESULT SetOperationMode (

ULONG ulOutputStreamIndex,

DWORD dwEnabledFeatures

);

SetOperationMode can be called more than once before streaming starts, but only the most recent call counts. So if an application wants to enable multiple features it must do so in one call.

SetOperationMode cannot be called during streaming (but it can be called after flushing).

GetCurrentOperationMode - return the set of flags supplied in the latest SetOperationMode call (or 0). Normally redundant, but useful if multiple things are talking to the same DMO.

HRESULT GetCurrentOperationMode (

ULONG ulOutputStreamIndex,

DWORD dwEnabledFeatures

);

GetCurrentSampleRequirements. For some caller-supported features, it makes sense to turn the feature on/off on a per-sample basis. GetCurrentSampleRequirements allows this.

HRESULT GetCurrentSampleRequirements (

ULONG ulOutputStreamIndex,

DWORD *pdwRequestedFeatures

);

pdwRequestedFeatues is filled by the DMO and can only contain flags already

agreed on by SetOperationMode. That is, this method cannot be used to

dynamically enable features that were not already agreed on at connection time.

The results of a GetCurrentSampleRequirements call apply to (and only to) the output sample used in the first ProcessOutput call after GetCurrentSampleRequirements. Thus if there was no

GetCurrentSampleRequirements call between the last ProcessOutput and the current ProcessOutput, the DMO may assume that all of the features indicated by the last SetOperationMode call are being honored for the current ProcessOutput call.

An example of using this interface follows. An application that supports the reuse-same-output-buffer feature would execute something like this.

IMediaObject pDMO;

. . .

// Must set output type before negotiating video optimizations

pDMO->SetInputType(0, ...);

pDMO->SetOutputType(0,...);

// Find out of the DMO is interested in getting the same buffer every time

BOOL bWantsPreviousBuffer = FALSE;

IDMOVideoOutputOptimizations* pv;

HRESULT hr = pDMO->QueryInterface(IID_IDMOVideoOutputOptimizations, (void*)&pv);

if (SUCCEEDED(hr) && pv) {

DWORD dwFlags;

pv->QueryOperationModePreferences(0,&dwFlags);

if (dwFlags & DMO_VOSF_NEEDS_PREVIOUS_SAMPLE) {

bWantsPreviousBuffer = TRUE;

pv->SetOperationMode(0, DMO_VOSF_NEEDS_PREVIOUS_SAMPLE);

}

}

// processing loop

do {

ProcessInput(0,...);

// Assume we will proceed as agreed in SetOperationMode

BOOL bWantsPreviousBufferForThisPaticularSample = bWantsPreviousBuffer;

// This part is optional. If the caller is perfectly happy honoring the requirement

// for this particular ProcessOutput call, it does not need to call

// GetCurrentSampleRequirements - the DMO will automatically assume the

// requirement is being honored. The caller needs to call GetCurrentSampleRequirements

// only if it is hoping to get out of the requirement for this particular sample

// (there is no guarantee that the DMO will agree, however).

//

if (bWantsPreviousBuffer) {

// Ask the DMO if it is interested in receiving the previous buffer

// for this particular sample

DWORD dwFlags;

pv->GetCurrentSampleRequierements(0, dwFlags);

if (!(dwFlags & DMO_VOSF_NEEDS_PREVIOUS_SAMPLE)) {

bWantsPreviousBufferForThisPaticularSample = FALSE;

}

}

if (bWantsPreviousBufferForThisParticularSample)
 {

pDMO->ProcessOutput(0, ... /* same buffer as last time */)

}

else {

pDMO->ProcessOutput(0, ... /* new buffer OR same buffer as last time */)

}

}

The DMO's code might look something like the following.

Constructor {

m_bCallerWillGiveUsTheSameBufferEveryTime = FALSE;

}

StartStreaming / Init {

m_bInsideGOP = FALSE;

}

HRESULT QueryOperationModePreferences(ULONG ulStream, DWORD *pdwFlags) {

*pdwFlags = DMO_VOSF_NEEDS_PREVIOUS_SAMPLE;

return NOERROR;

}

HRESULT SetOperationMode(ULONG ulStream, DWORD dwFlags) {

if (dwFlags & DMO_VOSF_NEEDS_PREVIOUS_SAMPLE)

m_bCallerWillGiveUsTheSameBufferEveryTime = TRUE;

return NOERROR;

}

HRESULT GetCurrentSampleRequirements(ULONG ulStream, DWORD* pdwFlags) {

*pdwFlags = 0;

if (m_bInsideGOP)

*pdwFlags |= DMO_VOSF_NEEDS_PREVIOUS_SAMPLE;

return NOERROR;

}

HRESULT ProcessOutput() {

. . .

if (m_bInsideGOP && m_bCallerWillGiveUsTheSameBufferEveryTime) {

// assume we have the previous output buffer and do a simple delta

}

else {

// assume the output buffer is initially garbage and do a full decode

}

. . .

if (/* the frame we just decoded completes the GOP */)

m_bInsideGOP = FALSE;

else

m_bInsideGOP = TRUE;

}

DirectShow™ Wrapper Filter

Media Objects should be aggregatable COM objects so that they can be wrapped for use within a DirectShow™ wrapper filter. The DirectShow™ wrapper filter can then expose the object's interfaces.

In order to be supported as a DirectShow™ filter the Media Object must add itself into the registry ??

This filter will be shipped as part of DirectShow and requires a new DirectShow version.

DirectShow assigns a default filter merit of MERIT_NORMAL+1 to a DMO. This can be overridden in the DMO’s class id registry key in HKEY_CLASSES_ROOT\CLSID by adding a DWORD value named Merit to be used as the merit for the DMO wrapped as a DirectShow filter by the wrapper filter. This is useful for defining the merit of a DMO solution vs other DirectShow filters which may be implementing the same functionality.

The DirectShow™ wrapper filter supports the IDMOWrapperFilter interface. This interface can be used if an application wants to explicitly add a particular DMO as a filter to a DirectShow™ filter graph – as the following sample code shows:

IBaseFilter *pUnkFilter;

HRESULT hr = CoCreateInstance(CLSID_DMOWrapperFilter, NULL,

 CLSCTX_INPROC, IID_IBaseFilter,

 (void **)&pUnkFilter);

if (SUCCEEDED(hr)) {

IDMOWrapperFilter *pWrapper;

hr = pUnkFilter->QueryInterface(IID_IDMOWrapperFilter,

 (void **)&pWrapper);

if (SUCCEEDED(hr)) {

// The wrapper filter will create the DMO and

// aggregate it so it can expose the DMOs interfaces

// The wrapper filter records the DMOs category

hr = pWrapper->Init(CLSID_MyDMO, CLSID_MyDMOsCategory);

pWrapper->Release();

}

if (SUCCEEDED(hr)) {

hr = pGraph->AddFilter(pUnkFilter);

}

pUnkFilter->Release();

}

The IDMOWrapperFilter interface one method (in addition to the IUnknown methods) :

HRESULT Init(REFCLSID clsidDMO, REFCLSID catDMO)

Initialize a media type with a given size format block. pmt is assumed uninitialized on input and no attempt is made to free any media type previously in pmt.

Parameters
	ClsidDMO
	The CLSID of the DMO

	CatDMO
	The DMO category. In some cases the DMO wrapper filter performs category-specific optimizations or makes category-specific assumptions so supplying this value will improve the use of the DMO by DirectShow™.

Return Values
	S_OK
	Succeeded

Testing

Each Media Object author should generate test data and a method for initializing their object for streaming.

A simple test package will then perform a set of stress tests using the test data:

· Simple start to end

· Looping

· Invalid/random data

· 0 size buffers

· Check stream/flush/stream generates identical output

· Minimum size buffers

· Check error cases, invalid call sequences etc.

· Monitor releases to ensure that object doesn't hold on to more buffers than it promised.

· Invalid parameters.

· INCOMPLETE should not be signalled if the output buffer has the required min space left.

· Test for more data after INCOMPLETE not set.

· Check consistency of Can accept data flag (GetInputStatus) and ProcessInput.

· Check invalid flags are rejected.

Issues

	In-place
	
	

	See previous frame for decoders
	
	

	Dynamic type change rules
	
	

	Dexter requirements
	
	

	DShow filter registration
	
	

	Locking
	
	

Revision History

	Date
	Modified By
	Description of Changes

	7/29/99
	RobinSp
	Split Process, multiple small changes and clarifications. Add registration and Mo... calls.

	8/3/99
	RobinSp
	Numerous renamings and clarifiations.

	10/21/99
	SergeS
	Remove references to CoTaskMemFree, add a ‘name’ parameter to DMORegister, add DMOGetTypes and DMOGetName.

	11/24/99
	SergeS
	Explain the IMediaBuffer length fields, add a note about what ProcessOutput should do with data already in the buffer, add two new interfaces: IDMOQualityControl and IDMOVideoOutputOptimizations.

	1/19/2000
	BrianMar
	Added property interfaces, IMediaParams, formatting changes

	1/31/2000
	BrianMar
	IMediaObjectInPlace, clean-up

	2/2/2000
	RobinSp
	Added a section on timestamp rules. Added notes to GetInputType and GetOutputType that they may return partial types.

	2/10/2000
	RobinSp
	Allow NULL format blocks for GetInputType and GetOutputType

	3/15/2000
	RobinSp
	Add optional and discardable streams

	3/16/2000
	RobinSp
	ProcessInput() can return S_FALSE

	3/17/2000
	RobinSp
	Document IDMOWrapperFilter

Document DMO_MEDIA_TYPE (copy DShow docs).

Document return code testing.

	3/17/2000
	RobinSp
	pbFormat cannot be NULL if there is a format

	3/17/2000
	BrianMar
	Update InPlace interfaces

	4/2/00
	RobinSp
	Clarify type setting and introduce DMO_SET_TYPEF_CLEAR

� Implicit syncpoints (e.g., regularly occurring syncpoints in an audio stream) must be reflected by this flag. In addition, audio buffers must always begin at a syncpoint.

� The DMO is allowed to use its own judgement about what the phrase “next sample” means in this context. A DMO may notice (based on the most recent rtNow) that not only is the current sample late , but so are the next N samples after it. In this situation it is perfectly reasonable for the DMO to assume that it will never need to decode those next few samples. For example, if an MPEG2 decoder detects that the key frame it is about to produce is so late that all of the frames in its GOP are also already late, it is ok for the decoder to discard the key frame because the entire GOP will be omitted anyway. One implication of this is that if the caller tries to turn the clock back by calling SetNow() with a smaller value than the previous one, the DMO may erroneously skip some frames because it has already discarded information necessary to produce those frames on the assumption that they would all be late anyway (which was a valid assumption given the rtNow value the DMO had access to at the time).

Microsoft Confidential

Page 5 of 34
Microsoft Confidential
1/31/00 2:46 PM

_934384061.doc

�symbol 226 \f "Symbol"��

