To do:

search for “TODO”

add introductions to all sections

fill in all tables (e.g. interfaces, methods, etc.)

all IGOR interfaces accounted for?

update to “real” IGOR interfaces and standard commands, when they become available

drag & drop support

make styles for tables (e.g. standard widths?)

BoxDraw functionality; caller-specifiable bitmaps? (or override via aggregation?)

compare with CAT SDE design documents -- what’s missing from this doc?

go through all of boxnet source code, check for design doc completeness

add “Parent” property and “_NewEnum()” and “Item()” methods to appropriate objects

how are ICommandList, IEditViewSite, etc. passed down to lower-level objects?

whatever happened to IBoxSite? shouldn’t SimpleBoxNet support IBoxSite?

all methods should have object parameters & return types (not Class * pointers)

don’t boxes need names (in addition to labels) for VBA, like e.g. “Text1”?  (how in IDispatch?)

define event sets

“move-socket: move to IBox; need to advise 
<BoxNet>
 that socket moved”



BoxNet Design

Eric Ledoux -- 
3/30
/94

(Printed � DATE  \l �2/24/94� � TIME �10:36 AM�)




Revision marks 
reflect major revisions 
since 2/
24
/94 version.




� TOC \o "1-2" �1. Introduction	� GOTOBUTTON _Toc286720369  � PAGEREF _Toc286720369 �3��

1.1 Purpose Of This Document	� GOTOBUTTON _Toc286720370  � PAGEREF _Toc286720370 �3��

1.2 Abstract Concept	� GOTOBUTTON _Toc286720371  � PAGEREF _Toc286720371 �3��

1.3 Object Map	� GOTOBUTTON _Toc286720372  � PAGEREF _Toc286720372 �3��

1.4 BoxNet Architecture	� GOTOBUTTON _Toc286720373  � PAGEREF _Toc286720373 �4��

1.5 BoxNet-IGOR Communication	� GOTOBUTTON _Toc286720374  � PAGEREF _Toc286720374 �5��

1.6 BoxNet-Box Communication	� GOTOBUTTON _Toc286720375  � PAGEREF _Toc286720375 �6��

2. BoxNet Abstract Class	� GOTOBUTTON _Toc286720376  � PAGEREF _Toc286720376 �7��

2.1 State Information (BoxNet)	� GOTOBUTTON _Toc286720377  � PAGEREF _Toc286720377 �7��

2.2 Implemented Interfaces (BoxNet)	� GOTOBUTTON _Toc286720378  � PAGEREF _Toc286720378 �7��

2.3 IBoxNet Interface	� GOTOBUTTON _Toc286720379  � PAGEREF _Toc286720379 �7��

2.4 Commands (BoxNet)	� GOTOBUTTON _Toc286720380  � PAGEREF _Toc286720380 �8��

2.5 View Advise Messages (BoxNet)	� GOTOBUTTON _Toc286720381  � PAGEREF _Toc286720381 �9��

3. SimpleBoxNet Data Object	� GOTOBUTTON _Toc286720382  � PAGEREF _Toc286720382 �9��

3.1 State Information (SimpleBoxNet)	� GOTOBUTTON _Toc286720383  � PAGEREF _Toc286720383 �9��

3.2 Implemented Interfaces (SimpleBoxNet)	� GOTOBUTTON _Toc286720384  � PAGEREF _Toc286720384 �9��

3.3 ISimpleBoxNet Interface	� GOTOBUTTON _Toc286720385  � PAGEREF _Toc286720385 �10��

3.4 Clipboard Formats (SimpleBoxNet)	� GOTOBUTTON _Toc286720386  � PAGEREF _Toc286720386 �10��

3.5 Native Clipboard Format (SimpleBoxNet)	� GOTOBUTTON _Toc286720387  � PAGEREF _Toc286720387 �10��

3.6 Text Clipboard Format (SimpleBoxNet)	� GOTOBUTTON _Toc286720388  � PAGEREF _Toc286720388 �11��

4. BoxNetView Abstract Class	� GOTOBUTTON _Toc286720389  � PAGEREF _Toc286720389 �12��

5. BoxNetGraphView Object	� GOTOBUTTON _Toc286720390  � PAGEREF _Toc286720390 �12��

5.1 Graph View Visual Appearance	� GOTOBUTTON _Toc286720391  � PAGEREF _Toc286720391 �12��

5.2 State Information (BoxNetGraphView)	� GOTOBUTTON _Toc286720392  � PAGEREF _Toc286720392 �12��

5.3 Implemented Interfaces (BoxNetGraphView)	� GOTOBUTTON _Toc286720393  � PAGEREF _Toc286720393 �12��

5.4 IBoxNetGraphView Interface	� GOTOBUTTON _Toc286720394  � PAGEREF _Toc286720394 �12��

5.5 Persistent Modes (BoxNetGraphView)	� GOTOBUTTON _Toc286720395  � PAGEREF _Toc286720395 �13��

5.6 Transient Mouse-Initiated Modes (BoxNetGraphView)	� GOTOBUTTON _Toc286720396  � PAGEREF _Toc286720396 �14��

5.7 Transient “Utility Modes” (BoxNetGraphView)	� GOTOBUTTON _Toc286720397  � PAGEREF _Toc286720397 �15��

5.8 Commands (BoxNetGraphView)	� GOTOBUTTON _Toc286720398  � PAGEREF _Toc286720398 �16��

5.9 Tools (BoxNetGraphView)	� GOTOBUTTON _Toc286720399  � PAGEREF _Toc286720399 �16��

5.10 Clipboard Formats (BoxNetGraphView)	� GOTOBUTTON _Toc286720400  � PAGEREF _Toc286720400 �16��

6. BoxNetListView Object	� GOTOBUTTON _Toc286720401  � PAGEREF _Toc286720401 �17��

6.1 List View Visual Appearance	� GOTOBUTTON _Toc286720402  � PAGEREF _Toc286720402 �17��

6.2 State Information (BoxNetListView)	� GOTOBUTTON _Toc286720403  � PAGEREF _Toc286720403 �17��

6.3 Implemented Interfaces (BoxNetListView)	� GOTOBUTTON _Toc286720404  � PAGEREF _Toc286720404 �18��

6.4 IBoxNetListView Interface	� GOTOBUTTON _Toc286720405  � PAGEREF _Toc286720405 �18��

6.5 Modes (BoxNetListView)	� GOTOBUTTON _Toc286720406  � PAGEREF _Toc286720406 �18��

6.6 Commands (BoxNetListView)	� GOTOBUTTON _Toc286720407  � PAGEREF _Toc286720407 �19��

6.7 Tools (BoxNetListView)	� GOTOBUTTON _Toc286720408  � PAGEREF _Toc286720408 �19��

6.8 Clipboard Formats (BoxNetListView)	� GOTOBUTTON _Toc286720409  � PAGEREF _Toc286720409 �19��

7. Box Abstract Class	� GOTOBUTTON _Toc286720410  � PAGEREF _Toc286720410 �19��

7.1 IBox State Information	� GOTOBUTTON _Toc286720411  � PAGEREF _Toc286720411 �19��

7.2 Implemented Interfaces (Box)	� GOTOBUTTON _Toc286720412  � PAGEREF _Toc286720412 �20��

7.3 IBox Interface	� GOTOBUTTON _Toc286720413  � PAGEREF _Toc286720413 �20��

7.4 Commands (Box)	� GOTOBUTTON _Toc286720414  � PAGEREF _Toc286720414 �20��

8. SimpleBox Object	� GOTOBUTTON _Toc286720415  � PAGEREF _Toc286720415 �20��

8.1 State Information (SimpleBox)	� GOTOBUTTON _Toc286720416  � PAGEREF _Toc286720416 �21��

8.2 Implemented Interfaces (SimpleBox)	� GOTOBUTTON _Toc286720417  � PAGEREF _Toc286720417 �21��

8.3 ISimpleBox Interface	� GOTOBUTTON _Toc286720418  � PAGEREF _Toc286720418 �21��

8.4 Modes (SimpleBox)	� GOTOBUTTON _Toc286720419  � PAGEREF _Toc286720419 �21��

8.5 Commands (SimpleBox)	� GOTOBUTTON _Toc286720420  � PAGEREF _Toc286720420 �21��

8.6 Tools (SimpleBox)	� GOTOBUTTON _Toc286720421  � PAGEREF _Toc286720421 �22��

9. BoxLink Object	� GOTOBUTTON _Toc286720422  � PAGEREF _Toc286720422 �22��

9.1 State Information (BoxLink)	� GOTOBUTTON _Toc286720423  � PAGEREF _Toc286720423 �22��

9.2 Implemented Interfaces (BoxLink)	� GOTOBUTTON _Toc286720424  � PAGEREF _Toc286720424 �22��

9.3 IBoxLink Interface	� GOTOBUTTON _Toc286720425  � PAGEREF _Toc286720425 �22��

9.4 Commands (BoxLink)	� GOTOBUTTON _Toc286720426  � PAGEREF _Toc286720426 �23��

10. BoxSocket Object	� GOTOBUTTON _Toc286720427  � PAGEREF _Toc286720427 �23��

10.1 State Information (BoxSocket)	� GOTOBUTTON _Toc286720428  � PAGEREF _Toc286720428 �23��

10.2 Implemented Interfaces (BoxSocket)	� GOTOBUTTON _Toc286720429  � PAGEREF _Toc286720429 �23��

10.3 IBoxSocket Interface	� GOTOBUTTON _Toc286720430  � PAGEREF _Toc286720430 �23��

10.4 Commands (BoxSocket)	� GOTOBUTTON _Toc286720431  � PAGEREF _Toc286720431 �23��

11. BoxSocketPos Object, BoxEdge Type	� GOTOBUTTON _Toc286720432  � PAGEREF _Toc286720432 �24��

11.1 IBoxSocketPos Interface, State Information	� GOTOBUTTON _Toc286720433  � PAGEREF _Toc286720433 �24��

11.2 BoxEdge Enumerated Type	� GOTOBUTTON _Toc286720434  � PAGEREF _Toc286720434 �24��

12. BoxNet Collection And Enumeration Objects	� GOTOBUTTON _Toc286720435  � PAGEREF _Toc286720435 �24��

13. Common Objects: Point, Size, Offset, Rect	� GOTOBUTTON _Toc286720436  � PAGEREF _Toc286720436 �25��

�

Introduction


Purpose Of This Document


BoxNet is a collection of COM/MDA objects that implements a “network of boxes”, as described in Section 
�
 REF _Ref285437618 \n 
�
1.2
�
.  BoxNet might be used as part of an implementation of filter sheets, but initially BoxNet’s primary purpose is as an example of a simple IGOR container object.


This document describes the functional design of BoxNet, i.e. all high-level aspects of BoxNet 
that
 users of BoxNet would need to know.  Included is information about user interface, OLE Automation access to BoxNet, and C/C++ access to BoxNet.  This information would also be useful to people wanting to create a functional specification, user education materials, testing plans, etc. for BoxNet.


Note that this document does 
not
 describe how BoxNet is implemented.


See also: \\sierra\high\cat\current\catedit.doc
, 
...\terms.doc, and \\sierra\high\cat\catobj.doc.





Abstract Concept

Conceptually, a 
<
BoxNet
>
�
 represents a “network of boxes”, i.e. a collection of rectangles with directional links between pairs of rectangles, as illustrated in � REF _Ref284568173 \* MERGEFORMAT �Figure 1�.

� EMBED Word.Picture.6  ���

Figure � SEQ Figure \* ARABIC �1�.  BoxNet graph view


Each large rectangle is a box; the text in the center is the box label.  Each small rectangle around the edge of a box is a socket; the text beside it is the socket label.  (The small rectangle itself is often called a socket tab.)  Socket labels and tabs belong to a box.  The arrows between two sockets are links.  Each link has a head (where the arrowhead is) and a tail.  A link may have one or more bends (e.g. the link between Blorg:S and Foo:A has 3 bends).  A socket may have at most one link connected to it.

� REF _Ref284568173 \* MERGEFORMAT �Figure 1� shows a graph view of a box network.  See � REF _Ref284588419 \* MERGEFORMAT �Figure 10� for an alternate view, list view.




Object Map


A 
network
 of boxes is represented by a BoxNet, which is any object (such as an object of class SimpleBoxNet—see below) that implements IBoxNet.  A BoxNet maintains a collection of BoxLink objects, each of which repre
se
nts a link between two box sockets.  
A BoxNet also maintains a collection of boxes; each 
box is represented by a Box
 object
, which is any object (such as an object of class SimpleBox) that implements IBox.  A Box contains a collection of BoxSocket objects, each of which represents a box socket.  A BoxSocket contains a BoxSocketPos pseudo-object, which indicates the position of the socket tab on the box.


�
 REF _Ref285280696 \* MERGEFORMAT 
�
Figure 
2
�
 depicts an “object map”, which shows how to get from one object to another (or, more precisely, how to obtain a pointer to a second object given a pointer to the first).  For example, accessing the “Boxes” property of a BoxNet or SimpleBoxNet object will give you a pointer to a Boxes collection object (see also section 
�
 REF _Ref285283217 \n 
�
1.4
�
).


The bold arrows in 
�
 REF _Ref285280696 \* MERGEFORMAT 
�
Figure 
2
�
 show containment relationships.  For example, a BoxSockets object contains zero or more BoxSocket objects, but a BoxLink doesn’t contain a BoxSocket (the BoxLink merely points to related BoxSocket objects).


Dashed arrows show pseudo-object relationships.  For example, a BoxSocket doesn’t actually contain a BoxSocketPos object (for efficiency reasons), but, when requested, BoxSocket can create a temporary BoxSocketPos object that refers to the position of the socket.





�
 EMBED Word.Picture.6  
��
�



Figure 
�
 SEQ Figure \* ARABIC 
�
2
�
.  BoxNet object map




BoxNet Architecture

BoxNet is an MDA container type.  To be more precise, BoxNet is the name for the relationship, loosely referred to as the “BoxNet architecture”, among objects that implement the interfaces IBoxNet, IBox, IBoxLink, and IBoxSocket.  (“A BoxNet” is also used to refer to an object that implements IBoxNet.)  Implementations for some of these interfaces are supplied, as described in the following table:

Interface�Supplied Implementation�Comments About Supplied Implementation��IBoxNet�SimpleBoxNet�implements UI but no semantics; usually subclassed by a “real” implementation��IBox�SimpleBox�implements UI but no semantics; usually subclassed by a “real” implementation��IBoxLink�BoxLink�usually sufficient for real applications��IBoxSocket�BoxSocket�usually sufficient for real applications��IBoxSocketPos�BoxSocketPos�usually sufficient for real applications��SimpleBoxNet and SimpleBox are not very useful on their own, except perhaps as a “flow chart editor”, since these objects don’t “do” anything: SimpleBoxNet lets you edit box networks (but applies no meaning to boxes and links), and SimpleBox displays and edits box labels and socket labels.  It’s expected that SimpleBoxNet and SimpleBox would normally be aggregated into larger objects which would define other interfaces and specific semantics.  For example, an audio filter sheet could be implemented this way: a FilterSheetBoxNet object would connect audio streams among filter boxes such as an EchoFilterBox and a ReverbFilterBox.

The methods shown are IDispatch-callable, and they have been chosen to be particularly useful when used with VBA.  For example, the VBA code shown in � REF _Ref285282063 \* MERGEFORMAT �Figure 3� will print the labels of all boxes and sockets.

� EMBED Word.Picture.6  ���

Figure � SEQ Figure \* ARABIC �3�.  Example of VBA code to traverse a BoxNet

(VBA uses _NewEnum() in its implementation of “For Each”.  _NewEnum() creates an enumerator object given a collection object.  An enumerator object maintains a pointer to the “current item” during an enumeration.)



BoxNet-IGOR Communication

BoxNet communicates with IGOR via the standard IGOR messages, as shown in � REF _Ref285102844 \* MERGEFORMAT �Figure 4�.

� EMBED Word.Picture.6  ���

Figure � SEQ Figure \* ARABIC �4�.  BoxNet-IGOR communication

This is a high-level picture only—see the individual object and interface descriptions for more information.  Note that, while it’s assumed that the BoxNet data object will likely be subclassed to create a more useful implementation (e.g. an audio filter sheet), it’s assumed that the two supplied view objects, BoxNetGraphView and BoxNetListView, can probably be used as-is, even with custom BoxNet implementations.

Although IGOR only directly communcates with the BoxNet data and view objects, the IGOR-supplied interface implementations (IStorage, IEditDataSite, IEditViewSite, and ICommandList) are passed down to contained objects (boxes, links, etc.) so that they may access IGOR functionality such as displaying status bar text and issuing undo/redo-able commands.



BoxNet-Box Communication

IBox and IBoxSite are how boxes and a BoxNet data object communicate with each other, as shown in � REF _Ref285101429 \* MERGEFORMAT �Figure 5�.  Note that the BoxNet views take care of drawing boxes, so there are no “box view” objects.  A BoxNet also exposes an IStorage (passed to the box via IPersistStorage), IEditViewSite (so that the box can access IGOR services), and ICommandList (so that the box can queue commands in IGOR’s global undo/redo stacks).

� EMBED Word.Picture.6  ���

Figure � SEQ Figure \* ARABIC �5�.  BoxNet-box communication



BoxNet Abstract Class

State Information (BoxNet)

Any BoxNet data object (e.g. a SimpleBoxNet data object, as describe in Section � REF _Ref285283337 \n �3�), maintains the following state information:

a collection of box objects;

a collection of boxes which are selected.

Note that the current selection (of boxes) is a maintained by the data object, not by view objects.



Implemented Interfaces (BoxNet)

Any BoxNet data object needs to implement the following interfaces:

Interface�Implementation Information��IBoxNet�(Standard implementation.)��IDataObject�At a minimum, provide a native data representation.��IDispatch�At a minimum, support methods and properties from IBoxNet.��IEditDataObject�(Standard implementation.)��IPersistStorage�(Standard implementation.)��

IBoxNet Interface

By definition, a BoxNet data object implements IBoxNet.  IBoxNet contains the following methods and properties, which are accessible via IDispatch:

General

Method/Property [r=read, w=write]�Description��(One method for each command listed in Section � REF _Ref285106279 \n �2.4�.)���CreateGraphView() As BoxNetGraphView�Create a BoxNetGraphView object that’s a view onto this BoxNet data object.��CreateListView() As BoxNetListView�Create a BoxNetListView object that’s a view onto this BoxNet data object.��Boxes

Method/Property [r=read, w=write]�Description��SelectBox(Box b)�All other boxes (if any) are deselected, selected link (if any) is deselected, box b is selected.

Mouse UI, graph view:  Left-down on box executes select-box(b) and begin move-box-selection-pending(b).

Mouse/keyboard UI, list view:  List is a standard multi-select Windows list box; selecting box items selects the corresponding boxes.  Socket items cannot be selected.��ToggleBoxSelection(Box b)�If box b is selected, deselect it.  If not, select it.

Mouse UI, graph view:  If box is initially selected: Sheft-left-down, then quickly release mouse button (else move-box-selection mode is entered and box remains selected).  If box is initially deselected: Shift-left down; box will be selected regardless of whether or not move-box-selection mode is entered.

Mouse UI, list view:  See select-box mode.��Links

Method/Property [r=read, w=write]�Description��ReplaceLink(BoxLink l, BoxLink lNew)�Replace link l with lNew.  Free l.��

Commands (BoxNet)

Boxes

Command�Description��insert-box(b)�Add box b to the BoxNet (in the position specified inside b).

UI:  See insert-box mode.��move-box-selection(off)�Move the box selection (including each link connected to a selected box) to a new location, offset off pixels from its original location.

UI:  See move-box-selection mode.��tab-to-next-box�If one box is selected, select another box, such that repeatedly hitting executing this command will cycle through all boxes.  If more than one box is selected, do nothing.��Links

Command�Description��delete-box-selection�Delete the box selection.��delete-link(l)�Delete link l.

UI:  See delete-selected-link command.��insert-link(l)�Add link l (which already contains pointers to the two boxes it is to link together) to the BoxNet.

Mouse UI (graph mode only):  Left-down on link (not on a bend) while in allow-edit-bends mode.��Bends

Command�Description��delete-bend(b)�Delete link bend (b).

Mouse UI (graph mode only):  Left-down on or near b while in allow-edit-bends mode.��move-bend(b, pt)�Move link bend b (may be head or tail) to point pt.

UI:  See move-bend mode.��

View Advise Messages (BoxNet)

The following messages are sent to BoxNet views (via IEditViewObject::OnUpdate, usually initiated by IEditDataSite::UpdateAllViews) to indicate that the view must be redrawn, or view state may need to be changed in some way.

Message�Description��cancel-modes�cancel any current modes; for example, before a link is deleted, this message (and/or cancel-view-select?) would be broadcast to all views so that, in case a view was holding a pointer to the soon-to-be-deleted link object, the pointer would be released, which would avoid later GP Faults etc. caused by indirecting a bad pointer��cancel-view-select�cancel any view-specific selection��draw-all�redraw entire view��draw-box�draw only specified box��draw-box-and-links�draw only specified box and connecte links��draw-box-socket-tab�draw only specified socket tab��draw-link�draw only specified link��

SimpleBoxNet Data Object

SimpleBoxNet is a BoxNet data object implementation, meaning it implements IBoxNet.  SimpleBoxNet applies no “semantic meaning” to a BoxNet—it simply acts as a container for boxes.  (Therefore, as described in Section � REF _Ref285283217 \n �1.4�, it’s expected that SimpleBoxNet would probably be subclassed in “real life” use.)

State Information (SimpleBoxNet)

SimpleBoxNet maintains the following state information:

See Section � REF _Ref285428232 \n �2.1�.

Implemented Interfaces (SimpleBoxNet)

Interface�Implementation Information��IBoxNet�(Standard implementation.)��IDataObject�See Section � REF _Ref285429296 \n �3.4�.��IDispatch�Methods and properties from IBoxNet and ISimpleBoxNet.��IEditDataObject�(Standard implementation.)��ISimpleBoxNet�(Standard implementation)��IPersistStorage�(Standard implementation.)��

ISimpleBoxNet Interface

ISimpleBoxNet contains methods and properties which are specific to the SimpleBoxNet object and which are exposed via IDispatch.

Method/Property [r=read, w=write]�Description��(none currently)���

Clipboard Formats (SimpleBoxNet)

SimpleBoxNet’s IDataObject interface supports the following clipboard formats:

Clipboard Format�Description��SimpleBoxNet�Native format.  See Section � REF _Ref285429213 \n �3.5�.��SimpleBoxNetText�ASCII translation of native format.  See Section � REF _Ref285429488 \n �3.6�.��

Native Clipboard Format (SimpleBoxNet)

SimpleBoxNet clipboard transfer and drag & drop via OLE uniform data transfer (IDataObject and associated interfaces).  In particular, cut-selection, copy-selection, drag/drop (from BoxNet), etc. are implemented by creating an invisible BoxNet data object that represents a snapshot of the data being copied, as shown in � REF _Ref285176144 \* MERGEFORMAT �Figure 6�.  This snapshot object creates a standard OLE advise holder (via the OLE API CreateOLEAdviseHolder) to handle IDataObject::DAdvise requests, and a standard IGOR FORMATETC enumerator object to handle IDataObject::EnumFormatEtc requests.

� EMBED Word.Picture.6  ���

Figure � SEQ Figure \* ARABIC �6�.  SimpleBoxNet support for uniform data transfer



Text Clipboard Format (SimpleBoxNet)

A text representation exported from a SimpleBoxNet and imported to a SimpleBoxNet, via the BoxNet’s IDataObject interface.  The text representation (which looks very much like the list view of a BoxNet) is described by the BNF grammar shown in � REF _Ref285107461 \* MERGEFORMAT �Figure 7�.

� EMBED Word.Picture.6  ���

Figure � SEQ Figure \* ARABIC �7�.  BNF grammar of BoxNet text representation

Tokens must be separated by white space (or by literal strings listed above).  A (string( is a sequence of letters, digits, and spaces; if any other characters are included the string must be contained in double quotation marks, and within the quotes a backslash is used to “escape” the following character (as in C strings).

The sample BoxNet text representation shown in � REF _Ref285105732 \* MERGEFORMAT �Figure 8� corresponds to the BoxNet depicted in � REF _Ref284568173 \* MERGEFORMAT �Figure 1�.

� EMBED Word.Picture.6  ���

Figure � SEQ Figure \* ARABIC �8�.  Example of BoxNet text representation (corresponds to � REF _Ref284568173 \* MERGEFORMAT �Figure 1�)

If each (box-name( is not unique, the box labelling rules described in Section � REF _Ref285106728 \n �0� apply, as shown in � REF _Ref285105777 \* MERGEFORMAT �Figure 9�, which corresponds to the BoxNet depicted in � REF _Ref284634585 \* MERGEFORMAT �Figure 11�.

� EMBED Word.Picture.6  ���

Figure � SEQ Figure \* ARABIC �9�.  Example of BoxNet text represntation with duplicate box labels

(corresponds to � REF _Ref284634585 \* MERGEFORMAT �Figure 11�)



BoxNetView Abstract Class

TODO.  (Commands, interfaces, etc.?  What interfaces to all views need to support?)

BoxNetGraphView Object

A BoxNetGraphView object is a view object which represents a “graph view” (in the sense of “graph” meaning “linked collection of nodes”) of a BoxNet data object (such as a SimpleBoxNet object).



Graph View Visual Appearance

A BoxNet graph view object displays a BoxNet in a manner visually similar to � REF _Ref284568173 \* MERGEFORMAT �Figure 1�.



State Information (BoxNetGraphView)

A BoxNetGraphView object maintains the following state information:

Which link, if any, is selected. Only one link can be selected at a time, and no link can be selected when a box is selected (or vice versa).  Note that link selection is view object state, while box selection is data object state.

Modes listed in Sections � REF _Ref285428435 \n �5.5�-� REF _Ref285428525 \n �5.7�.



Implemented Interfaces (BoxNetGraphView)

Interface�Implementation Information��IBoxNetGraphView�(Standard implementation.)��IDataObject�See Section � REF _Ref285429953 \n �5.10�.��IDispatch�Methods and properties from IBoxNetGraphView, plus those of the BoxNet data object.��IEditViewObject�(Standard implementation.)��IKeyboard�(Standard implementation.)��IMouse�(Standard implementation.)��IPersistStorage�(Standard implementation.)��IViewObject�(Standard implementation.)��

IBoxNetGraphView Interface

IBoxNetGraphView contains methods and properties which are specific to the BoxNetGraphView object and which are exposed via IDispatch.

General

Method/Property [r=read, w=write]�Description��(One method for each command listed in Section � REF _Ref285106188 \n �5.8�.)���CanCopy As Boolean [r]�query: can enable Copy tool?��CanCut As Boolean [r]�query: can enable Cut tool?��CanDelete As Boolean [r]�query: can enable Delete tool?��CanPaste As Boolean [r]�query: can enable Paste tool?��Boxes And Sockets

Method/Property [r=read, w=write]�Description��GhostBoxPosition As Point [r/w]�location of ghost-box��GhostBoxSelectionOffset As Offset [r/w]�offset of ghost-box-selection from original position��GhostSocketPosition As BoxSocketPos [r/w]�location of ghost-socket��InEditSocketPositionsMode As Boolean [r]�query: in Edit Socket Positions mode?��Links And Bends

Method/Property [r=read, w=write]�Description��InEditLinkBendsMode As Boolean [r]�query: in Edit Link Bends mode?��MoveGhostLink(LinkBend b, Point pt)�move bend b of the ghost link to be at position pt��SelectLink(l)�All boxes are deselected, selected link (if any) is deselected, link l is selected.

Mouse UI (graph view only):  Left-down on l.��

Persistent Modes (BoxNetGraphView)

These modes persist even while the mouse is not being dragged:

Mode�Description��allow-edit-bends�Link bends can be added/deleted.  (Outside this mode, dragging on link bends moves them instead.)

Mouse UI:  Left-double-click on any link.��allow-move-socket�In this mode, left-down in a socket begins move-socket mode.  Otherwise, left-down in an unoccupied socked begins insert-link mode, and left-down in an occupied socket begins move-link mode.��insert-box(box-class)�A ghost box b of class box-class is created and displayed (via ghost-box mode), and dragged until the user either left-clicks (causing the location of b to change to the location of the ghost, and an insert-box command to get executed) or hits Esc (causing b to be destroyed). ��

Transient Mouse-Initiated Modes (BoxNetGraphView)

The following modes are initiated by pressing the left mouse button, and generally remain active until the mouse button is released.  These modes can be cancelled by hitting the Esc key, in which case no action is taken (or the cancel behavior is as specified for that mode).  To indicate that the action is cancellable, and to speed up display, “ghost” (xor’d) versions of a clicked-on UI element (box, socket, link, etc.) is generally manipulated while the mouse is dragged, until mouse-up (at which time the editing operation either commits or aborts, depending on circumstances).

General

Mode�Description��select-rectangle(pt)�The user is drawing an xor’d rectangle around a collection of boxes, from point pt to the current mouse location.  On mouse-up, all boxes that intersect the rectangle in any way are selected.

Mouse UI:  Left-down at point pt outside any box or link.��Boxes And Sockets

Mode�Description��move-box-selection(b)�The user is dragging a ghost copy of the box selection.

Mouse UI:  Left-down on a box–see move-box-selection-pending mode.��move-box-selection-pending(b)�While in this mode, if the user waits long enough, or drags the mouse far enough, the user enters move-box-selection mode.  If not (i.e. if the user releases the mouse button quickly, without dragging far) then if the user shift-clicked on b then the b is deselected.

Mouse UI:  Left-down on box b.��move-socket(s)�A ghost copy of socket s (and its connected link, if any) is dragged around the perimeter of the s’s box.  (see ghost-socket and ghost-link modes.)  If the user drags off the permiter, the ghost socket “snaps” back to its original position, until the mouse re-enters the permiter.  On mouse-up, s moves to the position of the ghost socket.

Mouse UI:  Left-down on s while in allow-move-socket mode.��

Links And Bends

Mode�Description��insert-bend(l, pt)�Let the user insert a new bend in link l at the point in l closest to pt.  Execute lGhost = l.Clone(), bGhost = new Bend, lGhost.InsertBend(bGhost, pt), begin move-ghost-bend(l, lGhost, bGhost).

Mouse UI:  Left-down on or near l while in allow-edit-bends mode.��insert-link(s)�The user is “drawing” a link from unoccupied socket s to another empty socket.  Execute lGhost = new BoxLink, begin ghost-link(lGhost).  If mouse-up happens anywhere except an empty socket, the mode is cancelled with no action taken, and lGhost is destroyed.  Otherwise lGhost is linked from s to the second socket.

Mouse UI:  Left-down in s and drag while not in allow-move-socket mode.��move-bend(l, b)�Bend b on link l is dragged to a new position.  Execute lGhost = l.Clone, bGhost = where b is on lGhost, begin move-ghost-bend(l, lGhost, bGhost).

Mouse UI: Left-down on b while not in allow-edit-bends mode.  Also called from insert-bed mode.��move-link(l, s)�A ghost copy of the end of link l that’s in socket s is dragged to a new socket.  If mouse-up happens anywhere except an empty socket, the mode is cancelled with no action taken.

Mouse UI:  Left-down on an occupied s (which contains one end of l) while not in allow-move-socket mode.��Transient “Utility Modes” (BoxNetGraphView)

The following are “utility modes”, enabled by other modes:

Boxes And Sockets

Mode�Description��ghost-box(bGhost)�Box bGhost (which is not currently contained in the BoxNet data object) is displayed as a “ghost”.��ghost-box-selection�There is a ghost copy of the box selection, including all links connected to selected boxes.  The ghost selection offset by some offset from the original selection, and is the same size and shape as the original selection except that any link between a selected and an unselected box is shown in the ghost selection as still connected to the unselected box.  Used by move-box-selection mode.  See MoveGhostBoxSelection().��ghost-socket(sGhost)�Socket sGhost (which is not currently contained in any box, i.e. no box points to it, though it may point to a parent box) is displayed as a “ghost”.��socket-hilited(s)�Socket s is shown “highlighted”.  Used by insert-link, move-link, and move-socket modes, to provide visual feedback.��Links And Bends

Mode�Description��ghost-link(lGhost)�Link lGhost (which is not currently contained in the BoxNet data object, nor do any sockets point to it, though it may point to head and tail sockets) is displayed as a “ghost”.��move-ghost-bend(l, lGhost, bGhost)�Move bend bGhost on lGhost while the user is left-dragging.  On commit (left-up), boxnet.ReplaceLink(l, lGhost).  On abort (Esc), lGhost.Release.��

Commands (BoxNetGraphView)

Standard Clipboard

These are standard IGOR commands.

Command�Description��copy-selection�Copy whatever is selected to the clipboard, if possible.  See also IBoxNetGraphView::CanCopy.��cut-selection�Cut whatever is selected to the clipboard, if possible.  See also IBoxNetGraphView::CanCut.��delete-selection�Delete whatever is selected, if possible.  See also IBoxNetGraphView::CanDelete.��paste-selection�Paste whatever is on the clipboard, if possible.  See also IBoxNetGraphView::CanPaste.��Links

Command�Description��delete-selected-link�Delete the selected link using the delete-link command.��

Tools (BoxNetGraphView)

Menu: Item�Toolbar Tool�Kbd. Accel.�Commands; {How To Update UI}��(none)�(none)�Tab�tab-to-next-box��Edit: Copy���Ctrl+C, Ctrl+Ins�copy-selection; {CanCopy}��Edit: Cut���Ctrl+X, Shift+Del�cut-selection; {CanCut}��Edit: Delete�(none)�Del�delete-selection; {CanDelete}��Edit: Edit Link Bends�TBD�TBD�begin allow-edit-bends; {InEditLinkBendsMode}��Edit: Edit Socket Positions�TBD�TBD�begin allow-move-socket; {InEditSocketPositionsMode}��Edit: Paste���Ctrl+V, Shift+Ins�paste-selection; {CanPaste}��Insert: box-class�see�box-class�see�box-class�b=box-class.NewBox(), begin insert-box(b).��

Clipboard Formats (BoxNetGraphView)

BoxNetGraphView’s IDataObject interface supports the following clipboard formats:

Clipboard Format�Description��(data object formats)�(all formats implemented by BoxNet data object)��CF_METAFILEPICT�Metafile rendition of graph view (similar to � REF _Ref284568173 \* MERGEFORMAT �Figure 1�).��

BoxNetListView Object

A BoxNetListView object is a view object which represents a “list of boxes and sockets” view of a BoxNet data object (such as a SimpleBoxNet object).



List View Visual Appearance

A BoxNetListView object displays a BoxNet as a list of boxes and sockets, as shown in � REF _Ref284588419 \* MERGEFORMAT �Figure 10�.

� EMBED Word.Picture.6  ���

Figure � SEQ Figure \* ARABIC �10�.  BoxNet list view

(This box list view corresponds to the same data object shown in � REF _Ref284568173 \* MERGEFORMAT �Figure 1�.)  The list is ordered alphabetically, first by box label and then by socket label.  Each socket shows which socket of which box (if any) it’s connected to.

Note that box labels don’t need to be unique; if  two boxes have the same label, the box list view would display with with “#1”, “#2”, etc. appended, as shown in � REF _Ref284634585 \* MERGEFORMAT �Figure 11� (which shows a box graph view and a corresponding box list view).

� EMBED Word.Picture.6  ���

Figure � SEQ Figure \* ARABIC �11�.  Displaying duplicate box labels in BoxNet list view



State Information (BoxNetListView)

A BoxNetListView object maintains the following state information:

Modes listed in Section � REF _Ref285108320 \n �6.5�.



Implemented Interfaces (BoxNetListView)

Interface�Implementation Information��IBoxNetListView�(Standard implementation.)��IDataObject�See Section � REF _Ref285430345 \n �6.8�.��IDispatch�Methods and properties from IBoxNetListView, plus those of the BoxNet data object.��IEditViewObject�(Standard implementation.)��IKeyboard�(Standard implementation.)��IMouse�(Standard implementation.)��IPersistStorage�(Standard implementation.)��IViewObject�(Standard implementation.)��

IBoxNetListView Interface

IBoxNetListView contains methods and properties which are specific to the BoxNetListView object and which are exposed via IDispatch.

General

Method/Property [r=read, w=write]�Description��(One method for each command listed in Section � REF _Ref285108586 \n �6.6�.)���Boolean IsOneBoxSelected�query: is exactly one box selected?��TODO���Clipboard

Method/Property [r=read, w=write]�Description��Boolean CanCopy�query: can enable Copy tool?��Boolean CanCut�query: can enable Cut tool?��Boolean CanDelete�query: can enable Delete tool?��Boolean CanPaste�query: can enable Paste tool?��

Modes (BoxNetListView)

Mode�Description��(none)���TODO���

Commands (BoxNetListView)

Standard Clipboard

These are standard IGOR commands.

Command�Description��copy-selection�Copy whatever is selected to the clipboard, if possible.  See also IBoxNetListView::CanCopy.��cut-selection�Cut whatever is selected to the clipboard, if possible.  See also IBoxNetListView::CanCut.��delete-selection�Delete whatever is selected, if possible.  See also IBoxNetListView::CanDelete.��paste-selection�Paste whatever is on the clipboard, if possible.  See also IBoxNetListView::CanPaste.��

Tools (BoxNetListView)

Menu: Item�Toolbar Tool�Kbd. Accel.�Commands; {How To Update UI}��Edit: Copy���Ctrl+C, Ctrl+Ins�copy-selection; {CanCopy}��Edit: Cut���Ctrl+X, Shift+Del�cut-selection; {CanCut}��Edit: Delete�(none)�Del�delete-selection; {CanDelete}��Edit: Paste���Ctrl+V, Shift+Ins�paste-selection; {CanPaste}��

Clipboard Formats (BoxNetListView)

BoxNetListView’s IDataObject interface supports the following clipboard formats:

Clipboard Format�Description��(data object formats)�(all formats implemented by BoxNet data object)��

Box Abstract Class

A “box” is an object that implements IBox.  Conceptually, a box is an object contained in a box network.



IBox State Information

A box is contractually obligated to maintain the following information:

a box label (any string, defined by the box implementation),

a list of socket objects, each of which supports IBoxSocket.



Implemented Interfaces (Box)

Any box object needs to implement the following interfaces:

Interface�Implementation Information��IBox�(Standard implementation.)��IDispatch�At a minimum, support methods and properties from IBox.��IPersistStorage�(Standard implementation.)��

IBox Interface

IBox is defined as follows.  IBox is accessible from IDispatch.

Method/Property [r=read, w=write]�Description��(One method for each command listed in Section � REF _Ref285335050 \n �7.4�.)���enumerate sockets,���etc.���Label As String [r/w]�box label��NOT SetLabel, since boxes don’t *have* to be able to be given a label (see ISimpleBox -- it does SetLabel)���TODO���

Commands (Box)

Command�Description��move-socket(s, pos)�Move socket s to position pos on the perimeter of its box.

UI:  See move-socket mode.��TODO���

SimpleBox Object

The SimpleBox object is a simple box implementation (supporting IBox).  SimpleBox simply contains a box label and an arbitrary number of labelled sockets—there is no other semantic meaning.  SimpleBox can be:

used as-is, with BoxNetXXX objects, to create simple “flowcharts” which can be displayed but which don’t do anything else;

subclassed, used with subclassed implementation of BoxNetXXX objects, to create box network applications (such as a filter sheet with audio filters).



State Information (SimpleBox)

A SimpleBox maintains the following state information:

See Section � REF _Ref285428702 \n �2.1�.



Implemented Interfaces (SimpleBox)

Interface�Implementation Information��IBox�(Standard implementation.)��IDispatch�Methods and properties from IBox and ISimpleBox.��ISimpleBox�(Standard implementation.)��IPersistStorage�(Standard implementation.)��

ISimpleBox Interface

ISimpleBox contains methods and properties which are specific to the SimpleBox object and which are exposed via IDispatch.

Method/Property [r=read, w=write]�Description��(One method for each command listed in Section � REF _Ref285108651 \n �8.5�.)���BoxLabel As String [r/w]���enumerate sockets -- must be callable from VBA too���NewBox() As Box�(Class factory command)  Create a new box.��TODO���

Modes (SimpleBox)

Mode�Description��edit-box-attributes�Displays a dialog box to let user change the box label and other attributes of the box.  If user selects OK, execute change-box-attributes(b, new-attributes).

Mouse UI:  Left-double-click inside b.��insert-socket�TODO��TODO���

Commands (SimpleBox)

Command�Description��change-box-attributes(a)�Change attributes of box to a.��TODO���

Tools (SimpleBox)

Menu: Item�Toolbar Tool�Kbd. Accel.�Commands; {How To Update UI}��Edit: Box Properties...�TBD�Alt+Enter�copy-selection; {CanCopy}��TODO�����

BoxLink Object

A BoxLink is an object that represents a link between two boxes in a box network.



State Information (BoxLink)

A BoxLink maintains the following information:

an IBoxSocket pointer to the socket that the head of the link connects to;

an IBoxSocket pointer to the socket that the tail of the link connects to;

a list of Point values indicating the location of each bend in the link.



Implemented Interfaces (BoxLink)

Interface�Implementation Information��IBoxLink�(Standard implementation.)��IDispatch�Methods and properties from IBoxLink.��IPersistStorage�(Standard implementation.)��

IBoxLink Interface

Method/Property [r=read, w=write]�Description��Clone() As BoxLink�return a copy of link��enumerate bends, etc.���InsertBend(LinkBend b, Point pt)�insert bend b into the link at the point closest to pt��NewLink(BoxSocket h, BoxSocket t) As BoxLink�(Class factory command)  Create a new link with no bends, with head pointing to socket h and tail pointing to socket t.��TODO���

Commands (BoxLink)

Command�Description��delete-bend(b)�Delete bend b.��new-bend(pt)�A new bend is inserted at the point on the link closest to point pt.��TODO���

BoxSocket Object

A BoxSocket represents a point on a box that a link can be connected to.



State Information (BoxSocket)

A BoxSocket maintains the following information:

a socket label (any string, defined by the socket implementation);

a socket position of type BoxSocketPos;

an IBox pointer to the box that contains the socket;

an IBoxLink pointer to the link (if any) connected to the socket.



Implemented Interfaces (BoxSocket)

Interface�Implementation Information��TODO���

IBoxSocket Interface

IBoxSocket is defined as follows.  IBoxSocket is accessible from IDispatch.

Method/Property [r=read, w=write]�Description��SocketLabel As String [r/w]�socket label��SocketPos As BoxSocketPos [r/w]�socket position��

Commands (BoxSocket)

Command�Description��TODO���

BoxSocketPos Object, BoxEdge Type

A value class BoxSocketPos object represents the position of a box socket “tab” along the perimeter of a box.  (A box tab is the graphical representation of a box network socket.)  The position is represented as a fraction of the length of the edge, so that resizing the box will retain the tab’s relative position.  A BoxEdge is an enumerated type which labels each of the four edges of a box.



IBoxSocketPos Interface, State Information

IBoxSocketPos is defined as follows.  IBoxSocketPos is accessible from IDispatch.

Method/Property [r=read, w=write]�Description��Edge As BoxEdge [r/w]�Which edge contains the socket tab.��Extent As Single[r/w]�The location of the socket tab along the edge specified by Edge.  This is a floating-point fractional value: 0.0 means left/top, 1.0 means right/bottom.��

BoxEdge Enumerated Type

BoxEdge enumerated type values are as follows.

Value�Description��BottomEdge�Box socket tab is on the bottom edge of box.��LeftEdge�Box socket tab is on the left edge of box.��RightEdge�Box socket tab is on the right edge of box.��TopEdge�Box socket tab is on the top edge of box.��

BoxNet Collection And Enumeration Objects

The BoxNet architecture defines several IDispatch-enabled collection and enumeration object classes which are useful for navigating BoxNet object graphs.  These classes are summarized in the following table:

Base Object�Collection�Enumerator�Item() Parameter��box-class�Boxes�EnumBoxes�box name��BoxSocket�BoxSockets�EnumBoxSockets�socket label��BoxLink�BoxLinks�EnumBoxLinks�index��The “Base Object” column shows the object that’s contained in the collection.  The “Collection” column gives the name of the collection class.  The “Enumerator” column gives the name of the enumerator class (which implements IEnumVariant); an object of this class is created when the _NewEnum() method is called on the correpsonding collection object.  The “Item() Parameter” specifies what’s given as the parameter of the Item() method of the corresponding collection.



Common Objects: Point, Size, Offset, Rect

This document assumes the existence of these object classes:

Class�Properties (each of type “Long”)��Point�X, Y��Size�CX, CY��Offset�DY, DY��Rect�Left, Top, Right, Bottom��





�
 
See \\sierra\high\cat\catobj.doc for a definition of the angle-brackets notation.






	



� STYLEREF "Heading 1" \n \* MERGEFORMAT�
1
�.  � STYLEREF "Heading 1" \* MERGEFORMAT�
Introduction
�	Page �page�
5
� of �numpages�25�	�filename�BOXNET.DOC�










