Functionality:

This tool has two basic interfaces: an interactive profiler (Profiler.exe) and a scripted version (Scripter.exe).

The interactive version has the following functionality:

New
- creates a new test in the list for a user to modify. The type of the test is defined at compile (in _Profiler.cpp as NewTestType) to be a PrimativeTest

Delete
- deletes the currently selected test from the list.

Load
- loads a previously saved test, using the autoload feature (i.e. the type of the test is automatically detected.)

Save
– allows user to save the current test as a .TST file for later use.

Rename
- change the name of the current test

Configure
- start the test-dependant property sheet to allow configuring of various test conditions, such as lighting, texturing, size of test window, duration, etc.

Run
- starts the current test

Abort
- quits the currently running test

Quit
- exits the program

The script version accepts two command-line parameters. The first is the name of the input script file; the second is the name of the output file. If either parameter is skipped, stdin or stdout is used instead.

The format for the script file is as follows:

· All text on a line after the # character is ignored.

· Blank lines are ignored.

· All white space is treated equally.

· Lines may be continued after a return by using the \ character at the end of the line.

· The first line should contain only a number. This number specifies how many tests are contained in the script. If this number is less than the number of tests actually specified in the script, only this many tests are run. If this number is too high, an “Unexpected End of File” error will be reported.

· All following lines are tests. Each test has the following syntax:

· <test file> <additional data>

· <test file> is the name of the .TST file, as created in the interactive version. If the file name includes spaces, it may be enclosed in double quotes (“).

· <additional data> is a test specific string, which gets passed on to the test, and interpreted by it. Currently, none of the test types accept any additional data. (this parameter is silently ignored).

Data Structures: (functions)

The basic test object is a SkeletonTest type. This type defines several virtual functions, which should or may be redefined by other test types. It also defines several other functions, which should be called in the constructor of inherited types. Functions of interest are:

virtual void cnfgfunct() – the interactive configuration. Generally all tests will use the base class (SkeletonTest) function, which creates and displays a property sheet.

virtual void initfunct(GLsizei w, GLsizei h) – set up any state conditions, this function gets called once each time the test is run.

virtual void idlefunct() – if the test does any animation, this function should change the appropriate variables. It gets called once before each draw.

virtual void rendfunct() – this function does the rendering.

virtual void destfunction() – gets called when destroying the window, should do any necessary cleanup.

virtual void ReadExtraData(char *) – interpret any extra data that gets passed in from the script.

virtual int Save(HANDLE hFile) – save any data into the file. Each test is responsible for first calling parent::Save(hFile). The return value is the amount of data written, on success, or a negative number on failure.

virtual int Load(HANDLE hFile) – load any data from the file, pretty much the same as Save().

The following functions should be called in the constructor, to aid in autoload:

void SetThisType(const char *szType) – set the name of this test type.

void SetThisVersion(const char *szVer) – set the version of this test.

void AddPropertyPages(int i, PROPSHEETPAGE *pNewPSpages) – adds additional property sheets to the dialog box created by cnfgfunct(). i is the size of the array of new pages pointed to by pNewPSpages.

Data Structures: (types)

As previously stated, all tests must inherit the base class type SkeletonTest. This test defines certain generic data about the test, such as the size of the window to be created, and the type of buffers to be created (how many bits per pixel, etc).
The next most general type, which all tests that are like to be of much use should inherit is the HugeTest type, as defined in the files buffers.cpp, fog.cpp, lighting.cpp, raster.cpp, texture.cpp, UI_huge.cpp and HugeTest.cpp. This test type adds to the configuration property sheet, and to initfunct() the ability to set most of the GL variables, including buffering information (clearing values, which buffers get cleared, etc), fogging, lighting, rasterization information (point, line & polygon antialiasing, culling, stippling, quality, etc) and texturing (including the ability to specify any .bmp file as a texture map file).

There are currently two test types based on the HugeTest type: TeapotTest (defined in teapot.cpp) and PrimativeTest (defined in PrimTest.cpp, using pointlist.cpp). TeapotTest uses the aux library to draw a teapot, which it rotates. This test is good for experimenting with lighting and with texturing. PrimativeTest will draw several OpenGL primitives (triangles, triangle strips, polygons, points, lines, etc). It also adds an additional property sheet to the configuration dialog box, to allow the user to specify what kind of primitives to draw.

There are also several sample additional tests: TeapotLightTest (tptlght.cpp) and TeapotTextureTest (tpttxtr.cpp), based on TeapotTest; LargeTriangle2 (large2.cpp) and SmallTriangle2 (small2.cpp), based on PrimativeTest; LargeTriangle (large1.cpp), SmallTriangle (small1.cpp) and SquareTest (square.cpp), all based on SkeletonTest.

