Winsock Interface for PGM

Shirish Koti

Anthony Jones

Mohammad Shabbir Alam

Introduction

This document looks at PGM, the reliable multicast transport, from an application’s perspective, and describes the application interface to PGM. No attempt is made to explain the details of the PGM protocol itself. Rather, the document attempts to outline how an application can interact with the underlying transport to control or alter the functioning of the transport, and how the transport can interact with the application to notify the application of various conditions experienced by the transport.

The reader is expected to be familiar with winsock, network protocols and related topics. Details of the PGM protocol are available in the Internet-draft “PGM Reliable Transport Protocol Specification”.

Overview

PGM (Pragmatic General Multicast) is a reliable multicast protocol that provides a scalable and reliable way of transmitting multicast data in such way that the receiver can detect a loss and request retransmission of the lost data or, in case of unrecoverable loss, can notify the application of that condition. PGM does not support acknowledged delivery. It is a receiver-reliable protocol (i.e. receiver is responsible for making sure that all the data was received), and not a sender-reliable protocol. It caters to applications that require duplicate-free multicast data delivery from multiple sources to multiple receivers. In applications where multiple sources exist, PGM does not support guaranteed ordering of packets from the multiple senders.

Setting up a Session

Establishing a PGM session is very similar to setting up a TCP session except that the client/server semantics are backwards. The server (or PGM sender) connects to a multicast group while the client (or PGM receiver) waits to accept a connection.

PGM Sender

The PGM sender simply creates a PGM socket, binds to INADDR_ANY, and connects to the multicast group address on which the communication is to take place. No formal session handshaking is performed with any clients – the connect is similar to a UDP connect, it associates an endpoint address (the multicast group) with the socket. Once this is done, data may be sent on the socket. Note that attempting to receive data on a sender socket is not allowed, an error will be returned if attempted.

When a sender creates a PGM socket and connects it to a multicast address, a PGM session is created. A reliable multicast session is defined by a combination of the globally unique identifier and the source port. Globally unique identifier is generated by the transport. In current thinking, application should not care about the identifier used in PGM packets. As such, application cannot control the identifier used during a session. Source port also is a transport-specific entity and is transparent to the application. Source port is chosen by the transport, and application has no control over which source port is used.

PGM Receiver

The PGM receiver also creates a PGM socket; however, this socket should be bound to the multicast group that the sender is using (in its connect call). Once the socket is bound, the listen API is called to put the socket in listening mode. This call returns when PGM detects a session on that multicast group and port. Thereafter, the application calls accept upon which a new socket handle is returned corresponding to that session. Note that only fresh PGM data (ODATA) triggers the acceptance of a new session. Thus, other PGM traffic (such as SPMs, RDATA) may be received by the transport, but they will not trigger the accept.

Once a session is accepted, the returned socket handle is used for receiving data. Note that it is illegal to send data on an accepted socket and an error will be returned if attempted.

Data Modes

When creating a PGM session, applications have a choice of how the data is to be delivered. If the requirements are such that discrete messages need to be sent and received then a message mode socket is created. On the other hand, if an application is simply streaming data to its receivers (i.e. video or voice) then stream mode is required. This data mode is specified when the socket is created as the socket type parameter. For message mode the socket type is SOCK_RDM while for stream mode the type is SOCK_STREAM.

For example, in message mode if the sender makes three calls to WSASend each with a 100-byte buffer then this appears on the wire as three discrete PGM packets. On the receiver side, each call to WSARecv will return only 100 bytes even if a much larger receive buffer is provided. However, in the case of stream sockets, those three 100 byte sends could be coalesced into less than three physical packets on the wire (or coalesced into one blob of data on the receiver side). This means that when the receiver calls a Winsock receive function, any amount of data that has been received by the PGM transport may be returned to the application without regard to how the data was physically sent or received.

Sender Options

For the sender, there are certain defaults that affect how fast data is transmitted as well as how long the data is buffered in the event of packet loss (such that the client may request a retransmission).

Window Size and Transmission Rate

This option provides the application with a method to control the rate at which the byte-stream will be transmitted as well as the amount of data the transport buffers for retransmission. The transmission rate will be determined by the combined outflow per second of the original data packets (ODATA), retransmitted data packets (RDATA) and transport-specific bookkeeping packets (SPMs). If the application does not specify the rate limit, the transport will default to 56 Kbits/sec. This is because a receiver can be located on some far off network with a slow link rate. If the sending rate were too high, this receiver would never be able to keep up.

The transport buffers the data for retransmission in a file, so the maximum window size is limited by the amount of disk space that is usable by the transport. The default window size is 10MB. It is possible for a send/message size to exceed the Window size, and even the buffer size, but the data stream will remain uninterrupted and the send will remain pended until the all the data has been sent out.

Please note that the maximum buffer space is limited by the maximum number of packets that can be held in the window at any time, which is 2^31 – 1.
These parameters are set simultaneously as one option (RM_RATE_WINDOW_SIZE) since the Window Size and Transmission Rate together determine the resources to be allocated on the system. For example, a high transmission rate, combined with a large window size (in seconds) will require greater buffer space on the Sender’s machine. Thus, the user can set this option as a triple of 3 parameters (of which the user can specify either 1, 2 or all 3):

a) TransmissionRate (Kbits/Sec).

b) WindowSizeBytes (window size in bytes).

c) WindowSizeMSecs (window size in millisecs).

When specifying the parameters, the following relationship must always hold:

TransmissionRate (Kbits/sec) == (WindowSizeBytes / WindowSizeMSecs) * 8.

Thus, it should be noted that of the 3 parameters (rate limit, window size and window advance time), any two parameters will determine the value for the third parameter.

If the user specifies only one of the above parameters, then the driver will determine the other two for the most optimal configuration.

The application is more likely to be aware of the useful life span of the data it sends and the network topology of how its receivers are distributed, so it is expected that the application can choose values for two of the three parameters to suit its need. For example, a video-distribution application can decide that if a receiver does not receive data within 10 seconds, then the data is too old anyway. In this case, the application would set the window advance time to 10 seconds. Also, if the application is aware, for example, that all its receivers are on a high-bandwidth LAN, then it can set the rate limit to a higher value such as 1Mb/second.

Note: The default window size is 10MB (10,000,000 bytes) with a default rate of 56 Kbits/sec which means the window size in time is 1428 seconds.

Window Advance Rate

This option (RM_SENDER_WINDOW_ADV_RATE) allows the application to specify the increment at which the Sender’s Window should be advanced. This is specified as a non-zero percentage value of the window size, the default being 15%, and the maximum rate being 25%. However, if the sender has some repair data pending which falls in the space of the increment window, then the window will be advanced partially as each repair packet in the window is sent out.

FEC

The current implementation of PGM supports FEC (Forward Error Correction). Setting this option (RM_USE_FEC) on the Sender allows the sender to send repair packets as parity packets instead of regular data packets. Doing so minimizes the number of repair packets sent to repair different sequences lost by multiple receivers from within the same data group. The decision to use FEC needs only to be set on the sender end. The receiver will automatically follow whatever policy has been determined by the sender.

For a detailed discussion on how FEC works, please refer to the internet draft for Pgm.
Winsock Interface

This section details the specific Winsock calls necessary to create a PGM sender and receiver as well as describe the various options that may be set to control the behavior of a PGM session.

Setting up a Session (Sender)

Creating a PGM sender is very simple. The following code illustrates how to do this. A PGM socket is created, bound locally, and is connected to the desired multicast address on which the session will communicate.

SOCKET

s;

SOCKADDR_IN

salocal, sasession;

int

dwSessionPort;

s = socket (AF_INET, SOCK_RDM, IPPROTO_RM);

salocal.sin_family = AF_INET;

salocal.sin_port = htons (0);
// Port is ignored here
salocal.sin_addr.s_addr = htonl (INADDR_ANY);

bind (s, (SOCKADDR *)&salocal, sizeof(salocal);

//

// Set all relevant sender socket options here

//

//

// Now, connect …

// Setting the connection port (dwSessionPort) has relevance, and
// can be used to multiplex multiple sessions to the same
// multicast group address over different ports
//

dwSessionPort = 0;

sasession.sin_family = AF_INET;

sasession.sin_port = ntohs (dwSessionPort);
sasession.sin_addr.s_addr = inet_addr (“234.5.6.7”);

connect (s, (SOCKADDR *)&sasession, sizeof(sasession));

//

// We’re now ready to send data!

//
Accepting Session (Receiver)

Setting up the PGM receiver is a bit more complicated but is very similar to accepting a TCP session. The only difference is that the listening socket is bound to the multicast address on which the PGM session will communicate. In the above PGM sender example, the socket is connected to the multicast address 234.5.6.7. For a client to communicate with that server, it must be bound to the same multicast address. The following code illustrates how to do this.

SOCKET

s,

sclient;

SOCKADDR_IN

salocal,

sasession;

int

sasessionsz, dwSessionPort;

s = socket (AF_INET, SOCK_RDM, IPPROTO_RM);

//

// The bind port (dwSessionPort) specified should match that
// which the sender specified in the connect call
//

dwSessionPort = 0;

salocal.sin_family = AF_INET;

salocal.sin_port = htons (dwSessionPort);

salocal.sin_addr.s_addr = inet_addr (“234.5.6.7”);

bind (s, (SOCKADDR *)&salocal, sizeof(salocal))

//

// Set all relevant receiver socket options here

//

listen (s, 10);

sasessionsz = sizeof(sasession);

sclient = accept (s, (SOCKADDR *)&sasession, &sasessionsz);

//

// accept will return the client socket and we are now ready

// to receive data on the new socket!

//

Just like TCP, a new socket will be returned from the accept call which corresponds to the newly accepted PGM session. It is the new socket that will be used to receive data on the session. If another PGM sender/session were established on the same multicast group (234.5.6.7), another call to accept would return another socket for this new session which is totally independent of the first.

Since no formal handshaking is performed by the PGM protocol (because the sender has no idea about its clients), it is important to mention exactly what triggers a new session and therefore the completion of the accept call. Only original, or fresh PGM Data packets (ODATA) destined to the same multicast address and port number that the client is listening on will trigger the acceptance of a new PGM session.

Sending Data

Once a session is created, data may be sent at any time using the Winsock send functions (send, sendto, WSASend, and WSASendTo). Additionally, because Winsock handles are file system handles, the Win32 file I/O API WriteFile as well as the CRT functions may be used. A send call might look like:

LONG

error;

:

error = send (s, pSendBuffer, SendLength, 0);

if (error == SOCKET_ERROR)

{

 fprintf (stderr, "send() failed: Error = %d\n",
 WSAGetLastError());

}

Under message mode, each call to a send function will result in a discrete message; however, sometimes this isn’t desirable. That is, an application might wish to send a 2MB message but wants to do so with multiple calls to send. In this case the sender may set the socket option RM_SET_MESSAGE_BOUNDARY to indicate the size of the message that will be following. This option will be discussed in detail later.

As noted in the window size section above, if the window is full then a new send from the application is not accepted until window has been advanced. Attempting to send on a non-blocking socket will fail with WSAEWOULDBLOCK while a blocking socket will block until the window advances to the point where the requested data may be buffered and sent. In the case of overlapped I/O, the operation simply will not complete until the window advances enough to accommodate the new data.

Receiving Data

Like the sender, any Winsock receive function (recv, recvfrom, WSARecv, and WSARecvFrom) as well as ReadFile and the CRT functions may be used to receive data on a PGM session. The transport will hand data up to the receiver as it arrives as long as it is in sequence. The transport guarantees that the data returned is contiguous and free of duplicates. A call to receive data might look like:

LONG

BytesRead;

:

BytesRead = recv (sockR, pTestBuffer, MaxBufferSize, 0);
if (BytesRead == 0)
{

 fprintf(stdout, "Session was terminated\n");

}

else if (BytesRead == SOCKET_ERROR)
{

 fprintf(stderr, "recv() failed: Error = %d\n",
WSAGetLastError());

}

With message mode sockets, the transport will indicate when a partial message is received. This is done either with the error WSAEMSGSIZE or by setting the MSG_PARTIAL flag upon return from the Winsock functions WSARecv and WSARecvFrom. When the last fragment of the full message is returned to the client, these errors/flags are not indicated.

When the session is terminated gracefully, the receive operation will fail with the error WSAEDISCON. When data loss occurs in the transport, PGM temporarily buffers the out-of-sequence packets and attempts to recover the lost data. If the data-loss is unrecoverable, the receive operation will fail with the error WSAECONNRESET, and the session is terminated. The session can get reset due to a variety of conditions such as:

1) The receiver, or the incoming connection speed is too slow to keep pace with the incoming data rate,
2) Excessive data loss, possibly due to transient network conditions, such as routing problems, network instability, etc.

3) Some unrecoverable error at the sender side,

4) Excessive resource utilization on the local machine, such as exceeding the maximum allowed internal buffer storage, or encountering an Out-of-Resources condition anywhere,
5) Data consistency check error,

6) Some failure in any other component that Pgm depends on, such as in TcpIp, or Winsock,
Both (1) and (2) could result in the receiver doing excessive buffering before either running out of resources, or ultimately falling out of the sender’s window.

Terminating Session (Sender and Receiver)

Either Sender or Receiver can stop sending/receiving data by calling closesocket.

The receiver will have to call closesocket on both the listening, and receiving sockets to prevent handle leaks.

Calling shutdown on the sender (before closesocket) ensures that all the data will be sent and the repair data maintained until the send window advances past the last data sequence (even if the application terminates and goes away).
Multihomed Scenarios

There are 2 modes of operation on multihomed machines:

1) The application does not specify any interface-specific information.

2) The application explicitly determines which interface(s) to send/receive on
Multihomed Sender

If the application has not specified any interfaces by the time the application calls connect, PGM will pick the first available interface to connect on. If no interface is available, then the connect request will fail.
If the application does specify an interface to connect on (RM_SET_SEND_IF), Pgm will attempt to bind to that interface in TcpIp. The request will fail if TcpIp fails the bind request. If the application sets this interface multiple times, only the last interface set successfully will be applicable.

In either of the cases above, Pgm will remember the interface set, and if that interface happens to go away, the session will get disconnected.

Multihomed Receiver

Here, in the scenario where the application has not specified which interface to listen on, Pgm will bind to a default interface. If no interface is available, the bind request will fail (since TpcIp does not allow its clients to listen for multicast traffic on loopback). **This behavior is subject to change.

In the case that the application does specify one or more interfaces to listen on (RM_ADD_RECEIVE_IF), Pgm will attempt to bind to the requested interface(s) in TcpIp. Any error returned by TpcIp will cause this request to fail. Unlike the sender case however, adding a receive interface multiple times will result in the listens being posted on all the successfully added interfaces. There is also an option (RM_DEL_RECEIVE_IF) which allows the application to stop listening on any interface.
If multiple listening interfaces have been specified, Pgm does not maintain state about them, relying on TcpIp for that. However, once a session is in progress, Pgm will track the incoming interface for that session, and if that interface happens to go away, it will disconnect the session. **This behavior is subject to change.
Winsock Options

The call to set any Pgm socket options should be similar to:
ULONG

OptionData;
// This structure is option-dependent

:
setsockopt (s,

IPPROTO_RM,

Socket_Option,

(char *) &OptionData,

sizeof (OptionData));

The type and contents of OptionData are dependent on the option being set. For all of the PGM socket options, the socket level is IPPROTO_RM.
Also, all options have to be set immediately following the bind call. The only exceptions here are RM_SET_MESSAGE_BOUNDARY, RM_SENDER_STATISTICS, and RM_RECEIVER_STATISTICS.

The following Winsock options are currently supported. Some of these options can be used with both the getsockopt and setsockopt APIs, whereas others may be limited to just one of these APIs.
RM_SET_SEND_IF (sender)

This option sets the sending interface. The argument is a ULONG that specifies the network-byte order IP address of the interface on which PGM data is sent. For example:

ULONG

if;

:
if = inet_addr(“157.59.132.112”);

setsockopt (s,
IPPROTO_RM,
RM_SET_SEND_IF,
(char *) &if,

sizeof (if));

RM_ADD_RECEIVE_IF (receiver)

By default, a listening socket is bound to the first local interface enumerated. This option allows the application to specify exactly which interfaces to listen on. The argument is a ULONG specifying the network byte order address of the interface to add. When this option is called for the first time on a given socket, the default interface is removed and the specified address is added as the receiving interface. An application can call this option multiple times in order to specify multiple listening interfaces. Note that the only way to obtain the same behavior of INADDR_ANY, each interface must be added separately.

ULONG

if;

:

if = inet_addr(“157.59.132.112”);

setsockopt (s,
IPPROTO_RM,
RM_ADD_RECEIVE_IF,
(char *) &if,

sizeof (if));

RM_DEL_RECEIVE_IF (receiver)

This option is the counterpart to RM_ADD_RECEIVE_IF. This option will remove the specified local interface as a listening interface. Again the parameter is a ULONG specifying the network byte order address of the interface to remove.

ULONG

if;

:

if = inet_addr(“157.59.132.112”);

setsockopt (s,
IPPROTO_RM,
RM_DEL_RECEIVE_IF,
(char *) &if,

sizeof (if));

RM_RATE_WINDOW_SIZE (sender)

This option allows the application to set rate limit, window advance time, and window size. This is done by supplying an RM_SEND_WINDOW structure which is defined as:

typedef struct _RM_SEND_WINDOW

{

ULONG
RateKbitsPerSec;

ULONG
WindowSizeInMSecs;

ULONG
WindowSizeInBytes;

} RM_SEND_WINDOW;

// --

RM_SEND_WINDOW

RmWindow;

:

//

// Set the transmission rate and window size

//

RmWindow.RateKbitsPerSec = 1000;

 // 1 Mbit/sec
RmWindow.WindowSizeInMSecs = 0;

RmWindow.WindowSizeInBytes = 50*1000*1000; // 50 Megs of data

Setsockopt (s,
IPPROTO_RM,
RM_RATE_WINDOW_SIZE,
(char *) &RmWindow,

sizeof (RmWindow));

RM_SEND_WINDOW_ADV_RATE (sender)

This option allows the application to set the percentage (as a ULONG value) of the window that the Trailing edge of the window will increment by at a time. The default percentage of the window to be advanced is 15%, while a maximum of 50% can be specified using this option.

ULONG

Rate;

:

Rate = 20;

// 20% window advance rate

Setsockopt (s,
IPPROTO_RM,
RM_SEND_WINDOW_ADV_RATE,
(char *) &Rate,

sizeof (Rate));

RM_LATEJOIN (sender)

When a client accepts a connection from a PGM sender, the sender may have already sent data on the session that the receiver has missed. By default, the receiver does not NAK any data within the send window that is prior to the sequence number of the first data to arrive. This option allows the sender to control how much data a receiver can request from the current send window. The argument to this call is a ULONG which specifies as a percentage of the window size the amount of data that may be requested at session acceptance. The maximum value is 75% (default is 0%). If the application had set this option earlier, and later wanted to diasable it, it can do so by resetting it to 0.

ULONG

LateJoinPercentage;

:

LateJoinPercentage = 30;
// 30% window for late joiners
Setsockopt (s,

IPPROTO_RM,

RM_LATEJOIN,

(char *) &LateJoinPercentage,

sizeof (LateJoinPercentage));

RM_USE_FEC (sender)

This option notifies the Sender that it should apply FEC techniques to send Repair data. There are 3 modes of using FEC:

a) Sending pro-active parity packets only,

b) Sending OnDemand parity packets only, or

c) Sending both Pro-active as well as OnDemand parity packets.

The specification for this option is provided in the following structure:

typedef struct _RM_FEC_INFO

{

 USHORT FECBlockSize;

 USHORT FECProActivePackets;

 UCHAR FECGroupSize;

 BOOLEAN fFECOnDemandParityEnabled;

} RM_FEC_INFO;

FECBlockSize is the maximum number of packets which can be sent for any group (i.e. original data + parity packets). It is set to 255 (maximum value) by default.

FECGroupSize determines the number of packets to be treated as 1 group for the purpose of computing parity packets. The group size always has to be a power of 2. If the network is lossy, it is recommended to keep the group size relatively small.
FECProActivePackets is the number of parity packets to be sent proactively with each group. Setting this option is recommended in situations where the network is dispersed and it is expensive to send Nak requests upstream.

fFECOnDemandParityEnabled determines if the Sender is enabled for sending parity repair packets or not. If set, receivers should only request parity repair packets.

RmFEC.FECBlockSize = 255;

 RmFEC.FECGroupSize = 8;
RmFEC.FECProActivePackets = 0;

// No pro-active

RmFEC.fFECOnDemandParityEnabled = TRUE;

setsockopt (s,
IPPROTO_RM,
RM_USE_FEC,
(char *) &RmFEC,
sizeof (RM_FEC_INFO));

Note: Either FECProActivePackets or the fFECOnDemandParityEnabled field should be non-zero, otherwise the call will fail.

RM_SET_MCAST_TTL (sender)

This option allows the sender to specify the TTL to be set on the MCast packets. If the application does not want the multicast data to go beyond a certain number of hops, it can specify the maximum number of hops applicable (as a ULONG) via this option (Max value = 255). The default value set is 255.
ULONG

MCastTTL;

:

MCastTTL = 1;

// Local subnet only

Setsockopt (s,

IPPROTO_RM,

RM_SET_MCAST_TTL,

(char *) &MCastTTL,

sizeof (MCastTTL));

RM_SET_MESSAGE_BOUNDARY (Sender)

This option allows the sender to specify the size of the next message to be sent. The argument is a simple ULONG value. This option is only meaningful to message mode (SOCK_RDM) sockets. This is also currently the only option that can be set while the session is in progress.
ULONG

NextMessageLength;

:

NextMessageLength = 10000;

// 10K bytes

Setsockopt (s,

IPPROTO_RM,

RM_SET_MCAST_TTL,

(char *) & NextMessageLength,

sizeof (NextMessageLength));

RM_SENDER_STATISTICS (sender)

This option allows the user to retrieve the statistics applicable to a sending session. The data retrieved is in the form of the following structure:

typedef struct _RM_SENDER_STATS

{

 ULONGLONG DataBytesSent; // data bytes sent so far

 ULONGLONG TotalBytesSent; // SPM, OData and RData bytes

 ULONGLONG NaksReceived; // NAKs received so far

 ULONGLONG NaksReceivedTooLate; // NAKs after window advanced

 ULONGLONG NumOutstandingNaks; // NAKs yet to be responded to

 ULONGLONG NumNaksAfterRData; // NAKs immediately after RData
 ULONGLONG RepairPacketsSent; // Repairs (RDATA) sent so far

 ULONGLONG BufferSpaceAvailable; // Space left in send buffer
 ULONGLONG TrailingEdgeSeqId; // Oldest Sequence Id in window

 ULONGLONG LeadingEdgeSeqId; // Newest Sequence Id in window

 ULONGLONG RateKBitsPerSecOverall; // Internally calculated

 ULONGLONG RateKBitsPerSecLast;//INTERNAL_RATE_CALCULATION_FREQUENCY

} RM_SENDER_STATS;
RM_RECEIVER_STATISTICS (Receiver)

This option allows the user to retrieve the statistics applicable to a receiving session. The data retrieved is in the form of the following structure:

typedef struct _RM_RECEIVER_STATS

{

 ULONGLONG NumODataPacketsReceived;// # OData sequences received

 ULONGLONG NumRDataPacketsReceived;// # RData sequences received

 ULONGLONG NumDuplicateDataPackets;// duplicate sequences received

 ULONGLONG DataBytesReceived; // # data bytes received so far

 ULONGLONG TotalBytesReceived; // SPM, OData and RData bytes

 ULONGLONG RateKBitsPerSecOverall; // Internally calculated

 ULONGLONG RateKBitsPerSecLast;//INTERNAL_RATE_CALCULATION_FREQUENCY

 ULONGLONG TrailingEdgeSeqId; // Oldest Sequence Id in window

 ULONGLONG LeadingEdgeSeqId; // Newest Sequence Id in window

 ULONGLONG AverageSequencesInWindow;

 ULONGLONG MinSequencesInWindow;

 ULONGLONG MaxSequencesInWindow;

 ULONGLONG FirstNakSequenceNumber; // # First Outstanding Nak

 ULONGLONG NumPendingNaks; // # Sequences awaiting Ncfs

 ULONGLONG NumOutstandingNaks; // # Sequences awaiting RData
 ULONGLONG NumDataPacketsBuffered; // # packets currently buffered

 ULONGLONG TotalSelectiveNaksSent; // # Selective NAKs sent so far

 ULONGLONG TotalParityNaksSent; // # Parity NAKs sent so far

} RM_RECEIVER_STATS;

Appendix A – Test sample

PAGE
6

