

�

NT 5.0

Network Management

SNMP Framework

snmp.doc

Windows NT 5.0 Design Team - Don Ryan

Version 2.2

Monday, October 21, 1996

Distribution: Microsoft Internal Distribution

© Copyright Microsoft Corporation, 1996. All Rights Reserved

Microsoft Confidential

Printed on �date \@ M/d/yy�
11
/
18
/
96
� at �time \@ "h:mm AM/PM"�
8
:
08

PM
�

Note: This documentation is an early release of the final product documentation. It is meant to accompany software that is still in development. Some of the information in this documentation may be inaccurate or may not be an accurate representation of the functionality of the final retail product. Microsoft assumes no responsibility for any damages that might occur either directly or indirectly from these inaccuracies.

�Table of Contents

� TOC \o "1-3" �1. Introduction	� GOTOBUTTON _Toc372981953 � PAGEREF _Toc372981953 �
5
��

2. Requirements	� GOTOBUTTON _Toc372981954 � PAGEREF _Toc372981954 �
5
��

2.1 SNMPv1 Support	� GOTOBUTTON _Toc372981955 � PAGEREF _Toc372981955 �
5
��

2.2 SNMPv2c Support	� GOTOBUTTON _Toc372981956 � PAGEREF _Toc372981956 �
5
��

2.3 AgentX Compatibility	� GOTOBUTTON _Toc372981957 � PAGEREF _Toc372981957 �
5
��

2.4 Subagent Development Support	� GOTOBUTTON _Toc372981958 � PAGEREF _Toc372981958 �
5
��

3. Block Diagram	� GOTOBUTTON _Toc372981959 � PAGEREF _Toc372981959 �
6
��

4. Terminology	� GOTOBUTTON _Toc372981960 � PAGEREF _Toc372981960 �
7
��

4.1 Agent	� GOTOBUTTON _Toc372981961 � PAGEREF _Toc372981961 �
7
��

4.2 Manager	� GOTOBUTTON _Toc372981962 � PAGEREF _Toc372981962 �
7
��

4.3 Object Identifier (OID)	� GOTOBUTTON _Toc372981963 � PAGEREF _Toc372981963 �
7
��

4.4 Management Information Base (MIB)	� GOTOBUTTON _Toc372981964 � PAGEREF _Toc372981964 �
7
��

4.5 Extensible Agent	� GOTOBUTTON _Toc372981965 � PAGEREF _Toc372981965 �
7
��

4.6 Supported View	� GOTOBUTTON _Toc372981966 � PAGEREF _Toc372981966 �
7
��

4.7 Subagent	� GOTOBUTTON _Toc372981967 � PAGEREF _Toc372981967 �
7
��

5. Overview	� GOTOBUTTON _Toc372981968 � PAGEREF _Toc372981968 �
8
��

5.1 Subagent Developer	� GOTOBUTTON _Toc372981969 � PAGEREF _Toc372981969 �
8
��

5.2 Extensible Agent	� GOTOBUTTON _Toc372981970 � PAGEREF _Toc372981970 �
8
��

5.3 Subagent Framework	� GOTOBUTTON _Toc372981971 � PAGEREF _Toc372981971 �
8
��

6. Subagent Provider Interface	� GOTOBUTTON _Toc372981972 � PAGEREF _Toc372981972 �
9
��

6.1 Data Structures	� GOTOBUTTON _Toc372981973 � PAGEREF _Toc372981973 �
9
��

6.1.1 SNMP_AGENTPROCTABLE	� GOTOBUTTON _Toc372981974 � PAGEREF _Toc372981974 �
9
��

6.1.2 SNMP_EXTENSIONPROCTABLE	� GOTOBUTTON _Toc372981975 � PAGEREF _Toc372981975 �
9
��

6.2 Subagent Entry Point	� GOTOBUTTON _Toc372981976 � PAGEREF _Toc372981976 �
10
��

6.2.1 SnmpExtensionStartup	� GOTOBUTTON _Toc372981977 � PAGEREF _Toc372981977 �
10
��

6.3 Agent Procedure Table	� GOTOBUTTON _Toc372981978 � PAGEREF _Toc372981978 �
10
��

6.3.1 SnmpAgtOpen	� GOTOBUTTON _Toc372981979 � PAGEREF _Toc372981979 �
10
��

6.3.2 SnmpAgtClose	� GOTOBUTTON _Toc372981980 � PAGEREF _Toc372981980 �
11
��

6.3.3 SnmpAgtRegister	� GOTOBUTTON _Toc372981981 � PAGEREF _Toc372981981 �
11
��

6.3.4 SnmpAgtUnregister	� GOTOBUTTON _Toc372981982 � PAGEREF _Toc372981982 �
12
��

6.3.5 SnmpAgtNotify	� GOTOBUTTON _Toc372981983 � PAGEREF _Toc372981983 �
13
��

6.3.6 SnmpAgtReserveIndex	� GOTOBUTTON _Toc372981984 � PAGEREF _Toc372981984 �
13
��

6.3.7 SnmpAgtUnreserveIndex	� GOTOBUTTON _Toc372981985 � PAGEREF _Toc372981985 �
13
��

6.3.8 SnmpAgtAddCaps	� GOTOBUTTON _Toc372981986 � PAGEREF _Toc372981986 �
14
��

6.3.9 SnmpAgtRemoveCaps	� GOTOBUTTON _Toc372981987 � PAGEREF _Toc372981987 �
14
��

6.4 Extension Procedure Table	� GOTOBUTTON _Toc372981988 � PAGEREF _Toc372981988 �
15
��

6.4.1 SnmpExtGet	� GOTOBUTTON _Toc372981989 � PAGEREF _Toc372981989 �
15
��

6.4.2 SnmpExtGetNext	� GOTOBUTTON _Toc372981990 � PAGEREF _Toc372981990 �
15
��

6.4.3 SnmpExtGetBulk	� GOTOBUTTON _Toc372981991 � PAGEREF _Toc372981991 �
16
��

6.4.4 SnmpExtTestSet	� GOTOBUTTON _Toc372981992 � PAGEREF _Toc372981992 �
16
��

6.4.5 SnmpExtCommitSet	� GOTOBUTTON _Toc372981993 � PAGEREF _Toc372981993 �
17
��

6.4.6 SnmpExtUndoSet	� GOTOBUTTON _Toc372981994 � PAGEREF _Toc372981994 �
17
��

6.4.7 SnmpExtCleanupSet	� GOTOBUTTON _Toc372981995 � PAGEREF _Toc372981995 �
18
��

6.4.8 SnmpExtShutdown	� GOTOBUTTON _Toc372981996 � PAGEREF _Toc372981996 �
19
��

7. Subagent Framework	� GOTOBUTTON _Toc372981997 � PAGEREF _Toc372981997 �
19
��

7.1 Data Structures	� GOTOBUTTON _Toc372981998 � PAGEREF _Toc372981998 �
19
��

7.1.1 MIB_REGION	� GOTOBUTTON _Toc372981999 � PAGEREF _Toc372981999 �
19
��

7.1.2 MIB_OBJECT	� GOTOBUTTON _Toc372982000 � PAGEREF _Toc372982000 �
20
��

7.1.3 MIB_PROPERTY	� GOTOBUTTON _Toc372982001 � PAGEREF _Toc372982001 �
21
��

7.1.4 MIB_TABLE	� GOTOBUTTON _Toc372982002 � PAGEREF _Toc372982002 �
21
��

7.1.5 MIB_RANGE	� GOTOBUTTON _Toc372982003 � PAGEREF _Toc372982003 �
21
��

7.1.6 MIB_INSTRUMENTATION	� GOTOBUTTON _Toc372982004 � PAGEREF _Toc372982004 �
22
��

7.1.7 MIB_REQUEST	� GOTOBUTTON _Toc372982005 � PAGEREF _Toc372982005 �
22
��

7.2 Instrumentation Callbacks	� GOTOBUTTON _Toc372982006 � PAGEREF _Toc372982006 �
23
��

7.2.1 MIB_CALLBACK	� GOTOBUTTON _Toc372982007 � PAGEREF _Toc372982007 �
23
��

7.2.2 MIB_ACTION_GET	� GOTOBUTTON _Toc372982008 � PAGEREF _Toc372982008 �
23
��

7.2.3 MIB_ACTION_GETNEXT	� GOTOBUTTON _Toc372982009 � PAGEREF _Toc372982009 �
23
��

7.2.4 MIB_ACTION_TEST	� GOTOBUTTON _Toc372982010 � PAGEREF _Toc372982010 �
24
��

7.2.5 MIB_ACTION_COMMIT	� GOTOBUTTON _Toc372982011 � PAGEREF _Toc372982011 �
24
��

7.2.6 MIB_ACTION_UNDO	� GOTOBUTTON _Toc372982012 � PAGEREF _Toc372982012 �
24
��

7.2.7 MIB_ACTION_CLEANUP	� GOTOBUTTON _Toc372982013 � PAGEREF _Toc372982013 �
24
��

7.3 Framework Entry Points	� GOTOBUTTON _Toc372982014 � PAGEREF _Toc372982014 �
24
��

7.3.1 SnmpSfxOpen	� GOTOBUTTON _Toc372982015 � PAGEREF _Toc372982015 �
24
��

7.3.2 SnmpSfxClose	� GOTOBUTTON _Toc372982016 � PAGEREF _Toc372982016 �
25
��

7.3.3 SnmpSfxRegister	� GOTOBUTTON _Toc372982017 � PAGEREF _Toc372982017 �
25
��

7.3.4 SnmpSfxUnregister	� GOTOBUTTON _Toc372982018 � PAGEREF _Toc372982018 �
25
��

7.3.5 SnmpSfxResolveVarBinds	� GOTOBUTTON _Toc372982019 � PAGEREF _Toc372982019 �
26
��

8. Subagent Code Generator	� GOTOBUTTON _Toc372982020 � PAGEREF _Toc372982020 �
26
��

8.1 Data Structures	� GOTOBUTTON _Toc372982021 � PAGEREF _Toc372982021 �
26
��

8.1.1 MIB_ENTRY	� GOTOBUTTON _Toc372982022 � PAGEREF _Toc372982022 �
26
��

8.2 Building Symbol Table	� GOTOBUTTON _Toc372982023 � PAGEREF _Toc372982023 �
27
��

8.2.1 SnmpSfxLoadMibEntries	� GOTOBUTTON _Toc372982024 � PAGEREF _Toc372982024 �
27
��

8.2.2 SnmpSfxFreeMibEntries	� GOTOBUTTON _Toc372982025 � PAGEREF _Toc372982025 �
27
��

8.3 Generating Subagent Code	� GOTOBUTTON _Toc372982026 � PAGEREF _Toc372982026 �
28
��

8.3.1 Generating MIB Objects Data File	� GOTOBUTTON _Toc372982027 � PAGEREF _Toc372982027 �
28
��

8.3.2 Generating MIB Objects Header File	� GOTOBUTTON _Toc372982028 � PAGEREF _Toc372982028 �
29
��

8.3.3 Generating Instrumentation Header File	� GOTOBUTTON _Toc372982029 � PAGEREF _Toc372982029 �
29
��

8.3.4 Generating Instrumentation Skeleton Code	� GOTOBUTTON _Toc372982030 � PAGEREF _Toc372982030 �
29
��

9. Extensible Agent	� GOTOBUTTON _Toc372982031 � PAGEREF _Toc372982031 �
29
��

9.1 SNMPv2c Support	� GOTOBUTTON _Toc372982032 � PAGEREF _Toc372982032 �
29
��

9.2 Downlevel Subagent Heap Validation	� GOTOBUTTON _Toc372982033 � PAGEREF _Toc372982033 �
30
��

9.3 Registry Settings	� GOTOBUTTON _Toc372982034 � PAGEREF _Toc372982034 �
30
��

9.3.1 ExtensionAgents	� GOTOBUTTON _Toc372982035 � PAGEREF _Toc372982035 �
30
��

9.3.2 TrapDestinations	� GOTOBUTTON _Toc372982036 � PAGEREF _Toc372982036 �
31
��

9.3.3 PermittedManagers	� GOTOBUTTON _Toc372982037 � PAGEREF _Toc372982037 �
31
��

9.3.4 ReadWriteCommunities	� GOTOBUTTON _Toc372982038 � PAGEREF _Toc372982038 �
31
��

9.3.5 ReadOnlyCommunities	� GOTOBUTTON _Toc372982039 � PAGEREF _Toc372982039 �
31
��

9.3.6 EnableAuthenticationTraps	� GOTOBUTTON _Toc372982040 � PAGEREF _Toc372982040 �
31
��

9.3.7 AuditingFlags	� GOTOBUTTON _Toc372982041 � PAGEREF _Toc372982041 �
32
��

9.3.8 LogLevel	� GOTOBUTTON _Toc372982042 � PAGEREF _Toc372982042 �
32
��

9.3.9 LogType	� GOTOBUTTON _Toc372982043 � PAGEREF _Toc372982043 �
32
��

9.3.10 SystemName	� GOTOBUTTON _Toc372982044 � PAGEREF _Toc372982044 �
32
��

9.3.11 SystemContact	� GOTOBUTTON _Toc372982045 � PAGEREF _Toc372982045 �
33
��

9.3.12 SystemLocation	� GOTOBUTTON _Toc372982046 � PAGEREF _Toc372982046 �
33
��

9.3.13 SystemServices	� GOTOBUTTON _Toc372982047 � PAGEREF _Toc372982047 �
33
��

10. References	� GOTOBUTTON _Toc372982048 � PAGEREF _Toc372982048 �
33
��

�

�Introduction

This document describes the design of the Windows NT 5.0 SNMP framework.

Requirements

SNMPv1 Support

The extensible agent and subagent framework must support RFCs 1155, 1157, and 1212.

The MIB-II subagent must implement all groups listed in RFC 1213 save the EGP group.

The LMMIB-II subagent must implement all groups in the LANMgr-MIB-II draft.

SNMPv2c Support

The extensible agent and subagent framework must support RFCs 1901-1906, and 1908.

The extensible agent must implement the SNMPv2 MIB as described in RFC 1907.

AgentX Compatibility

The extensible agent and subagent framework must provide functionality equivalent to that of the latest draft of the AgentX intra-agent protocol proposed by the IETF Agent Extensibility working group.

The extensible agent should provide support for the AgentX protocol once it becomes a Proposed Standard. This would allow developers to export MIBs from separate processes as well as over the network.

Subagent Development Support

The subagent framework must include code generation tools which produce all of the functions and data structures necessary to interface with the extensible agent.

The subagent framework must relieve subagent developers of writing common processing code and simply require them to fill in instrumentation callbacks for each MIB object.

�Block Diagram

� EMBED Visio.Drawing.4 ���

Figure � SEQ Figure * ARABIC �
1
� Windows NT 5.0 SNMP Framework

�Terminology

Agent

An SNMP agent is a software process running on a network device that services requests for management information from interested SNMP managers. An agent is also responsible for notifying registered managers of extraordinary events that occur on that device.

Manager

An SNMP manager is a software process running on a host workstation that monitors and modifies the managerment information of a network device made available via an SNMP agent. A manager is also responsible for listening for SNMP agent notifications (also known as traps).

Object Identifier (OID)

An SNMP agent supplies management information in the form of managed objects. Each object supplied by the agent has a unique object identifier consisting of the object’s type and additional information describing the object’s instance. Each object identifier is an array of integers which correspond to the object’s position in a global hierarchical namespace. The prefix for all objects in SNMP is iso.org.dod.internet (1.3.6.1) which is referred to simply as internet. Objects defined by the Internet standards body are placed under the mgmt subtree (internet.2) or SNMPv2 subtree (internet.6) whereas objects defined by private organizations are placed under the private subtree (internet.4). For example, the internet.mgmt.mib-2.system.sysDescr (1.3.1.6.2.1.1.1) object type represents a textual description of the network device on which the agent resides. Since only one such object exists on a network device, the manager would ask the agent for the default instance of the object by appending a zero to the type identifier (sysDescr.0). Other objects require much more elaborate instance information. An entry in the tcpConnTable, for example, needs the local address, local port, remote address, and remote port appended to the object type.

Management Information Base (MIB)

A Management Information Base is a text file describing a collection of managed objects in a subtree of the global namespace. The root of this subtree is called the MIB prefix. All of the object identifiers in the subtree are enumerated and each managed object’s textual description, syntax, access level, and display hints are given. It is important to remember that an agent may or may not implement all of the objects listed in a MIB. It serves mainly as a schema.

Extensible Agent

An extensible agent is one which allows independent developers to create MIB implementations and add them to the collection of managed objects supported by the agent without compilation.

Supported View

A collection of managed objects from one or more MIBs supported by an extensible agent.

Subagent

An entity which supplies a region of the extensible agent’s supported view.

�Overview

The purpose of the Windows NT 5.0 SNMP framework is to make the process of creating subagents easier. By defining data structures which represent the management information available in a MIB module and by describing how this information relates to the underlying instrumentation, functionality common to all subagents can be collected into a framework which independent subagent developers can leverage. Code generation utilities can then be introduced that produce these data structures as well as skeletons of the associated instrumentation callbacks thus making the process of implementing a MIB module much more manageable.

Subagent Developer

Relying on the new subagent framework, subagent developers simply:

input desired MIB module into the SFXGEN code generation utility included in the Win32 SDK.

customize the instrumentation callbacks and their associated data structures so that they more accurately reflect the design of the subagent developer’s component.

complete the instrumentation callbacks.

The SFXGEN code generation utility produces a file containing an internal representation of the MIB module that the subagent framework can understand (see Object Repository above) as well as a file containing an empty instrumentation callback for each group and conceptual table defined within the MIB module.

Extensible Agent

During initialization the extensible agent does the following:

loads each subagent DLL via the pathname stored in the Win32 registry database.

invokes SnmpExtensionStartup entry point to exchange procedure tables and initialize subagent.

updates Subagent Registry with the MIB regions the subagent specifies in calls to the extensible agent’s SnmpAgtRegister upcall.

After receiving an incoming manager request, the extensible agent:

decodes the request and creates a list of incoming variable-bindings.

examines each variable name and determines which Object Resolver supplies the instrumentation.

invokes Object Resolver via the extension procedure table passing in all relevant variable-bindings.

constructs the outgoing variable-binding list from all of the Object Resolver responses.

encodes the outgoing variable-binding list and sends response back to the manager.

Subagent Framework

If the NT 5.0 Subagent Framework is not being used then the subagent must implement each function in the subagent procedure table and process the incoming requests itself. If the NT 5.0 Subagent Framework is being leveraged then a stub NT 5.0 Object Resolver registers the subagent’s Object Repository with the NT 5.0 Subagent Framework and the framework handles the incoming requests by invoking the subagent’s instrumentation routines.

The NT 5.0 Subagent Framework does the following:

examines each variable name and locates the associated object in the specified Object Repository (or the next appropriate object in the case of a GETNEXT or GETBULK request).

applies access restrictions based on the request type and any local configuration settings.

verifies correct type specified for SET requests.

verifies range and enumeration restrictions have been respected for SET requests.

initializes a buffer for the instrumentation callback associated with the MIB object. If the same callback is specified for multiple variables then the same buffer is used for all of them.

parses instance information from the variable name and adds any index objects to buffer.

invokes instrumentation callback with the initialized instrumentation buffer.

verifies data returned and reconstructs variable name using updated index objects.

passes modified variable-binding list back to the stub NT 5.0 Object Resolver.

Subagent Provider Interface

The existing subagent API is based on a set of entry points that a subagent exports. The subagent has no way to communicate with the extensible agent except through the API return codes and the event handle exchanged at initialization (and that only signals the extensible agent to call the subagent’s SnmpExtensionTrap entry point). The NT 5.0 Subagent Provider Interface (SPI) is an extensible means by which the extensible agent and subagent can communicate efficiently.

Data Structures

SNMP_AGENTPROCTABLE

typedef struct _SNMP_AGENTPROCTABLE {

 PFNSNMPAGTOPEN pfnSnmpAgtOpen;

 PFNSNMPAGTCLOSE pfnSnmpAgtClose;

 PFNSNMPAGTREGISTER pfnSnmpAgtRegister;

 PFNSNMPAGTUNREGISTER pfnSnmpAgtUnregister;

 PFNSNMPAGTNOTIFY pfnSnmpAgtNotify;

 PFNSNMPAGTRESERVEINDEX pfnSnmpAgtReserveIndex;

 PFNSNMPAGTUNRESERVEINDEX pfnSnmpAgtUnreserveIndex;

 PFNSNMPAGTADDCAPS pfnSnmpAgtAddCaps;

 PFNSNMPAGTREMOVECAPS pfnSnmpAgtRemoveCaps;

} SNMP_AGENTPROCTABLE, *PSNMP_AGENTPROCTABLE;

Members:

pfnSnmpAgtOpen - Pointer to agent’s SnmpAgtOpen upcall.

pfnSnmpAgtClose - Pointer to agent’s SnmpAgtClose upcall.

pfnSnmpAgtRegister - Pointer to agent’s SnmpAgtRegister upcall.

pfnSnmpAgtUnregister - Pointer to agent’s SnmpAgtUnregister upcall.

pfnSnmpAgtNotify - Pointer to agent’s SnmpAgtNotify upcall.

pfnSnmpAgtReserveIndex - Pointer to agent’s SnmpAgtReserveIndex upcall.

pfnSnmpAgtUnreserveIndex - Pointer to agent’s SnmpAgtUnreserveIndex upcall.

pfnSnmpAgtAddCaps - Pointer to agent’s SnmpAgtAddCaps upcall.

pfnSnmpAgtRemoveCaps - Pointer to agent’s SnmpAgtRemoveCaps upcall.

SNMP_EXTENSIONPROCTABLE

typedef struct _SNMP_EXTENSIONPROCTABLE {

 PFNSNMPEXTGET pfnSnmpExtGet;

 PFNSNMPEXTGETNEXT pfnSnmpExtGetNext;

 PFNSNMPEXTGETBULK pfnSnmpExtGetBulk;

 PFNSNMPEXTTESTSET pfnSnmpExtTestSet;

 PFNSNMPEXTCOMMITSET pfnSnmpExtCommitSet;

 PFNSNMPEXTUNDOSET pfnSnmpExtUndoSet;

 PFNSNMPEXTCLEANUPSET pfnSnmpExtCleanupSet;

 PFNSNMPEXTSHUTDOWN pfnSnmpExtShutdown;

} SNMP_EXTENSIONPROCTABLE, *PSNMP_EXTENSIONPROCTABLE;

Members:

pfnSnmpExtGet - Pointer to subagent’s SnmpExtGet callback.

pfnSnmpExtGetNext - Pointer to subagent’s SnmpExtGetNext callback.

pfnSnmpExtGetBulk - Pointer to subagent’s SnmpExtGetBulk callback.

pfnSnmpExtTestSet - Pointer to subagent’s SnmpExtTestSet callback.

pfnSnmpExtCommitSet - Pointer to subagent’s SnmpExtCommitSet callback.

pfnSnmpExtUndoSet - Pointer to subagent’s SnmpExtUndoSet callback.

pfnSnmpExtCleanupSet - Pointer to subagent’s SnmpExtCleanupSet callback.

pfnSnmpExtShutdown - Pointer to subagent’s SnmpExtShutdown callback.

Subagent Entry Point

SnmpExtensionStartup

BOOL WINAPI

SnmpExtensionStartup(

 IN PSNMP_AGENTPROCTABLE pAgentProcTable,

 OUT PSNMP_EXTENSIONPROCTABLE pExtensionProcTable

);

Arguments:

pAgentProcTable - Pointer to agent’s procedure table.

pExtensionProcTable - Pointer to receive subagent’s procedure table.

Return Status:

Returns TRUE is successful.

Routine Description:

The master agent calls this entry point in order to initialize a subagent.

Agent Procedure Table

SnmpAgtOpen

typedef BOOL (CALLBACK * PFNSNMPAGTOPEN)(

 IN PSNMP_OID pSubagentId,

 IN PSNMP_OCTETS pSubagentDescr,

 IN PSNMP_CONTEXT pSubagentContext,

 IN DWORD SubagentTimeout,

 OUT PSNMP_HANDLE pSubagentHandle,

 OUT PDWORD pDefaultUpTime

);

Arguments:

pSubagentId - Unique identifier of subagent (optional).

pSubagentDescr- String uniquely describing subagent.

pSubagentContext - Context of subagent logical connection (optional).

SubagentTimeout - The length of time, in seconds, that a master agent should allow to elapse after dispatching a message to a subagent before it regards the subagent as not responding. This is a subagent-wide default value that may be overridden by values associated with specific registered MIB regions. The default value of `0' indicates that no subagent-wide value is requested.

pSubagentHandle - Pointer to receive handle from extensible agent.

pDefaultUpTime - Pointer to receive sysUpTime.0 from default context.

Return Status:

Returns TRUE if successful.

Routine Description:

The subagent calls this routine in order to establish a logical connection to the master agent. The handle returned is used in all subsequent calls to the extensible agent. Note the subagent can open as many logical connections to the master agent as is needed. For example, a subagent acting as a proxy to other subagents may wish to establish a logical connection for every subagent it is servicing.

SnmpAgtClose

typedef BOOL (CALLBACK * PFNSNMPAGTCLOSE)(

 IN SNMP_HANDLE SubagentHandle,

 IN DWORD Status

);

Arguments:

SubagentHandle - Handle returned in the SnmpAgtOpen upcall.

Status - Reason that subagent closed logical connection to extensible agent.

Return Status:

Returns TRUE if successful.

Routine Description:

The subagent calls this routine in order to close a logical connection to the master agent.

SnmpAgtRegister

typedef BOOL (CALLBACK * PFNSNMPAGTREGISTER)(

 IN SNMP_HANDLE SubagentHandle,

 IN PSNMP_CONTEXT pNamingContext,

 IN PSNMP_CONTEXT pSearchContext,

 IN PSNMP_OID pRegionPrefix,

 IN PSNMP_OID pRegionPrefixLimit,

 IN DWORD Priority,

 IN DWORD Timeout

);

Arguments:

SubagentHandle - Handle returned in the SnmpAgtOpen upcall.

pNamingContext - Naming context in which the subagent wishs to register the MIB region. A null value indicates the region should be registered under the extensible agent’s default context.

pSearchContext - Pointer to optional context supported by subagent used by the master agent to identify related regions that a subagent supports on the same logical connection. The context will be passed back during subagent callbacks.

pRegionPrefix - Object identifier describing the start of the MIB region being registered.

pRegionPrefixLimit - Object identifier describing the end of the MIB region being registered. This value is optional and used mainly to simplify the process of registering view ranges.

Priority - A value between 1 and 255, used to achieve a desired configuration when different subagents register identical or overlapping regions. Subagents with no particular knowledge of priority should register with the default value of `255' (lowest priority). In the master agent's dispatching algorithm, smaller values of priority take precedence over larger values.

Timeout - The length of time, in seconds, that a master agent should allow to elapse after dispatching a message to a subagent before it regards the subagent as not responding. This timeout applies only to messages that concern MIB objects within the region above. It overrides both the subagent-wide value (if any) indicated in the SnmpAgtOpen upcall and the master agent's default timeout. The default value for the timeout is `0' (no override).

Return Status:

Returns TRUE if successful.

Routine Description:

The subagent calls this routine in order to notify the extensible agent that the subagent is ready to process manager requests for a particular MIB region.

SnmpAgtUnregister

typedef BOOL (CALLBACK * PFNSNMPAGTUNREGISTER)(

 IN SNMP_HANDLE SubagentHandle,

 IN PSNMP_CONTEXT pNamingContext,

 IN PSNMP_CONTEXT pSearchContext,

 IN PSNMP_OID pRegionPrefix,

 IN PSNMP_OID pRegionPrefixLimit

);

Arguments:

SubagentHandle - Handle returned in the SnmpAgtOpen upcall.

pNamingContext - Naming context in which the subagent wishs to remove the MIB region. A null value indicates the region should be removed from the extensible agent’s default context.

pSearchContext - Pointer to context supported by subagent for searching MIB region.

pRegionPrefix - Object identifier describing the start of the MIB region being registered.

pRegionPrefixLimit - Object identifier describing the end of the MIB region being registered. This value is optional and used mainly to simplify the process of registering view ranges.

Return Status:

Returns TRUE if successful.

Routine Description:

The subagent calls this routine in order to notify the extensible agent that it is unable to process manager requests for a particular MIB region any longer.

SnmpAgtNotify

typedef BOOL (CALLBACK * PFNSNMPAGTNOTIFY)(

 IN SNMP_HANDLE SubagentHandle,

 IN PSNMP_CONTEXT pNamingContext,

 IN PSNMP_VARBINDLIST pVarBindList

);

Arguments:

SubagentHandle - Handle returned in the SnmpAgtOpen upcall.

pNamingContext - Naming context in which the subagent wishs to send the trap. A null value indicates the trap should be sent from the extensible agent’s default context.

pVarBindList - List of variables to be included in the trap message. If the subagent supplies sysUpTime.0, it must be present as the first varbind. Note snmpTrapOID.0 must be present, as the second varbind if sysUpTime.0 was supplied, as the first if it was not.

Return Status:

Returns TRUE if successful.

Routine Description:

The subagent calls this routine in order to notify the extensible agent that it is needs to have a trap sent to all of the interested managers registered with the extensible agent.

SnmpAgtReserveIndex

typedef BOOL (CALLBACK * PFNSNMPAGTRESERVEINDEX)(

 IN SNMP_HANDLE SubagentHandle,

 IN PSNMP_CONTEXT pNamingContext,

 IN OUT PSNMP_VARBINDLIST pVarBindList,

 IN DWORD Options

);

Arguments:

SubagentHandle - Handle returned in the SnmpAgtOpen upcall.

pNamingContext - Naming context in which the subagent wishs to reserve index. A null value indicates the index should be reserved in the extensible agent’s default context.

pVarBindList - List of variable names describing the indices the subagent wishes to have reserved.

Options - Optional characteristics of reserved index:

SNMP_FLAGS_ANY_INDEX - Indicates the master agent can return any index value.

SNMP_FLAGS_NEW_INDEX - Indicates the master agent should generate the next available index value.

Return Status:

Returns TRUE if successful.

Routine Description:

The subagent calls this routine in order to request that the extensible agent set aside for specific set of indices.

SnmpAgtUnreserveIndex

typedef BOOL (CALLBACK * PFNSNMPAGTUNRESERVEINDEX)(

 IN SNMP_HANDLE SubagentHandle,

 IN PSNMP_CONTEXT pNamingContext,

 IN PSNMP_VARBINDLIST pVarBindList

);

Arguments:

SubagentHandle - Handle returned in the SnmpAgtOpen upcall.

pNamingContext - Naming context in which the subagent wishs to unreserve index. A null value indicates the index should be unreserved in the extensible agent’s default context.

pVarBindList - List of variable names describing the indices subagent wishes to have unreserved.

Return Status:

Returns TRUE if successful.

Routine Description:

The subagent calls this routine in order to request that the extensible agent release a specific set of reserved indices.

SnmpAgtAddCaps

typedef BOOL (CALLBACK * PFNSNMPAGTADDCAPS)(

 IN SNMP_HANDLE SubagentHandle,

 IN PSNMP_CONTEXT pNamingContext,

 IN PSNMP_OID pSubagentCapsId,

 IN PSNMP_OCTETS pSubagentCapsDescr

);

Arguments:

SubagentHandle - Handle returned in the SnmpAgtOpen upcall.

pNamingContext - Naming context in which the subagent wishs to add agent caps. A null value indicates the agent caps should be added in the extensible agent’s default context.

pSubagentCapsId - Unique identifier of subagent capabilities.

pSubagentCapsDescr - String describing subagent capabilities.

Return Status:

Returns TRUE if successful.

Routine Description:

The subagent calls this routine in order to add a agent capabilities statement to that of the extensible agent.

SnmpAgtRemoveCaps

typedef BOOL (CALLBACK * PFNSNMPAGTREMOVECAPS)(

 IN SNMP_HANDLE SubagentHandle,

 IN PSNMP_CONTEXT pNamingContext,

 IN PSNMP_OID pSubagentCapsId

);

Arguments:

SubagentHandle - Handle returned in the SnmpAgtOpen upcall.

pNamingContext - Naming context in which the subagent wishs to add agent caps. A null value indicates the agent caps should be added in the extensible agent’s default context.

pSubagentCapsId - Unique identifier of subagent capabilities.

Return Status:

Returns TRUE if successful.

Routine Description:

The subagent calls this routine in order to remove a agent capabilities statement to that of the extensible agent.

Extension Procedure Table

SnmpExtGet

typedef BOOL (CALLBACK * PFNSNMPEXTGET)(

 IN PSNMP_CONTEXT pSubagentContext,

 IN PSNMP_CONTEXT pNamingContext,

 IN PSNMP_CONTEXT pSearchContext,

 IN OUT PSNMP_VARBINDLIST pVarBindList,

 OUT PDWORD pErrorStatus,

 OUT PDWORD pErrorIndex

);

Arguments:

pSubagentContext - Pointer to subagent logical connection context.

pNamingContext - Pointer to naming context in which request was receieved.

pSearchContext - Pointer to search context used when resolving varbind.

pVarBindList - List of variable-bindings in the above context which the subagent needs to resolve.

pErrorStatus - Pointer to receive the error status of the subagent request.

pErrorIndex - Pointer to receive the index of any errant variable-binding.

Return Status:

Returns TRUE if successful.

Routine Description:

The extensible agent calls this routine in order to resolve variable-bindings from a SNMP_PDU_GET request..

SnmpExtGetNext

typedef BOOL (CALLBACK * PFNSNMPEXTGETNEXT)(

 IN PSNMP_CONTEXT pSubagentContext,

 IN PSNMP_CONTEXT pNamingContext,

 IN PSNMP_CONTEXT pSearchContext,

 IN OUT PSNMP_SEARCHRANGELIST pSearchRangeList,

 OUT PDWORD pErrorStatus,

 OUT PDWORD pErrorIndex

);

Arguments:

pSubagentContext - Pointer to subagent logical connection context.

pNamingContext - Pointer to naming context in which request was receieved.

pSearchContext - Pointer to search context used when resolving varbind.

pSearchRangeList - List of bounded variable-bindings which the subagent needs to resolve. If no object can be resolved within the speficied range then SNMP_SYNTAX_ENDOFMIBVIEW should be returned as the variable type.

pErrorStatus - Pointer to receive the error status of the subagent request.

pErrorIndex - Pointer to receive the index of any errant variable-binding.

Return Status:

Returns TRUE if successful.

Routine Description:

The extensible agent calls this routine in order to resolve variable-bindings from a SNMP_PDU_GETNEXT request.

SnmpExtGetBulk

typedef BOOL (CALLBACK * PFNSNMPEXTGETBULK)(

 IN PSNMP_CONTEXT pSubagentContext,

 IN PSNMP_CONTEXT pNamingContext,

 IN PSNMP_CONTEXT pSearchContext,

 IN DWORD NonRepeaters,

 IN DWORD MaxRepetitions,

 IN OUT PSNMP_SEARCHRANGELIST pSearchRangeList,

 OUT PDWORD pErrorStatus,

 OUT PDWORD pErrorIndex

);

Arguments:

pSubagentContext - Pointer to subagent logical connection context.

pNamingContext - Pointer to naming context in which request was receieved.

pSearchContext - Pointer to search context used when resolving varbind.

NonRepeaters - Number of variable-bindings at the beginning of the list which do not repeat. .

MaxRepetitions - Number of repetitions which should be performed on the rest of the bindings.

pSearchRangeList - List of bounded variable-bindings which the subagent needs to resolve. If no object can be resolved within the speficied range then SNMP_SYNTAX_ENDOFMIBVIEW should be returned as the variable type.

pErrorStatus - Pointer to receive the error status of the subagent request.

pErrorIndex - Pointer to receive the index of any errant variable-binding.

Return Status:

Returns TRUE if successful.

Routine Description:

The extensible agent calls this routine in order to resolve variable-bindings from a SNMP_PDU_GETBULK request.

SnmpExtTestSet

typedef BOOL (CALLBACK * PFNSNMPEXTTESTSET)(

 IN PSNMP_CONTEXT pSubagentContext,

 IN PSNMP_CONTEXT pNamingContext,

 IN PSNMP_CONTEXT pSearchContext,

 OUT PSNMP_CONTEXT pSetContext,

 IN PSNMP_VARBINDLIST pVarBindList,

 OUT PDWORD pErrorStatus,

 OUT PDWORD pErrorIndex

);

Arguments:

pSubagentContext - Pointer to subagent logical connection context.

pNamingContext - Pointer to naming context in which request was receieved.

pSearchContext - Pointer to search context used when resolving varbind.

pSetContext - Pointer to receive subagent-defined context to be passed back during the other stages of multi-phase write operation.

pVarBindList - List of variable-bindings to be verified during this the first phase of a multi-phase write operation. The subagent should do everything possible during this call to maximize the probability of the commit phase of the write opertation succeeding.

pErrorStatus - Pointer to receive the error status of the subagent request.

pErrorIndex - Pointer to receive the index of any errant variable-binding.

Return Status:

Returns TRUE if successful.

Routine Description:

The extensible agent calls this routine in order to verify the variable-bindings in a SNMP_PDU_SET request.

SnmpExtCommitSet

typedef BOOL (CALLBACK * PFNSNMPEXTCOMMITSET)(

 IN PSNMP_CONTEXT pSubagentContext,

 IN PSNMP_CONTEXT pNamingContext,

 IN PSNMP_CONTEXT pSearchContext,

 IN PSNMP_CONTEXT pSetContext,

 IN PSNMP_VARBINDLIST pVarBindList,

 OUT PDWORD pErrorStatus,

 OUT PDWORD pErrorIndex

);

Arguments:

pSubagentContext - Pointer to subagent logical connection context.

pNamingContext - Pointer to naming context in which request was receieved.

pSearchContext - Pointer to search context used when resolving varbind.

pSetContext - Pointer to context allocated in the SnmpExtTestSet callback.

pVarBindList - List of variable-bindings to be committed during this the second phase of a multi-phase write operation. The subagent should be prepared to rollback these changes if another subagent commit in the same manager request fails.

pErrorStatus - Pointer to receive the error status of the subagent request.

pErrorIndex - Pointer to receive the index of any errant variable-binding.

Return Status:

Returns TRUE if successful.

Routine Description:

The extensible agent calls this routine in order to commit the variable-bindings in a SNMP_PDU_SET request.

SnmpExtUndoSet

typedef BOOL (CALLBACK * PFNSNMPEXTUNDOSET)(

 IN PSNMP_CONTEXT pSubagentContext,

 IN PSNMP_CONTEXT pNamingContext,

 IN PSNMP_CONTEXT pSearchContext,

 IN PSNMP_CONTEXT pSetContext,

 IN PSNMP_VARBINDLIST pVarBindList,

 OUT PDWORD pErrorStatus,

 OUT PDWORD pErrorIndex

);

Arguments:

pSubagentContext - Pointer to subagent logical connection context.

pNamingContext - Pointer to naming context in which request was receieved.

pSearchContext - Pointer to search context used when resolving varbind.

pSetContext - Pointer to context allocated in the SnmpExtTestSet callback.

pVarBindList - List of variable-bindings to be restored to their original state after one or more commits failed during a multi-phase write operation. The subagent should be prepared to rollback changes if another subagent commit in the same manager request fails.

pErrorStatus - Pointer to receive the error status of the subagent request.

pErrorIndex - Pointer to receive the index of any errant variable-binding.

Return Status:

Returns TRUE if successful.

Routine Description:

The extensible agent calls this routine in order to rollback the changes from a SnmpExtCommit callback.

SnmpExtCleanupSet

typedef BOOL (CALLBACK * PFNSNMPEXTCLEANUPSET)(

 IN PSNMP_CONTEXT pSubagentContext,

 IN PSNMP_CONTEXT pNamingContext,

 IN PSNMP_CONTEXT pSearchContext,

 IN PSNMP_CONTEXT pSetContext,

 IN PSNMP_VARBINDLIST pVarBindList,

 OUT PDWORD pErrorStatus,

 OUT PDWORD pErrorIndex

);

Arguments:

pSubagentContext - Pointer to subagent logical connection context.

pNamingContext - Pointer to naming context in which request was receieved.

pSearchContext - Pointer to search context used when resolving varbind.

pSetContext - Pointer to context allocated in the SnmpExtTestSet callback.

pVarBindList - List of variable-bindings to be set in a multi-phase write operation.

pErrorStatus - Pointer to receive the error status of the subagent request.

pErrorIndex - Pointer to receive the index of any errant variable-binding.

Return Status:

Returns TRUE if successful.

Routine Description:

The extensible agent calls this routine in order to cleanup resources allocated by the subagent during a multi-phase write operation. This routine is called whether the actual write succeeded or not.

SnmpExtShutdown

typedef BOOL (CALLBACK * PFNSNMPEXTSHUTDOWN)(

 IN DWORD Status

);

Arguments:

Status- Status of the extensible agent during the shutdown request. This value can be used by the subagent to determine the reason the extensible agent is requesting a shutdown.

Return Status:

Returns TRUE if successful.

Routine Description:

The extensible agent calls this routine in order to notify the subagent that the agent is unloading or that the agent wishes the subagent to unload. The subagent should perform any necessary cleanup before returning from this call.

Subagent Framework

As mentioned above, the goal of the subagent framework is to provide a mechanism by which protocol processing is centralized in a helper library so that subagent developers implementing MIBs can concentrate on instrumentation.

Data Structures

MIB_REGION

typedef struct _MIB_REGION {

 SNMP_OID Prefix;

 SNMP_OID PrefixLimit;

 PSNMP_OCTETS pNamingContext;

 PMIB_OBJECT pObjects;

 DWORD Priority;

 DWORD Timeout;

} MIB_REGION, *PMIB_REGION;

Members:

Prefix - Object identifier describing the root of the subagent’s supported MIB region.

PrefixLimit - Object identifier describing the end of the subagent’s supported MIB region. This value is optional and used mainly to simplify the process of registering ranges.

pNamingContext - Context in which the subagent wishs to add the supported MIB region specified above. A null value indicates the MIB region should be added to the extensible agent’s default context.

pObjects - Pointer to the null-terminated list of objects in the supported MIB region.

Priority - A value between 1 and 255, used to achieve a desired configuration when different subagents register identical or overlapping regions. Subagents with no particular knowledge of priority should register with the default value of `255' (lowest priority). In the master agent's dispatching algorithm, smaller values of priority take precedence over larger values.

Timeout - The length of time, in seconds, that a master agent should allow to elapse after dispatching a message to a subagent before it regards the subagent as not responding. This timeout applies only to messages that concern MIB objects within the region above. It overrides both the subagent-wide value (if any) and the master agent's default timeout. The default value for the timeout is `0' (no override).

MIB_OBJECT

typedef struct _MIB_OBJECT {

 SNMP_OID Name;

 BYTE Syntax;

 BYTE Access;

 WORD Flags;

 PMIB_PROPERTY pProperties;

 struct _MIB_OBJECT * pTableEntry;

 struct _MIB_OBJECT * pNextScalar;

 MIB_INSTRUMENTATION Instrumentation;

} MIB_OBJECT, *PMIB_OBJECT;

Members:

Name - Object identifier relative to the prefix of the MIB region.

Syntax - Type specifier defined in SMIv2 [6] or private SNMP_SYNTAX_AGGREGATE.

Access - Maximum level of access to the object defined to be one of the following:

MIB_ACCESS_NONE - Indicates this object cannot be read or written.

MIB_ACCESS_NOTIFY - Indicates this object cannot be read or written but can be used in a notification message sent from the master agent.

MIB_ACCESS_READ_ONLY - Indicates this object can be read but not written.

MIB_ACCESS_READ_WRITE - Indicates this object can be read and written.

MIB_ACCESS_READ_CREATE - Indicates this object can be read and written and new instances of the object can be created.

Flags - Any one of the following:

MIB_FLAGS_TABLE_INDEX - Indicates this is a columnar object that forms part of a table’s instance identifier.

MIB_FLAGS_LENGTH_IMPLIED - Indicates this is a columnar object that forms the last part of a table’s instance identifier and it’s length is equal to the remainder of the object identifier.

MIB_FLAGS_SIZE_RESTRICTED - Indicates this object is restricted by size and that a MIB_RANGE structure is included in the property list describing this restriction.

MIB_FLAGS_RANGE_RESTRICTED - Indicates this object is restricted by one or more ranges and that one or more MIB_RANGE structures are included in the property list. Enumerations are treated as range restrictions.

MIB_FLAGS_DEFAULT_INCLUDED - Indicates this object has a default value and that a SNMP_VALUE structure is included in the property list.

MIB_FLAGS_WRITE_REDIRECTED - Indicates that this object is instrumented differently for write operations and that a MIB_INSTRUMENTATION structure is included in the property list.

pProperties - Pointer to a list detailing the object’s properties.

pTableEntry - Pointer to parent object containing table properties if this object is columnar.

pNextScalar - Pointer to next scalar object following this one in the name space.

Instrumentation - Details about the object’s instrumentation information.

MIB_PROPERTY

typedef struct _MIB_PROPERTY {

 DWORD Type;

 PVOID pValue;

 struct _MIB_PROPERTY * pNextValue;

 struct _MIB_PROPERTY * pNextProperty;

} MIB_PROPERTY, *PMIB_PROPERTY;

Members:

Type - Type of property described by the pointer below.

MIB_PROPERTY_TABLE - Indicates that pValue points to a MIB_TABLE structure describing a conceptual table.

MIB_PROPERTY_RANGE - Indicates that pValue points to a MIB_RANGE structure describing one or more ranges restrictions.

MIB_PROPERTY_DEFAULT_VALUE - Indicates that pValue points to an SNMP_VALUE structure describing the object’s default value.

MIB_PROPERTY_INSTRUMENTATION - Indicates that pValue points to an MIB_INSTRUMENTATION structure used for write operations.

pValue - Opaque pointer to one of the properties defined above.

pNextValue - Pointer to next property value in value list.

pNextProperty - Pointer to next property in property list.

MIB_TABLE

typedef struct _MIB_TABLE {

 DWORD NumberOfColumns;

 DWORD NumberOfIndices;

 PMIB_OBJECT pColumns;

 PMIB_OBJECT * ppIndices;

} MIB_TABLE, *PMIB_TABLE;

Members:

NumberOfColumns - Number of columnar objects in conceptual table.

NumberOfIndices - Number of columnar objects comprising table index.

pColumns - Pointer to first columnar object in the conceptual table.

ppIndices - Pointer to list of object pointers describing the index of a conceptual table. This value can be null indicating the table indices are contiguous entries starting from pColumns.

MIB_RANGE

typedef struct _MIB_RANGE {

 DWORD LowerLimit;

 DWORD UpperLimit;

} MIB_RANGE, *PMIB_RANGE;

Members:

LowerLimit - lower limit of range, enumeration, or size restriction.

UpperLimit - upper limit of range, enumeration, or size restriction.

MIB_INSTRUMENTATION

typedef struct _MIB_INSTRUMENTATION {

 WORD BufferOffset;

 WORD BufferLength;

 PFNMIB_CALLBACK pfnCallback;

} MIB_INSTRUMENTATION, *PMIB_INSTRUMENTATION;

Members:

BufferOffset - Entry’s offset into instrumentaion buffer.

BufferLength - Total length of the instrumentation buffer.

pfnCallback - Address of entry’s instrumentation routine.

MIB_REQUEST

typedef struct _MIB_REQUEST {

 DWORD ActionId;

 DWORD RequestId;

 PSNMP_VALUE pObjectArray;

 PSNMP_CONTEXT pNamingContext;

 DWORD ErrorStatus;

 DWORD ErrorIndex;

} MIB_REQUEST, *PMIB_REQUEST;

Members:

ActionId - identifies the specific action requested of the subagent:

MIB_ACTION_GET - Indicates that the subagent should read the specified values into the instrumentation buffer.

MIB_ACTION_GETNEXT - Indicates that the subagent should read the lexographic successor of the specified values into the instrumentation buffer.

MIB_ACTION_TEST - Indicates that the subagent should verify the specified values in the instrumentation buffer can be successfully set.

MIB_ACTION_COMMIT - Indicates that the subagent should write out the specified values in the instrumentation buffer.

MIB_ACTION_UNDO - Indicates that the subagent should attempt to rollback changes just committed.

MIB_ACTION_CLEANUP - Indicates that the subagent should clean up any resources allocated to service a particular request.

RequestId - Identifies PDU for which action is being taken.

pObjectArray - Array of object associated with instrumentation buffer.

pNamingContext - Naming context in which request is being made.

ErrorStatus - One of the SNMP error codes specified in [6].

ErrorIndex - Index into the pObjectArray of any errant variable.

Instrumentation Callbacks

MIB_CALLBACK

typedef DWORD (CALLBACK * PFNMIB_CALLBACK)(

 PMIB_REQUEST pRequest

);

Arguments:

pRequest - Subagent command block (described above).

Return Status:

Any Win32 error but the following have special meaning:

MIB_S_SUCCESS - Indicates the subagent successfully processed the specified action.

MIB_S_NOT_SUPPORTED - Indicates the subagent does not support specified action.

MIB_S_NO_MORE_ENTRIES - Indicates the end of a MIB table was encountered.

MIB_S_ENTRY_NOT_FOUND - Indicates a MIB object instance could not be located.

MIB_S_INVALID_PARAMETER - Indicates one of the parameters was invalid.

Routine Description:

Each instrumentation callback has a buffer associated with it. At the beginning of each buffer is an array of SNMP_VALUE structures representing the components of the group or table supplied by that callback. The code generation utility creates this structure based on the supplied MIB module but the subagent developer can rearrange or add new callbacks as needed. Subagent developers can also append context information to the end of the buffer.

A description of each action follows below but the basic idea is that the subagent will fill in the asnValue element of each flagged SNMP_VALUE structure for GET requests, write out the asnValue of each flagged SNMP_VALUE structure for SET requests and so on. The return code of the callback is used to notify the extensible agent that the action was processed successfully not necessary that the action succeeded. This means that the ErrorStatus field of the MIB_ACTION structure is ignored by the agent when the return code is not equal to MIB_S_SUCCESS.

MIB_ACTION_GET

The extensible agent will call a subagent’s instrumentation callback with MIB_ACTION_GET when one or more variables in an incoming GET PDU contain an OID which matchs that of any MIB_OBJECT associated with the callback. All of the variables in the GET PDU that are associated with the callback are queried simultaneously and requested items in the SNMP_VALUE array are flagged by having a non-zero asnType. The SNMP_VALUE structures which are part of a conceptual table’s index are filled in before the callback is entered with any values specified in the incoming request. The subagent should read this values directly from the ObjectArray.

MIB_ACTION_GETNEXT

The extensible agent will call a subagent’s callback with the action MIB_ACTION_GETNEXT when one or more variables in an incoming GETNEXT PDU immediately precede the OID of a MIB_OBJECT that is associated with the callback and is the entry represents a columnar object. The subagent should expect that the SNMP_VALUE structures which are part of a conceptual table’s index will contain the values corresponding to the row in the table immediately preceeding the one of interest. Besides filling the asnValue of each of the elements of the SNMP_VALUE array which are flagged with a non-zero asnType, all of the index values must be updated with values that correspond to the row of interest.

MIB_ACTION_TEST

The extensible agent will call a subagent’s callback with the action MIB_ACTION_TEST when one or more variables in the incoming SET PDU contain an OID which matchs that of any MIB_OBJECT associated with the callback. A subagent’s callback is called multiple times with the normal processing being TEST, COMMIT, and CLEANUP in that order. An UNDO action is specified when a rollback of the commited values is being requested. All of the variables in the PDU that are associated with a given callback are set simultaneously. As in MIB_ACTION_GET, requested elements of the SNMP_VALUE array are flagged by having a non-zero asnType. The subagent should validate that all supplied values are acceptable and that any non-supplied variables can be ignored or default values for them are available. This same ObjectArray will be passed back during the MIB_ACTION_COMMIT and the MIB_ACTION_CLEANUP call so context information can be allocated and stored at the end of the instrumentation buffer.

MIB_ACTION_COMMIT

The extensible agent will call a subagent’s instrumentation callback with the action MIB_ACTION_COMMIT when all of the subagents involved in the original SET PDU request have successfully validated their individual requests.

MIB_ACTION_UNDO

The extensible agent will call a subagent’s instrumentaion callback with MIB_ACTION_UNDO when a COMMIT request has failed and the original state of the subagent must be restored.

MIB_ACTION_CLEANUP

The extensible agent will call a subagent’s instrumentation callback with the action MIB_ACTION_CLEANUP when after each COMMIT request has failed or succeeded.

Framework Entry Points

The following are functions to initialize the subagent framework and leverage it using older NT extensible agents.

SnmpSfxOpen

SNMP_HANDLE

SnmpSfxOpen(

 IN PSNMP_AGENTPROCTABLE pAgentProcTable,

 OUT PSNMP_EXTENSIONPROCTABLE pExtensionProcTable

);

Arguments:

pAgentProcTable - Pointer to agent’s procedure table.

pExtensionProcTable - Pointer to receive subagent’s procedure table.

Return Status:

Returns a handle to the subagent framework.

Routine Description:

The subagent uses this routine to obtain a handle to the subagent framework. If the subagent is being loaded from a NT 5.0 extensible agent then this routine would be called during SnmpExtensionStartup and the extensible agent’s procedure table would be passed along to the subagent framework. If the subagent is being loaded from a downlevel extensible agent then this routine would be called during SnmpExtensionInit and null would be specified for the agent’s procedure table.

SnmpSfxClose

DWORD

SnmpSfxClose(

 SNMP_HANDLE SfxHandle

);

Arguments:

SfxHandle - Handle to subagent framework.

Return Status:

Returns NO_ERROR if successful.

Routine Description:

The subagent uses this routine to release a handle to the subagent framework obtained via SnmpSfxOpen.

SnmpSfxRegister

DWORD

SnmpSfxRegister(

 SNMP_HANDLE SfxHandle,

 PMIB_REGION pSupportedRegion

);

Arguments:

SfxHandle - Handle to subagent framework.

pSupportedRegion - Subagent supported MIB region to be registered with subagent framework.

Return Status:

Returns NO_ERROR if successful.

Routine Description:

The subagent uses this routine to register a supported MIB region with the subagent framework.

SnmpSfxUnregister

DWORD

SnmpSfxUnregister(

 SNMP_HANDLE SfxHandle,

 PMIB_REGION pSupportedRegion

);

Arguments:

SfxHandle - Handle to subagent framework.

pSupportedRegion - Subagent supported MIB region to be unregistered with subagent framework.

Return Status:

Returns NO_ERROR if successful.

Routine Description:

The subagent uses this routine to unregister a supported MIB region with the subagent framework.

SnmpSfxResolveVarBinds

DWORD

SnmpSfxResolveVarBinds(

 SNMP_HANDLE SfxHandle,

 BYTE RequestType,

 PSNMP_VARBINDLIST pVarBindList,

 PDWORD pErrorStatus,

 PDWORD pErrorIndex

);

Arguments:

SfxHandle - Handle to subagent framework.

RequestType - Type of SNMP request (only supports GET, GETNEXT, or SET).

pVarBindList - Pointer to variable bindings to be resolved by the subagent framework.

pErrorStatus - Pointer to receive the error status of the subagent request.

pErrorIndex - Pointer to receive the index of any errant variable-binding.

Return Status:

Returns NO_ERROR if successful.

Routine Description:

The subagent uses this forward a downlevel query to the subagent framework.

Subagent Code Generator

By gathering all of the common functionality into a subagent framework, developers are shielded from the details of the SNMP protocol. Similarly, by producing a subagent code generator which takes a MIB and outputs the data structures and related functions needed by the framework then the developers are shielded from the details on the framework itself and can concentrate on the task of implementing the instrumentation code. Windows NT 5.0 will include a utility which takes MOSY output and converts it into code for use with the framework mentioned above.

Data Structures

The data structures for the code generator are similar to the ones described above but also include naming information not needed by the subagent framework.

MIB_ENTRY

typedef struct _MIB_ENTRY {

 PSTR Name;

 PSTR Definition;

 PSTR Identifier;

 BYTE Syntax;

 BYTE Access;

 WORD Flags;

 struct _MIB_ENTRY * pParent;

 struct _MIB_ENTRY * pChildren;

 struct _MIB_ENTRY * pSiblings;

 struct _MIB_MODIFIER * pModifiers;

} MIB_ENTRY, *PMIB_ENTRY;

Members:

Name - Relative name of the object (e.g., “sysDescr”).

Definition - Description in terms of known objects though normally parent (e.g., “system 1”).

Identifier - Object identifier relative to “internet” (e.g., “mgmt.mib-2.system.sysDescr”).

Syntax - Type identifier (same as MIB_OBJECT).

Access - Maximum level of access (same as MIB_OBJECT).

Flags - Optional characteristics of object. None currently defined.

pParent - Pointer to the object’s parent.

pChildren - Pointer to a list of the object’s children.

pSiblings - Pointer to a list of the object’s siblings.

pModifiers - Pointer to a list of structures detailing the properties of the object.

Building Symbol Table

The code generation utility relies on the MOSY compiler to perform syntax checking and to convert the MIB into an easy-to-parse format. Each line in the MOSY output file is either an object definition or an object modifier. If the code generator encounters an object definition then the name is added to the symbol table and the related MIB_ENTRY structure is filled in. If an object modifier is encountered then the associated symbol is looked up via a hash table and a MIB_MODIFIER structure is added to the object’s MIB_ENTRY structure. Once all of the symbols have been added to the table, the object lineage is resolved by walking the symbol table and recursing through the object definitions. Once all of the object identifiers have been qualified up to a point (“iso.org.dod.internet”) then the information is ready to be handed over to the code generation routines.

SnmpSfxLoadMibEntries

DWORD

SnmpSfxLoadMibEntries(

 IN PSTR pDefsFile,

 OUT PMIB_ENTRY * ppEntries

);

Arguments:

pDefsFile - Name of file containing mib entries.

ppEntries - Pointer to receive pointer to tree of mib entries.

Return Status:

Returns NO_ERROR if successful.

Routine Description:

This routine is used to load mib objects from a .defs file.

SnmpSfxFreeMibEntries

DWORD

SnmpSfxFreeMibEntries(

 PMIB_ENTRY pEntries

);

Arguments:

pEntries - Pointer to tree of mib entries.

Return Status:

Returns NO_ERROR if successful.

Routine Description:

This routine simply deallocates the memory allocated by SnmpSfxLoadMibEntries.

Generating Subagent Code

The five pieces of the subagent framework that need to be generated are the MIB entry data file, the MIB entry header file, the instrumentation callback header file, the instrumentation callback skeleton code file, and the subagent entry point file (with optional downlevel support).

Generating MIB Objects Data File

The MIB object data file contains all of the static structures describing the subagent’s view. The first component written to disk are the integer arrays which form the basis of the OIDs. All of the MIB_OBJECT structures and objects are written to the file as:

static DWORD <table1>IDS = {1};

static DWORD <entry1>IDS = {1,1};

static DWORD <scalar1>IDS = {1,1,1};

static DWORD <scalar2>IDS = {1,1,2};

For any object with properties, a property list is then written immediately below:

static MIB_PROPERTY <entry1>PROP1 = { … };

static MIB_PROPERTY <scalar2>PROP1 = { … };

The MIB object array is then generated:

MIB_OBJECT <module>OBJS[] = {

 {

 DEFINE_OID(<table1>IDS),

 SNMP_SYNTAX_AGGREGATE,

 MIB_ACCESS_NONE,

 0,

 NULL,

 NULL,

 &<module>OBJS[<scalar1>INDEX],

 DEFINE_NO_INSTR()

 },

 {

 DEFINE_OID(<entry1>IDS),

 SNMP_SYNTAX_AGGREGATE,

 MIB_ACCESS_NONE,

 0,

 &<entry1>PROP1,

 &<module>OBJS[<table1>INDEX],

 &<module>OBJS[<scalar1>INDEX],

 DEFINE_NO_INSTR()

 },

 {

 DEFINE_OID(<scalar1>IDS),

 SNMP_SYNTAX_INT32,

 MIB_ACCESS_READ_ONLY,

 MIB_FLAGS_TABLE_INDEX,

 NULL,

 &<module>OBJS[<entry1>INDEX],

 &<module>OBJS[<scalar2>INDEX],

 DEFINE_INSTR(<scalar1>,<entry1>DATA,<entry1>PROC)

 },

 {

 DEFINE_OID(<scalar2>IDS),

 SNMP_SYNTAX_INT32,

 MIB_ACCESS_READ_ONLY,

 MIB_FLAGS_TABLE_INDEX,

 &<scalar2>PROPS,

 &<module>OBJS[<entry1>INDEX],

 NULL,

 DEFINE_INSTR(<scalar2>,<entry1>DATA,<entry1>PROC)

 }

}

Finally, all of the elements are brought together to form the view structure.

MIB_VIEW <module>VIEW = DEFINE_VIEW(<module>IDS,<module>OBJS);

Generating MIB Objects Header File

The MIB object header file contains the indices of the OBJS array.

#define <table1>INDEX		0

#define <entry1>INDEX 		<table1>INDEX+1

#define <scalar1>INDEX		<entry1>INDEX+1

#define <scalar2>INDEX		<scalar1>INDEX+1

Generating Instrumentation Header File

The instrumentation header file contains all of the prototypes for the subagent callbacks as well as the type definitions for their respective data buffers. Each group or table has a callback.

typedef struct {

 SNMP_VALUE <scalar1>;

 SNMP_VALUE <scalar2>;

} <entry1>DATA;

DWORD

CALLBACK

<entry1>PROC(

 PMIB_ACTION pAction

);

Generating Instrumentation Skeleton Code

The skeleton code is then just a matter of copying the prototypes into a file.

DWORD

CALLBACK

<entry1>PROC(

 PMIB_ACTION pAction

)

{

 return MIB_S_UNSUPPORTED;

}

Extensible Agent

In order be compatible with AgentX functionality, the NT 5.0 extensible agent will be modified to support subagent requests via a callback procedure table which can be invoked after initialization to perform such tasks as dynamically adding or removing supported views, reserving table indices, etc. (see next section). Depending upon the progress of the IETF Agent Extensibility working group, support for the AgentX protocol itself may or may not be included in this release. The NT 5.0 extensible agent will be modified to be bilingual supporting both SNMPv1 and SNMPv2c including support for the SNMPv2 MIB (which includes the MIB-II system group). Heap validation will be added to the initialization code to protect against any ill-behaved downlevel subagents.

SNMPv2c Support

Agent support of SNMPv2c consists mainly of handling:

new PDUs (GetBulkRequest-PDU, SNMPv2-Trap-PDU)

new simple object types (BITS)

new application object types (Integer32, Uinteger32, Counter32, Gauge32, Counter64)

new object type extensions (UNITS, MAX-ACCESS, IMPLIED, AUGMENTS)

new error codes (noAccess, wrongType, wrongLength, wrongEncoding, wrongValue, noCreation, inconsistentValue, resourceUnavailable, commitFailed, undoFailed, authorizationError, notWritable, inconsistentName)

subagent registration of sysORID for sysORTable.

Downlevel Subagent Heap Validation

The Windows NT 3.1 and 3.5 subagent interface required developers to allocate memory via malloc() and release dynamically-allocated memory via free(). This proved to be a poor decision because it was based on the assumption that the runtime each subagent used resolved to the same system heap. In Windows NT 3.51, it was decided to use GlobalAlloc()/GlobalFree() instead but many subagent developers were using old SDKs with the malloc()/free() macros causing the NT agent to appear to be quite unstable when mismatching heaps were encountered during a request. In Windows NT 4.0, these macros were eliminated and a subagent utility DLL was introduced with an memory allocation API (SnmpUtilMemAlloc()/SnmpUtilMemFree()) which map directly to GlobalAlloc()/GlobalFree(). It is important that the Windows NT 5.0 agent be protected from earlier agents using bogus memory allocation schemes. Since it is the subagent’s responsibility to pass back a dynamically allocated variable-binding name when the original does not match the value being returned, the following scheme is to be deployed to detect ill-behaved subagents:

allocate test variable-binding with OID 0.0 and type ASN_NULL.

pass variable-binding into downlevel subagent’s SnmpExtensionQuery entry point with the PDU request type of GETNEXT.

downlevel subagent returns the first object in that particular MIB view and in doing so should dynamically allocate new OID via some memory allocation routine and free our dynamically allocated OID via some memory deallocation routine.

if an exception is raised when the subagent attempts to release the OID 0.0 then the view is ignored and the subagent DLL is unloaded.

if the subagent successfully passes back an OID then it is passed to HeapValidate() along with the handle of the process heap.

the subagent DLL is allowed to remain loaded only if this function returns success

Registry Settings

The Windows NT 5.0 extensible agent must be much more configurable than it’s predessors and updates to the registry should be immediately reflected in the service. The following are the new registry settings for the SNMP service (HKLM\System\CurrentControlSet\Services\SNMP). All are values under the Parameters key except ExtensionAgents which is a separate subkey.

ExtensionAgents

For downlevel compatibility, this registry subkey has not changed. As in previous versions of NT, this subkey consists of a monotonically increasing list of integer values which serve as an index into the table of registered subagents. Each subagent registers a separate registry subkey under the next available integer value and this serves as an indirection to the subagent specific data such as DLL path etc. The following is an example:

 Key Name: SYSTEM\CurrentControlSet\Services\SNMP\Parameters\ExtensionAgents

Value Name: 1

 Type: REG_SZ

 Data: SOFTWARE\Microsoft\LANManagerMIB2Agent\CurrentVersion

Value Name: 2

 Type: REG_SZ

 Data: SOFTWARE\Microsoft\RFC1156Agent\CurrentVersion

The subagent registry key would then look like:

 Key Name: SOFTWARE\Microsoft\RFC1156Agent\CurrentVersion

Value Name: Pathname

 Type: REG_EXPAND_SZ

 Data: %SystemRoot%\System32\inetmib1.dll

where Pathname is the path of the subagent DLL. Note this is the only subagent specific value that developers need to specify here. Other optional settings may be added in the future but no changes will be made that inhibit compatibility with downlevel extensible agents.

TrapDestinations

This value contains a list of managers who wish to receive traps from the extensible agent. Each trap destination entry also specifies the community string to place in the outgoing trap PDU. The manager data string can be a host name, an IP address, or an IPX address. In Windows NT 5.0, the trap destination list will look like the following:

 Key Name: SYSTEM\CurrentControlSet\Services\SNMP\Parameters

Value Name: TrapDestinations

 Type: REG_MULTI_SZ

 Data: manager1

 community1

 manager2

 community2

 manager3

 community3

PermittedManagers

This value contains a list of managers who have permission to send requests to the extensible agent. This value replaces the PermittedManagers registry subkey.

 Key Name: SYSTEM\CurrentControlSet\Services\SNMP\Parameters

Value Name: PermittedManagers

 Type: REG_MULTI_SZ

 Data: manager1

 manager2

 manager3

ReadWriteCommunities

This value contains a list of communities which have read-write access to the extensible agent’s managed objects. This value replaces the ValidCommunities registry subkey.

 Key Name: SYSTEM\CurrentControlSet\Services\SNMP\Parameters

Value Name: ReadWriteCommunities

 Type: REG_MULTI_SZ

 Data: community1

 community2

 community3

ReadOnlyCommunities

This value contains a list of communities which have read-only access to the extensible agent’s managed objects. This value is new for Windows NT 5.0.

 Key Name: SYSTEM\CurrentControlSet\Services\SNMP\Parameters

Value Name: ReadOnlyCommunities

 Type: REG_MULTI_SZ

 Data: community1

 community2

 community3

EnableAuthenticationTraps

This boolean specifies whether or not authentication traps should be sent if an invalid community is encountered in an incoming PDU. This value replaces the EnableAuthenticationTraps registry subkey.

 Key Name: SYSTEM\CurrentControlSet\Services\SNMP\Parameters

Value Name: EnableAuthenticationTraps

 Type: REG_DWORD

 Data: 0x1

AuditingFlags

The value specifies the auditing level desired. The following options are available:

#define SNMP_AUDIT_NONE (0x00000000L)

#define SNMP_AUDIT_WRITE_SUCCESS (0x00000001L)

#define SNMP_AUDIT_WRITE_FAILURE (0x00000002L)

#define SNMP_AUDIT_READ_SUCCESS (0x00000004L)

#define SNMP_AUDIT_READ_FAILURE (0x00000008L)

This value is new for Windows NT 5.0.

 Key Name: SYSTEM\CurrentControlSet\Services\SNMP\Parameters

Value Name: AuditingFlags

 Type: REG_DWORD

 Data: 0x1

LogLevel

This value specifies the logging level desired. The following levels are available:

#define SNMP_LOGLEVEL_SILENT (0x00000000L)

#define SNMP_LOGLEVEL_FATAL (0x00000001L)

#define SNMP_LOGLEVEL_ERROR (0x00000002L)

#define SNMP_LOGLEVEL_WARNING (0x00000003L)

#define SNMP_LOGLEVEL_TRACE (0x00000004L)

#define SNMP_LOGLEVEL_VERBOSE (0x00000005L)

This value is new for Windows NT 5.0.

 Key Name: SYSTEM\CurrentControlSet\Services\SNMP\Parameters

Value Name: LogLevel

 Type: REG_DWORD

 Data: 0x1

LogType

This value specifies the type of log desired. The following types are available:

#define SNMP_LOGTYPE_CONSOLE (0x00000001L)

#define SNMP_LOGTYPE_LOGFILE (0x00000002L)

#define SNMP_LOGTYPE_EVENTLOG (0x00000004L)

#define SNMP_LOGTYPE_DEBUGGER (0x00000008L)

This value is new for Windows NT 5.0.

 Key Name: SYSTEM\CurrentControlSet\Services\SNMP\Parameters

Value Name: LogType

 Type: REG_DWORD

 Data: 0x1

SystemName

This value contains the admin-assigned name of the host on which the extensible agent resides and is returned by the extensible agent as mib-2.system.sysName.

This value replaces the value SYSTEM\CurrentControlSet\Services\SNMP\Parameters\RFC1156Agent\sysName.

 Key Name: SYSTEM\CurrentControlSet\Services\SNMP\Parameters

Value Name: SystemName

 Type: REG_SZ

 Data: HOST1

SystemContact

This value contains the name of the contact person for the host on which the extensible agent resides and is returned by the extensible agent as mib-2.system.sysContact.

This value replaces the value SYSTEM\CurrentControlSet\Services\SNMP\Parameters\RFC1156Agent\sysContact.

 Key Name: SYSTEM\CurrentControlSet\Services\SNMP\Parameters

Value Name: SystemContact

 Type: REG_SZ

 Data: ADMIN1

SystemLocation

This value contains the location of the host on which the extensible agent resides and is returned by the extensible agent as mib-2.system.sysLocation.

This value replaces the value SYSTEM\CurrentControlSet\Services\SNMP\Parameters\RFC1156Agent\sysLocation.

 Key Name: SYSTEM\CurrentControlSet\Services\SNMP\Parameters

Value Name: SystemLocation

 Type: REG_SZ

 Data: LOCATION1

SystemServices

This value indicates the set of services that the host primarily offers and is returned by the extensible agent as mib-2.system.sysServices. The defined services are described in [4].

This replaces SYSTEM\CurrentControlSet\Services\SNMP\Parameters\RFC1156Agent\sysServices.

 Key Name: SYSTEM\CurrentControlSet\Services\SNMP\Parameters

Value Name: SystemServices

 Type: REG_DWORD

 Data: 0x4c

References

[1] Rose, M., and K. McCloghrie, "Structure and Identification of

 Management Information for TCP/IP-based internets", STD 16, RFC

 1155, May 1990.

[2] Case, J., Fedor, M., Schoffstall, M., Davin, J., "Simple Network

 Management Protocol", STD 15, RFC 1157, SNMP Research, Performance

 Systems International, MIT Laboratory for Computer Science, May

 1990.

[3] Rose, M., and K. McCloghrie, "Concise MIB Definitions", STD 16,

 RFC 1212, March 1991.

[4] Rose M., Editor, "Management Information Base for Network

 Management of TCP/IP-based internets: MIB-II", RFC 1213,

 Performance Systems International, March 1991.

[5] SNMPv2 Working Group, Case, J., McCloghrie, K., Rose, M., and

 S. Waldbusser, " Introduction to Community-based SNMPv2", RFC 1901,

 January 1996.

[6] SNMPv2 Working Group, Case, J., McCloghrie, K., Rose, M., and

 S. Waldbusser, "Structure of Management Information for Version 2

 of the Simple Network Management Protocol (SNMPv2)", RFC 1902,

 January 1996.

[7] SNMPv2 Working Group, Case, J., McCloghrie, K., Rose, M., and

 S. Waldbusser, "Textual Conventions for Version 2 of the Simple

 Network Management Protocol (SNMPv2)", RFC 1903, January 1996.

[8] SNMPv2 Working Group, Case, J., McCloghrie, K., Rose, M., and

 S. Waldbusser, "Conformance Statements for Version 2 of the Simple

 Network Management Protocol (SNMPv2)", RFC 1904, January 1996.

[9] SNMPv2 Working Group, Case, J., McCloghrie, K., Rose, M., and

 S. Waldbusser, "Protocol Operations for Version 2 of the Simple

 Network Management Protocol (SNMPv2)", RFC 1905, January 1996.

[10] SNMPv2 Working Group, Case, J., McCloghrie, K., Rose, M., and

 S. Waldbusser, "Transport Mappings for Version 2 of the Simple

 Network Management Protocol (SNMPv2)", RFC 1906, January 1996.

[11] SNMPv2 Working Group, Case, J., McCloghrie, K., Rose, M., and

 S. Waldbusser, "Management Information Base for Version 2 of the

 Simple Network Management Protocol (SNMPv2)", RFC 1907,

 January 1996.

[12] SNMPv2 Working Group, Case, J., McCloghrie, K., Rose, M., and

 S. Waldbusser, "Coexistence between Version 1 and Version 2

 of the Internet-standard Network Management Framework", RFC 1908,

 January 1996.

�PAGE �

�PAGE �
3
�

