Microsoft® TAPI® Video Capture Filter
VfW, WDM, and Videoconferencing Accelerator support
Design Specification – Draft

Author: Philippe Ferriere
Revision 0.1.154, 28 February, 1999
This documentation is an early release of the final product documentation. It is meant to accompany software that is still in development. Some of the information in this documentation may be inaccurate or may not be an accurate representation of the functionality of the final retail product. Microsoft assumes no responsibility for any damages that might occur either directly or indirectly from these inaccuracies.
51.
Introduction

1.1
Intended audience
6
1.2
Conventions
6
1.3
Document organization
7
2.
Definition of terms
7
3.
Video capture overview
13
3.1
VfW video capture
13
3.2
WDM video capture
14
3.2.1
Components of WDM Streaming
14
3.2.2
KSProxy
15
3.2.3
Streams, pins and formats
15
4.
TAPI local video architecture
15
4.1
TAPI 3.0 overview
15
4.2
Call and media controls
16
4.2.1
TAPI 3.0 COM object
17
4.2.2
TAPI server
17
4.2.3
Call control functions
17
4.2.4
Media control functions
17
4.3
Local video filter graph
17
4.3.1
VfW capture devices
18
4.3.1.1
Default implementation
18
4.3.1.2
Support for installable codec
20
4.3.2
WDM capture devices
22
4.3.2.1
Default implementation
22
4.3.2.2
Support for installable codec
24
4.3.3
Videoconferencing Accelerators
26
4.4
TAPI MSP video capture filter and WDM video capture
28
4.5
TAPI MSP video capture filter and VfW video capture
28
5.
Video capture filter streams
30
5.1
Output streams
31
5.2
Input streams
32
6.
Video capture filter stream formats
32
6.1
Media types for video preview streams
33
6.2
Media types for capture and still-image streams
34
6.3
Media type for H.26x compressed video and still-image streams
34
6.3.1
Video info header structure for H.263 video streams
34
6.3.2
Video info header structure for H.261 video streams
35
6.3.3
Bitmap info header structure for H.263 video streams
36
6.3.4
Bitmap info header structure for H.261 video streams
40
6.4
Media type for RTP packetization descriptor streams
41
6.4.1
Configuration capabilities structure for RTP packetization descriptor streams
41
6.4.2
Information header structure for RTP packetization descriptor streams
42
6.4.3
RTP packetization descriptor format
43
6.4.4
RTP packetization descriptor and video streams synchronization
46
6.5
Media type enumeration
47
6.5.1
First time use
47
6.5.2
Known capture device
48
6.5.3
Quality Assurance
48
7.
Video capture filter application interfaces
48
7.1
VfW specific capture device application interface
49
7.1.1
VfwCaptureDialogs enumerated data type
49
7.1.2
HasDialog method
50
7.1.3
ShowDialog method
50
7.1.4
SendDriverMessage method
51
7.2
WDM capture device and Videoconferencing Accelerator specific application interfaces
52
7.2.1
IAMCrossbar interface
52
7.2.2
PhysicalConnectorType enumerated data type
53
7.2.3
get_PinCounts method
53
7.2.4
CanRoute method
54
7.2.5
Route method
54
7.2.6
get_IsRoutedTo method
55
7.2.7
get_CrossbarPinInfo method
55
7.3
VfW, WDM capture device and Videoconferencing Accelerator application interfaces
56
7.3.1
IAMVideoProcAmp interface
56
7.3.1.1
VideoProcAmpProperty enumerated data type
58
7.3.1.2
VideoProcAmpFlags enumerated data type
59
7.3.1.3
GetRange method
59
7.3.1.4
Set method
60
7.3.1.5
Get method
61
7.3.2
IAMCameraControl interface
62
7.3.2.1
CameraControlProperty enumerated data type
63
7.3.2.2
CameraControlFlags enumerated data type
64
7.3.2.3
GetRange method
65
7.3.2.4
Set method
65
7.3.2.5
Get method
66
7.3.3
IAMVideoControl interface
67
7.3.3.1
VideoControlFlags enumerated data type
68
7.3.3.2
GetCaps method
69
7.3.3.3
SetMode method
70
7.3.3.4
GetMode method
70
7.3.3.5
GetCurrentActualFrameRate method
71
7.3.3.6
GetFrameRateList method
71
7.3.3.7
GetMaxAvailableFrameRate method
72
8.
Video capture filter H.245 video capability MSP interface
73
8.1.1
IH245VideoCapability interface
74
8.1.2
NegotiatedVideoLimit enumerated data type
75
8.1.3
VideoResourceBounds structure
75
8.1.4
H245VideoCapabilityMap structure
76
8.1.5
H245VideoCapabilityTable structure
76
8.1.6
GetH245VersionID method
77
8.1.7
GetFormatTable method
77
8.1.8
ReleaseFormatTable method
78
8.1.9
IntersectFormats method
78
8.1.10
GetLocalFormat method
79
8.1.11
GetNegotiatedLimitProperty method
80
8.1.12
ReleaseNegotiatedCapability method
80
8.1.13
SetIDBase method
81
8.1.14
FindIDByRange method
81
9.
Video capture output pin TAPI interfaces
82
9.1
VfW and WDM capture device capture output pin TAPI interfaces
82
9.1.1
ICPUControl interface
82
9.1.2
IFrameRateControl interface
83
9.2
Compressed video output pin TAPI interfaces
83
9.2.1
IH245EncoderCommand interface
85
9.2.1.1
videoFastUpdatePicture command
86
9.2.1.2
videoFastUpdateGOB command
87
9.2.1.3
videoFastUpdateMB command
88
9.2.1.4
videoSendSyncEveryGOB and videoSendSyncEveryGOBCancel commands
89
9.2.1.5
videoNotDecodedMBs indication
90
9.2.1.6
FlowControl command
91
9.2.1.7
videoTemporalSpatialTradeOff command
91
9.2.1.8
H.245 mode requests
92
9.2.2
INetworkStats interface
92
9.2.2.1
SetChannelErrors method
93
9.2.2.2
GetChannelErrors method
94
9.2.2.3
GetChannelErrorsRange method
95
9.2.2.4
SetPacketLossRate method
96
9.2.2.5
GetPacketLossRate method
97
9.2.2.6
GetPacketLossRateRange method
98
9.2.3
ICPUControl interface
99
9.2.3.1
SetMaxProcessingTime method
100
9.2.3.2
GetMaxProcessingTime method
101
9.2.3.3
GetMaxProcessingTimeRange method
102
9.2.3.4
SetMaxCPULoad method
103
9.2.3.5
GetMaxCPULoad method
103
9.2.3.6
GetMaxCPULoadRange method
104
9.2.4
IBitrateControl interface
106
9.2.4.1
SetMaxBitrate method
106
9.2.4.2
GetMaxBitrate method
107
9.2.4.3
GetMaxBitrateRange method
108
9.2.5
IFrameRateControl interface
109
9.2.5.1
SetMaxFrameRate method
110
9.2.5.2
GetMaxFrameRate method
111
9.2.5.3
GetMaxFrameRateRange method
111
9.2.6
IProgressiveRefinement interface
112
10.
Video preview output pin TAPI interfaces
113
10.1
VfW and WDM capture device preview output pin TAPI interfaces
113
10.1.1
ICPUControl interface
113
10.1.2
IFrameRateControl interface
114
10.2
Videoconferencing Accelerator preview output pin TAPI interfaces
114
10.2.1
ICPUControl interface
114
10.2.2
IFrameRateControl interface
115
11.
Compressed still-image output pin TAPI interfaces
115
11.1
IProgressiveRefinement interface
116
11.1.1
doOneProgression method
117
11.1.2
doContinuousProgressions method
117
11.1.3
doOneIndependentProgression method
118
11.1.4
doContinuousIndependentProgressions method
118
11.1.5
progressiveRefinementAbortOne method
119
11.1.6
progressiveRefinementAbortContinuous method
119
11.2
INetworkStats interface
120
11.3
ICPUControl interface
120
11.4
IBitrateControl interface
120
12.
RTP packetization descriptor output pin TAPI interface
120
12.1
IRTPPDControl interface
121
12.1.1
SetMaxRTPPacketSize method
121
12.1.2
GetMaxRTPPacketSize method
122
12.1.3
GetMaxRTPPacketSizeRange method
123
13.
References
124
13.1
TAPI specifications
124
13.2
DirectShow SDK articles and documentation
125
13.3
WDM Stream class, WDM articles and documentation
125
13.4
ITU communications standards
126
13.5
IETF Request for comments
126

1. Introduction

Off-the-shelf video capture source filters have been designed with a heavy bias towards file-based video recording. As such, they typically capture video data to be stored in a multimedia file to be compressed with an arbitrary codec at a later time, at a fixed bitrate. They also try and capture at a constant frame rate to guarantee smooth video playback. Similarly, the video frame size remains constant during the entire capture process.

A video capture source filter designed for videoconferencing needs to satisfy a different set of requirements.

First, it needs to adapt its behavior to network conditions. This usually means being able to frequently adjust its output frame rate based on the amount of congestion observed over the wire. Similarly, the data it produces needs to be compressed in real-time. If there is not enough CPU available to guarantee real-time encoding, here again, it needs to slow down its output frame rate.

Second, the encoders used to compress the video data are based on well know H.26x standards. Those encoders have many optional modes of operations that are enabled or disabled based on the capabilities of the remote endpoint. There is a lot of value in making this information available to the video capture source filter in order to optimize the capture/encoding process. Making the encoder part of the capture filter also allows us to build simpler, more efficient, and identical graphs for VfW, WDM capture devices and Videoconferencing Accelerators. In order to allow mode request changes, an endpoint needs to build a list of Transmit capabilities that is based on the capture device and video encoder capabilities. This is, here too, better handled if the encoder is part of the video capture filter. Also, as explained in the previous paragraph, the encoder needs to adjust its output bitrate, either based on network conditions or to answer an H.245 call control command. The encoder does some form of bitrate control, but may be unable to reach the target output bitrate on its own, if the video capture frame rate is simply too high for instance. A combined capture/encoder filter makes this process simpler to manage.

Third, the video frame size of the captured video data does not have to remain constant during an entire H.323 call. As a matter of fact, users tend to often modify their local video frame size, or the remote endpoint frame size, to compensate for low video frame rate or poor video quality by reducing the image size for instance. A good videoconferencing capture source filter memory allocator needs to be able and anticipate those dynamic format changes to be as responsive as possible.

In order to provide the best user experience, this document describes a new TAPI MSP Video Capture filter. This filter reuses some of the code that has been developed for the off-the-shelf VfW (QCAP) and WDM (KSProxy) video capture filters, but adds a significant amount of powerful processing functions to the capture process to meet all the requirements discussed above (section 4).

We describe extended bitmap info headers for H.261 and H.263 video streams to communicate to the TAPI MSP Video Capture filter a list of media types supported by the remote endpoint. Still, the decision to use optional compression modes is left to the TAPI MSP Video Capture filter (section 6). The current VfW off-the-shelf capture filter does not have a way to expose all the capabilities of the capture device. We create our own media type enumeration process to compensate for this limitation (section 6.5).

The TAPI MSP Video Capture filter also supports a number of DirectShow interfaces (IAMVfwCaptureDialogs, IAMCrossbar, IAMVideoProcAmp, IAMCameraControl, IAMVideoControl) to provide better control over the capture process to TAPI applications (section 7).

We introduce a new H.245 Video Capability interface (IH245VideoCapability) supported by the TAPI MSP Video Capture filter to be used by the MSP in order to provide the TAPI MSP Capability module with a table of estimated steady-state resource requirements as related to each format that the capture device supports (section 8)

We define a new H.245 command interface (IH245EncoderCommand) to communicate to the TAPI MSP Video Capture filter requests for I-frame, group of blocks, or macro-block updates due to packet loss or multi-point switching (section 9.2.1). We introduce a network statistics interface (INetworkStats), to allow the network to provide feedback on the channel conditions to the compressed video output pin of the TAPI MSP Video Capture filter. The TAPI MSP Video Capture filter is responsible for taking appropriate actions, if needed (section 9.2.2). The TAPI MSP Video Capture filter also implements three control interfaces (ICPUControl, IFrameRateControl, IBitrateControl) to be used by the TAPI MSP Quality Controller to provide the best user experience (sections 9.2.3 to 9.2.5).

The TAPI MSP Video Capture filter also exposes a preview output pin that can be controlled independently of the capture output pin (section 10). The data produced by this pin will be rendered using overlay or a video port if supported by the capture device.

The TAPI MSP Video Capture filter exposes an interface (IProgressiveRefinement) on its compressed video output pin to allow for transmission of high-resolution stills that are continuously improved on the remote endpoint as more data is received and decompressed. The TAPI MSP Video Capture filter may also elect to implement this same interface on an optional separate and dedicated still-image output pin (section 11).

Finally, the TAPI MSP Video Capture filter exposes an RTP packetization descriptor output pin synchronized to the compressed capture output pin. The downstream RTP Network Sink filter uses this second pin to understand how to better fragment the compressed video data into network RTP packets.

1.1 Intended audience

The reader should have a good understanding of the DirectShow model and its operation, the VfW and WDM video capture architectures, as well as ITU-T standards H.245, H.261 and H.263.

1.2 Conventions

In this document the following conventions are used:

· "Shall" indicates a mandatory requirement,

· "Should" indicates a suggested but optional course of action,

· "May" indicates an optional course of action rather than a recommendation that something take place.

References to Sections, Paragraphs, Annexes, and Appendices refer to those items within this specification unless another document is explicitly listed.

1.3 Document organization

Section 2 of this document defines the terms used in this specification.

Section 3 and 4 provide background information on the VfW and WDM video capture architectures and how the TAPI MSP gets access to capture services using the TAPI MSP Video Capture filter.

Section 5 describes the streams opened on the TAPI MSP Video Capture filter, including the video preview stream, video port video preview stream, video capture stream, still-image stream, and RTP packetization descriptor stream.

Section 6 lists the formats of preview and capture output streams, as well as H.26x compressed video and still-image output streams (section 6.3) and RTP packetization descriptor output streams (section 6.4). It also details the media type enumeration process used by the TAPI MSP Video Capture filter for VfW and WDM capture devices (section 6.5).

Section 7 enumerates the DirectShow interfaces and associated property sets on the TAPI MSP Video Capture filter exposed by the TAPI MSP to applications.

Section 8 details the H.245 video capability interface used to provide the TAPI MSP Capability module with a table of estimated steady-state resource requirements as related to each format that the TAPI MSP Video Capture filter supports.

Section 9 provides the list of interfaces and associated property sets exposed on the video output streams exposed by the TAPI MSP to the Channel Controller, Quality Controller and the downstream network send filter. Section 9.2.1 documents a new interface designed to handle H.245 commands. Section 9.2.2 introduces a network statistics interface created to provide feedback on network conditions. Sections 9.2.3, 9.2.4, and 9.2.5 describe CPU, bandwidth, and bitrate control interfaces.

Section 10 describes the list of interfaces and associated property sets on the preview output stream used by the TAPI MSP Quality Controller.

Section 11 describes the list of interfaces and associated property sets on the compressed still-image output stream exposed by the TAPI MSP to the TAPI MSP Channel Controller and the downstream network send filter. Section 11.1 documents a new interface designed to handle H.245 progressive refinement commands.

Section 12 describes the interface and associated property set on the RTP packetization descriptor output stream exposed by the TAPI MSP to the TAPI MSP Quality Controller.

2. Definition of terms

Adapter: See Device.

Channel Controller: The TAPI MSP Channel Controller is the reliable channel used to carry the control information messages (following H.245) between two H.323 endpoints.

Class Driver: A Microsoft-provided class driver is an intermediate driver designed to provide a simple interface between a vendor-written minidriver and the operating system. It provides system-required, hardware-independent support for a given class of physical devices. Such a driver communicates with a corresponding hardware-dependent port driver, using a set of system-defined device control requests, possibly with additional driver-defined device control requests. Under WDM, the class driver creates a device object to represent each adapter registered by minidrivers. The class driver is responsible for multiprocessor and interrupt synchronization

Codec: Coder/Decoder. A filter for data that manipulates it in some form, usually by compressing or decompressing the data stream.

Component Object Model (COM): The OLE object-oriented programming model that defines how objects interact within a single process or between processes. In COM, clients have access to an object through interfaces implemented on the object. See also Interface.

COM Object: An object that conforms to the OLE Component Object Model (COM). A COM object is an instance of an object definition, which specifies the object's data and one or more implementations of interfaces on the object. Clients interact with a COM object only through its interfaces. See also Component Object Model and Interface.

Connection: A negotiated method of communication between devices, whether implemented in hardware or software.

Device: For WDM, usually refers to a device object, but also refers to a unit of hardware - for example, a video capture adapter - that is detected by Plug and Play.

Device Node: The basic data structure for a given device, built by the Configuration Manager. Device nodes are built into memory at system startup for each device and enumerator. Each device node contains information about the device, such as currently assigned resources. The complete hierarchical representation of all device nodes, representing all currently installed devices, is referred to as the hardware tree.

Device Object: A kernel-mode-only object type used to represent a physical, logical, or virtual device whose driver has been loaded into the system.

DirectShow: Microsoft® DirectShow™ (formerly called Microsoft® ActiveMovie™) is a media-streaming architecture for the Microsoft® Windows® platform that enables the high-quality capture and playback of multimedia streams.

Downstream Filter: The next filter in line to receive data from an upstream filter. An upstream filter sends data from its output pin to the connected input pin of the downstream filter.

Driver: Kernel-mode code used either to control or emulate a hardware device.

Driver Stack: Device objects that forward IRPs to other device objects. Stacking always occurs from the bottom up and is torn down from the top.

Encoder Filter: A specialized type of transform filter. Encoder filters (compressors) accept data, use a compression scheme to transform the data, and pass the compressed data downstream.

 Enumerator: A Plug and Play device driver that detects devices below its own device node, creates unique device IDs, and reports to Configuration Manager during startup.

Filter: Atomic component that provides the basic building blocks for processing data. Under the WDM Streaming architecture, this normally corresponds to a single Plug and Play Functional Device Object. Each filter’s capability is described in part by a number of connection points called pins. Each pin can consume or produce a data stream such as digital video. Specialized tasks can be solved by connecting filters by way of their pins into a topology - for example, to play filtered and mixed audio. Under WDM, a filter is implemented as a kernel-mode entity that is a device object usually implemented by a kernel driver. Under DirectShow, a filter is a user-mode entity that is an instance of a COM object, usually implemented by a DLL.

Filter Graph: A collection of filters. Typically, a filter graph contains filters that are connected to perform a particular operation, such as playing back a media file, or capturing video from a VCR to the hard disk.

Format Type: A GUID value that indicates what a format block contains. DirectShow defines a number of major types, for example, the video type. These major types have a format block, such as VIDEOINFOHEADER, that describes the media data. The format block for a particular media type is specified by a GUID in the AM_MEDIA_TYPE structure. This GUID is called the format type. If the format block contains VIDEOINFOHEADER, the format type GUID is FORMAT_VideoInfo.

Functional Device Object: Under Plug and Play, this is the device object created by a driver during notification that a new instance is necessary because of exposure by an Enumerator.

GOB: Group-Of-Blocks. In H.263, a GOB consists of a row of k*16 lines with k=1 for sub-QCIF, QCIF and CIF, k=2 for 4CIF and k=4 for 16CIF; thus there are 6GOBs for sub-QCIF, 9 for QCIF, and 18 for CIF, 4CIF, and 16CIF. Data for each GOB consists of a GOB header (which may be empty) followed by data for each of the macroblocks (MBs) contained in a GOB.

GUID: A globally unique identifier used to uniquely identify objects, such as interfaces and plug-in distributors. Class identifiers (CLSIDs) and interface identifiers (IIDs) are GUIDs.

H.245: ITU Recommendation H.245. This Recommendation specifies syntax and semantics of terminal information messages as well as procedures to use them for in-band negotiation at the start of or during communication. The messages cover receiving and transmitting capabilities as well as mode preference from the receiving end, logical channel signaling, and Control & Indication. Acknowledged signaling procedures are specified to ensure reliable audiovisual and data communication.

H.261: ITU Recommendation H.261. This Recommendation describes the video coding and decoding methods for the moving picture component of audiovisual services at the rates of px64 kbit/s, where p is in the range 1 to 30.

H.263: ITU Recommendation H.263. This Recommendation specifies a coded representation that can be used for compressing the moving picture component of audio-visual services at low bit rates. The basic configuration of the video source coding algorithm is based on Recommendation H.261 and is a hybrid of inter-picture prediction to utilize temporal redundancy and transform coding of the remaining signal to reduce spatial redundancy. The source coder can operate on five standardized video source formats. The decoder has motion compensation capability, allowing optional incorporation of this technique in the coder. Half pixel precision is used for the motion compensation, as opposed to Recommendation H.261 where full pixel precision and a loopfilter are used. Variable length coding is used for the symbols to be transmitted. In addition to the basic video source-coding algorithm, negotiable coding options are included for improved compression performance and the support of additional capabilities. Additional supplemental information may also be included in the bitstream for enhanced display capability and for external usage.

Hardware Branch: The hardware archive root key in the registry that is a superset of the memory-resident hardware tree. Although the hardware tree contains information only about those devices currently detected and running in the system, the registry contains a complete list of all hardware ever installed on the particular computer. The hardware root key is HKEY_LOCAL_MACHINE\Hardware.

Hardware Tree: A record in RAM of the current system configuration based on the configuration information for all devices in the hardware branch of the registry. The hardware tree is created each time the system is started or whenever a dynamic change occurs to the system configuration.

In-Process Server: A server implemented as a DLL that runs in the process space of the client. See also Out-of-process server, Local server, and Remote server.

Input Pin: A pin that accepts data into the filter.

Interface: For parameters on a connection request, a specific set of methods and properties implemented on a medium that a filter connection uses to communicate, such as a specific set of IOCTLs. In COM, A group of semantically related functions that provide access to a COM object. Each OLE interface defines a contract that allows objects to interact according to the Component Object Model.

IOCTL: Input/output control. A custom class of IRPs available to user mode. Each WDM driver has a set of IOCTLs that it accepts to communicate with applications. The IOCTLs can be used to retrieve or give the driver information about intended usage by applications. The driver is responsible for all IOCTL parameter validation.

IRP: I/O request packet. Data structures that drivers use to communicate with each other. The basic method of communication between kernel-mode devices. An IRP is a key data structure for WDM, which features multiple layered drivers. In WDM, every I/O request is represented by an IRP that is passed from one driver layer to another until the request is complete. When a driver receives an IRP, it performs the operation the IRP specifies, and then either passes the IRP back to the I/O Manager for disposal or onto an adjacent driver layer. An IRP packet consists of two parts: a header and the I/O stack locations.

IRQ: Interrupt request. A method by which a device can request to be serviced by the device’s software driver. The system board uses a PIC to monitor the priority of the requests from all devices. When a request occurs, the microprocessor suspends the current operation and gives control to the device driver associated with the interrupt number issued.

ISR: Interrupt service routine. A routine whose function is to service a device when it generates an interrupt.

ITU: International Telecommunication Union.

Keyframe: A frame of video data that contains all the data necessary to construct that frame. In contrast, delta frames contain data relating to changes from the last keyframe and do not contain enough information by themselves to construct a complete frame.

KSProxy: KSProxy is a Microsoft-provided DirectShow filter whose role is to move a data stream down onto kernel-mode drivers and hardware components. KSProxy, running in non-kernel mode, accepts existing control interfaces (for example, the audio Wave APIs or the DirectSound APIs) and translates them into IOCTL calls to the Microsoft-provided WDM Streaming run-time library.

Layered Driver: One of a collection of drivers that responds to the same IRPs. Layered driver describes the highest-level and lowest-level drivers in a chain of layered drivers that process the same IRPs, along with all intermediate drivers in the chain.

Major Type: A GUID value that describes the overall class of media data for a data stream. Typical values are MEDIATYPE_Video, MEDIATYPE_Audio, MEDIATYPE_Text, and MEDIATYPE_Midi.

Master Clock: Controls the rate of reference time within a graph and is used by filters within the graph to synchronize presentation times. Provides a standard mechanism to query the reference time, to query the physical clock time and rate (compared to the system clock) of the owner of the master clock, and to establish event notifications based on position changes in the master clock’s reference time.

MB: Macroblock. In H.263, like in MPEG1-2, it consists of a 16x16 block of Y, and corresponding 8x8 blocks of each of the two chrominance components.

Method: A predefined interface function.

Minidriver: A minidriver is a hardware-specific DLL that uses a Microsoft-provided class driver to accomplish most actions through function calls, and provides only device-specific controls.

Minor Type: See subtype (media type).

MSP: Media Service Provider. A component in TAPI that handles media streams.

Out-Of-Process Server: A server, implemented as an .EXE application, which runs outside the process of its client, either on the same machine or a remote machine. See also Local server and Remote server.

Output Pin: A pin that provides data to other filters.

Payload Data: The data transported by RTP in a packet for example compressed video data.

Payload Header: For H.263 and H.261 RTP packets, the RTP fixed header is followed by the payload header, itself followed by the payload data.

Pin: A set of filter-defined properties in kernel streaming that specify a connection endpoint. In DirectShow, a COM object created by the filter that represents a point of connection for a data stream on the filter. Pins provide interfaces to connect with other pins and transport data. Input pins accept data into the filter, and output pins provide data to other filters. An input pin typically exposes the IPin and IMemInputPin interfaces. An output pin typically exposes the IPin, IMediaSeeking, and IQualityControl interfaces. A source filter provides one output pin for each stream of data in the file. A typical transform filter, such as a compression/decompression (codec) filter, provides one input pin and one output pin

Port Driver: A low-level driver that responds to a set of system-defined device control requests and possibly to an additional set of driver-defined (private) device control requests sent down by a corresponding class driver. A port driver insulates class drivers from the specifics of host bus adapters and synchronizes operations for all its class drivers.

Presentation Time: The stream time at which the packets of data that a filter receives should be presented downstream or rendered. When a filter graph runs, each filter is passed a start time according to the reference clock, and the packets of data that a filter receives will usually be time-stamped with the presentation time.

Property: In WDM and Windows NT device driver models, an aspect of the device or stream that can be set or retrieved, such as image brightness level.

Property Set: In WDM and Windows NT device driver models, a method defined to set and get properties on a driver. Each property set has a unique identifier, which represents types of related information and is used to access the property set.

Quality Controller: The TAPI MSP Quality Controller takes as an input application requests, behavior of streaming application components such as encoding and decoding filters, the current network characteristics, the current CPU usage, the remote endpoint requests. Based on those inputs, it applies commands onto the streaming components to guarantee the best user experience.

Renderer: A filter that renders media data to any location that accepts media input. Most often, data is rendered to a computer monitor, sound card, or printer. Renderer filters have only input pins.

Remote Server: A server application, implemented as an EXE, running on a different machine from the client application using it. See also In-process server, Local server, and Out-of-process server.

RTP: Real-Time Transport Protocol. RTP provides end-to-end network transport functions suitable for applications transmitting real-time data, such as audio, video or simulation data, over multicast or unicast network services.

Source Filter: A filter that takes data from some source such as the hard drive, network, or the Internet, and introduces it into the filter graph.

Stream: An object representing an entity on an adapter capable of receiving, processing, or supplying data. A stream is identical to a WDM Stream architecture pin. A stream can accept data from or supply data to the processor, such as a stream representing an H.263 input, or can simply route data through hardware, such as a stream representing an NTSC output jack on the back of an adapter. The purpose of representing non-data hardware with a stream is that the properties of the hardware can be controlled by software.

Subtype (media type): A GUID value that describes the specific format of media data for a data stream. Typical values include MEDIASUBTYPE_MJPG, MEDIASUBTYPE_RGB8, MEDIASUBTYPE_RGB565, MEDIASUBTYPE_MPEGPacket, MEDIASUBTYPE_Avi, and MEDIASUBTYPE_WAVE.

TAPI: Telephony API. TAPI is a set of APIs that enable applications to make PSTN and IP phone calls.

Time Stamp: Time on a media sample indicating when it was recorded and when it should be scheduled for playback. Time stamps are measured in 100-nanosecond units (REFERENCE_TIME) and are normalized so that zero indicates when the graph is run.

Transform Filter: A filter that takes data, processes it, and then passes it along to the next filter in the filter graph.

Transform-Inplace Filter: A transform filter that can perform its operation in place (without copying data or altering the data's media type).

Transport: The mechanism that channels audio data, video data, or both from an external device to the computer and from the computer to the external device.

Upstream Filter: The filter that passes data from its output pin to the connected input pin of the next filter in the filter graph.

USB: Universal Serial Bus. A bi-directional, isochronous, dynamically attachable serial interface for adding peripheral devices such as game controllers, serial and parallel ports, and input devices on a single bus.

USB Class: The class of filters under WDM that provides a bus interface and bus enumerator for USB.

WDM: Windows Driver Model. A kernel-mode driver model based on the Windows NT 4.0 driver model that is designed to provide a common architecture of I/O services and binary-compatible device drivers for both Windows 2000 and Windows 98 operating systems for specific classes of drivers. These driver classes include USB and IEEE 1394 buses, audio, still-image capture, video capture, and HID-compliant devices such as USB mice, keyboards, and joysticks. Provides a model for writing kernel-mode drivers and minidrivers, and provides extensions for Plug and Play and power management.

WDM Streaming: A WDM-based kernel-mode extension of Microsoft DirectShow, providing kernel connection and streaming services as used by the WDM Stream class driver and system software components provided in future versions of the Windows operating system, such as the cross-process audio mixer and sample rate converter. WDM streaming provides low-level services for the lowest latency streaming; DirectShow provides higher-level features. Operating system support includes a WDM Stream class driver that supports minidrivers for audio, video, and other types of stream input, output, and acceleration.

3. Video capture overview

This section provides an overview of video capture under the Windows 98 and Windows 2000 operating systems using the Video for Windows (VfW) and Windows Driver Model (WDM).

3.1 VfW video capture

Video for Windows (VfW) version 1.0 was released in November 1992 for the Windows 3.1 operating system and was optimized for capturing movies to disk. Despite a large number of clients for VfW, deficiencies in the VfW architecture exposed by the emergence of video conferencing and PC/TV convergence required the development of a new video-capture technology.

The VfW architecture lacked features important not only to video conferencing, but also television viewing, video field capture and ancillary data streams such as the Vertical Blanking Interval (VBI). Vendors have augmented VfW by implementing proprietary extensions to circumvent these limitations; but without standardized interfaces, applications that use these proprietary features must include hardware-dependent code.

VfW drivers will continue to be supported by TAPI for devices that are primarily used for capturing video because of their large installed base. However, TAPI’s dependence on VfW is expected to decline since the WDM Stream class provides optimal support for capture devices used primarily for conferencing, and no future enhancements to VfW will be developed by Microsoft.

3.2 WDM video capture

WDM video capture was designed to resolve problems inherent in the VfW architecture. The main advantages of WDM video capture are:

· Provides 32-bit drivers for devices with a 32-bit architecture, such as USB and IEEE 1394 conferencing cameras.

· Allows synergy with DirectShow and WDM Streaming.

· Shares a single class driver architecture (Stream.sys) for hardware (such as video ports and chip sets) between video capture devices and DVD/MPEG devices.

· Supports multiple streams.

· Allows television tuner and input selection.

· Supports field capture, field display, and VBI.

· Allows video input to be managed through the video port using DirectDraw® Video Port Extensions (VPE).

The WDM Stream class was created to resolve issues that arose from the integration of multiple components on a single adapter. These components include DVD decoders, MPEG decoders, video decoders, and tuners, as well as audio codecs. A unified driver model was needed that would support all these devices and handle resource contention.

The WDM Stream class supports a uniform streaming model for standard and custom data types. Similarly, property sets for most standard devices are defined and can be easily extended as needed. Because the Stream class follows WDM Streaming conventions, it also supports data transfer between kernel drivers without requiring a transition to user mode, resulting in greater efficiency and reduced latency.

The WDM Stream class also simplifies driver development by handling multiprocessor and reentrancy issues.

3.2.1 Components of WDM Streaming

WDM Streaming consists of several components used to implement kernel-mode streaming, including:

The WDM Streaming Library, which consists of the operating system components that enable WDM to stream data.

KSProxy, a DirectShow filter with COM interfaces, provides a generic method of presenting kernel streaming (KS) filters as DirectShow filters. TAPI uses a customized version of KSProxy to interact with WDM capture devices and Videoconferencing Accelerators. The next section provides an introduction to KSProxy’s functionality.

The WDM Stream Class driver, as described in the previous section.

3.2.2 KSProxy

KSProxy is a kernel streaming proxy module that exports COM interfaces to the standard property sets of kernel-mode components. This DirectShow filter allows a user-mode application to ‘drive’ a kernel-mode video or audio filter to perform operations such as starting, stopping, pausing, speeding up, slowing down, amplifying, or attenuating a data stream.

KSProxy's role is to represent kernel-mode drivers. This includes any necessary marshaling of data streams between user-mode and kernel-mode. KSProxy, running in user mode, accepts existing control interfaces and translates them into IOCTL calls to the WDM Streaming drivers. The WDM Streaming library component also notifies KSProxy of events.

The TAPI MSP Video Capture filter uses a customized version of KSProxy to get access to WDM Streaming services and communicate with traditional WDM capture devices and Videoconferencing Accelerators.

3.2.3 Streams, pins and formats

The WDM Stream class video capture minidrivers can support multiple, simultaneous streams of compressed and uncompressed video, time code, closed caption, raw and decoded VBI data, and custom data formats. For each data type that can be produced simultaneously with other data types, the minidriver creates a new stream. Each stream is exposed as a separate WDM Streaming pin by the WDM Stream class.

Pins should not be seen as separate objects from the driver, but rather as a convenient grouping of capabilities on the driver. A pin represents a possible connection point, and before a client can stream data to or from a driver it must first create a pin, create a pin connection, and then obtain a handle to that connection. Pin connections describe a type of connection point used for control and data flow. Pins can support a connection property set as well as other property sets. Each pin connection has a unique identifier that allows support of pin-specific properties or data formats.

Each pin (or stream) can support a variety of different formats. For example, a single pin can provide RGB16, RGB24, YVU9, H.261, and H.263 digital video.

4. TAPI local video architecture

This section provides an overview of TAPI’s video capture, encoding and send data path under the Windows 98 and Windows 2000 operating systems.

4.1 TAPI 3.0 overview

TAPI version 3.0 is a set of COM-based APIs providing convergence of both traditional telephony and IP (Internet Protocol) Telephony.

IP Telephony enables voice, data and video collaboration over existing LANs, WANs and the Internet. TAPI 3.0 implements IP Telephony on the Windows platforms by providing simple and generic methods for making connections between two or more machines.

TAPI 3.0 supports standards-based H.323 conferencing and IP Multicast conferencing, utilizing the Windows 2000 Active Directory service to simplify deployment within an organization. Quality-of-service (QoS) support is included to improve conference quality and network manageability. Media stream access is provided through DirectShow filters.

TAPI 3.0 PSTN and IP functionality is provided by three main sections: call and media controls, media stream controls, and directory controls. The following diagram illustrates how these controls interact with the telephone and IP networks.

[image: image1.png]Call MediaStream Directory

Conol Conrol Conil
call ortra
Tapi 21
—
(C AP TAPI 3.0 (COM API) LDAP
& Telophony Media
Senice Stream <3
Provider Provider E;s:‘
Inferface Interface
Tap! Server s s Directory
DI 3 W2.23 |[Unimodem| [1P WG
Unimodern| Proxy 323 Multicast MSP MSP MSP
DirectShaw Streaming Fifler Graph
Aol
RTP Coder fedl e
rimodem|| NDIS50 Windows Sackes 2
Drver || _Miniport

o
é

Modem ATHISDN NC

NC

4.2 Call and media controls

Call and media controls are a simple and generic set of methods for making calls between two or more machines. In the context of TAPI 3.0, the word call refers not just to voice transmission over the public switched telephone network (PSTN) but to any medium capable of transferring content.

TAPI 3.0 provides access to the media being transmitted through the use of DirectShow.

TAPI 3.0 abstracts both call and media functionality to allow different, and seemingly incompatible, communication protocols to expose a common interface to applications. Because TAPI 3.0 is based on the Component Object Model (COM), applications may be written in any language. Some interface methods may not be available to scripting languages such as VBScript.

TAPI 3.0 call and media controls involve four primary sets of code: the TAPI 3.0 COM objects, the TAPI Server, Telephony Service Providers (TSPs), and Media Service Providers (MSPs).

4.2.1 TAPI 3.0 COM object

For background information on TAPI 3.0 COM objects, see the article titled Telephony Application Programming Interface, in the Platform SDK Documentation.

4.2.2 TAPI server

TAPI 3.0 is implemented as an in-process server and uses TAPISRV.EXE to perform telephony operations, thus making TAPI 3.0 applications compatible with all TAPI 2.1 service providers. The TAPI Server process (TAPISRV.EXE) abstracts TSPI (Telephony Service Provider Interface) from TAPI 3.0 and TAPI 2.1 and maintains the internal state of TAPI.

Additional information concerning the TAPI Server and TSPI can be found in the article titled Telephony Application Programming Interface, in the Platform SDK Documentation.

4.2.3 Call control functions

Call-control functions are provided by a TSP. The TAPI 2.1 client/server relationship with remote services providers is supported. Telephony Service Providers are responsible for translating the protocol-independent call model of TAPI into protocol-specific call setup and teardown, on a service-by-service basis. TAPI 3.0 has backward compatibility with TAPI 2.1 TSPs. Two new IP Telephony Service Providers (and their associated Media Service Providers) ship by default with TAPI 3.0: the H.323 TSP and the IP Multicast Conferencing TSP.

Additional information concerning Telephony Service Providers can be found in the article titled Telephony Application Programming Interface, in the Platform SDK Documentation.

4.2.4 Media control functions

Media control functions are provided by an MSP that implements the DirectShow interfaces for a particular provider. Media Service Providers are required for any telephony service that makes use of DirectShow media streaming.

4.3 Local video filter graph

The following illustrations show what DirectShow filters the TAPI MSP typically connects in a filter graph to provide the local video send functionality, and the interfaces the TAPI MSP Video Capture filter and its output pins expose to the MSP in order to provide most of the functionality described in this document. The TAPI MSP Video Capture filter interfaces are explained in section 7. The compressed video output pin interfaces are described in section 9. The preview video output pin interfaces are discussed in section 10. The still-image output pin interfaces are presented in section 11. The RTP packetization descriptor output pin interface is introduced in section 12.

We differentiate between the graphs built for VfW, WDM capture devices, and Videoconferencing Accelerators.

4.3.1 VfW capture devices

The TAPI MSP Video Capture filter talks directly to the VfW capture driver using SendDriverMessage. This filter uses the existing DShow code implemented in QCAP but adds the necessary functions to perform smart teeing of the capture data to the preview pin. It replaces the streaming-only code used by QCAP with frame grabbing code whenever necessary (cf. Section 6.5.3). It controls the rate at which frames are being captured by adjusting the rate at which DVM_FRAME message are being sent to the driver in frame grabbing mode, or only returning a fraction of the frames being captured in streaming mode. It performs format and Vfw to ITU-T size conversions to bring the format of the captured video data to a format that can easily be used for rendering, and directly encoded by the downstream TAPI MSP Video Encoder filter if an installable codecs is registered with the TAPI MSP. If there is no installable codec registered, the TAPI MSP Video Capture filter also performs H.26x encoding, generating a compressed video capture output stream in H.26x format, as well as an RTP packetization descriptor output data stream. Finally, the TAPI MSP Video Capture filter does all the necessary sequencing to pause the existing video streams whenever it is being asked to generate still-image data, grab a high-resolution snapshot, deliver it in progressively rendered form, and restart the video streams.

4.3.1.1 Default implementation

In the default case, the TAPI MSP Video Capture filter wraps the following functions:

[image: image2.jpg]

The TAPI MSP Video Capture filter then exposes the following interfaces, and is connected in the following graph:

[image: image3.jpg]

Note that this graph is, by design, identical to the graph built for WDM devices or Videoconferencing Accelerators as illustrated in sections 4.3.2.1 and 4.3.3.

4.3.1.2 Support for installable codec

If the MSP is loading an installable codec, the TAPI MSP Video Capture filter only wraps the following functions:

The TAPI MSP Video Capture filter then exposes the following interfaces, and is connected in the following graph:

Note that this graph is, by design, identical to the graph built for WDM devices as illustrated in section 4.3.2.2.

4.3.2 WDM capture devices

The TAPI MSP Video Capture filter talks directly to the WDM capture driver using IOCTLs. This filter uses the existing code implemented in KSProxy but adds the necessary functions to perform smart teeing of the capture data to the preview pin, if necessary. It controls the rate at which frames are being captured by adjusting the rate at which buffers are being submitted to the driver in frame grabbing mode, or only returning a fraction of the frames being captured in streaming mode using overlapped IOs. It performs format and Vfw to ITU-T size conversions to bring the format of the captured video data to a format that can easily be used for rendering, and directly encoded by the downstream TAPI MSP Video Encoder filter if an installable codecs is registered with the TAPI MSP. If there is no installable codec registered, the TAPI MSP Video Capture filter also performs H.26x encoding, generating a compressed video capture output stream in H.26x format, as well as an RTP packetization descriptor output data stream. Finally, the TAPI MSP Video Capture filter does all the necessary sequencing to pause the existing video streams whenever it is being asked to generate still-image data, grab a high-resolution snapshot, deliver it in progressively rendered form, and restart the video streams.

4.3.2.1 Default implementation

In the default case, the TAPI MSP Video Capture filter wraps the following functions:

Note that some WDM Video Capture device may not expose a preview pin. In this case, the TAPI MSP Video Capture filter tees the capture data onto the preview pin, as in the VfW capture driver model.

The TAPI MSP Video Capture filter exposes the following interfaces, and is connected in the following graph:

Note that this graph is, by design, identical to the graph built for VfW devices or Videoconferencing Accelerators as illustrated in sections 4.3.1.1 and 4.3.3.

4.3.2.2 Support for installable codec

If the MSP is loading an installable codec, the TAPI MSP Video Capture filter only wraps the following functions:

Note that some WDM Video Capture device may not expose a preview pin. In this case, the TAPI MSP Video Capture filter tees the capture data onto the preview pin, as in the VfW capture driver model.

The TAPI MSP Video Capture filter then exposes the following interfaces, and is connected in the following graph:

Note that this graph is, by design, identical to the graph built for VfW devices as illustrated in section 4.3.1.2.

4.3.3 Videoconferencing Accelerators

Videoconferencing Accelerators perform all the necessary functions. The TAPI MSP Video Capture filter simply wraps around their WDM driver and is only used to propagate calls to the TAPI interfaces to the Videoconferencing Accelerator minidriver, through the Stream Class driver, using IOCTLs.

The TAPI MSP Video Capture filter then exposes the following interfaces, and is connected in the following graph:

Note that this graph is, by design, identical to the graph built for VfW devices or WDM devices as illustrated in sections 4.3.1.1 and 4.3.2.1.

4.4 TAPI MSP video capture filter and WDM video capture

The following illustration shows how the TAPI MSP Video Capture filter and the system components interface with WDM capture devices and Videoconferencing Accelerators:

The TAPI MSP Video Capture filter combines the relevant KSXBar and KSProxy code and adds all the necessary functions defined in the previous sections. The DirectShow IAMCrossbar, IAMVideoProcAmp, IAMCameraControl and IAMVideoControl are already implemented by system interface handlers. Other interfaces that are specific to TAPI such as IH245EncoderCommand, INetworkStats, IFrameRateControl, IBitrateControl, ICPUControl, IProgressiveRefinement and IRTPPDControl are implemented by the TAPI MSP Video Capture filter using a new interface handler. This interface handler implements the new TAPI interfaces using the generic IKsControl interface already developed for KSProxy.

4.5 TAPI MSP video capture filter and VfW video capture

The following illustration shows how the TAPI MSP Video Capture filter and the system components interface with VfW capture devices on Win9x:

On Windows NT, the video capture components interface differently:

The TAPI MSP Video Capture filter uses the relevant QCAP code and adds all the necessary functions defined in the previous sections. The DirectShow IAMVfwCaptureDialogs, interface is implemented by the TAPI MSP Video Capture filter using SendDriverMessage. The DirectShow IAMVideoProcAmp, IAMCameraControl and IAMVideoControl are implemented by the H.26x encoding function. Other interfaces that are specific to TAPI such as IH245EncoderCommand, INetworkStats, IFrameRateControl, IBitrateControl, ICPUControl, IProgressiveRefinement and IRTPPDControl are also implemented by the H.26x encoding function. The DCAP??.DLL were developed for NetMeeting and expose a simple API that wraps around a few SendDriverMessage calls.

5. Video capture filter streams

Fundamentally, video streams are composed of time-stamped, digitized video and related information such as VBI and time code. Streams can be paused, started, and stopped independently. Stream samples are time stamped with a 100ns-resolution clock.

The TAPI MSP Video Capture filter can generate five different types of streams: a video preview stream, a video port video preview stream, a video capture stream, a still-image stream, and an RTP packetization descriptor stream.

5.1 Output streams

Traditionally, DirectShow streams have been identified solely by their MediaTypes. While this is sufficient for rendering simple filter graphs, more complex graphs and graphs that reflect a hardware topology require additional information for correct graph building.

Each TAPI MSP Video Capture filter output pin is assigned to a pin Category, which is a GUID that identifies the primary purpose of the pin, as detailed in the following list:

PINNAME_VIDEO_CAPTURE

Primary video stream, used to get data in YUV or H.26x compressed form.

PINNAME_VIDEO_PREVIEW

Secondary video stream, usually in a non-compressed format that is easily displayed without requiring a separate decompression step.

PINNAME_VIDEO_VIDEOPORT

Secondary video stream, used to preview video by streaming video data in kernel mode to the video board through the video port and be rendered using overlay.

PINNAME_VIDEO_STILL

Still image stream used to get data in YUV or H.26x compressed form to be progressively rendered by the remote endpoint.

PINNAME_RTP_PD

Stream synchronized to the primary capture stream, generating RTP packetization descriptors.

The Capture, Preview, and Still stream Categories are almost identical in terms of data formats and stream characteristics. A Capture output pin provides a stream of compressed or uncompressed digital video. A Preview output pin provides a stream of usually uncompressed digital video. If only a Capture stream is available from the capture device, the TAPI MSP Video Capture filter tees it off to create a Preview stream.

Still Category output pins are optional and used with dual-mode cameras that are capable of producing both a capture stream and a still image stream that is often of higher quality than the capture stream. The still image stream includes the ability to externally or internally trigger acquisition of an image from a WDM capture device.

If a VP video Preview stream is provided by a Videoconferencing Accelerator, the TAPI MSP Video Capture filter will not try and instantiate a Preview pin of the PINNAME_VIDEO_PREVIEW Category, but instead use the pin of the PINNAME_VIDEO_VIDEOPORT Category.

The video data gathered on the Capture stream is fragmented into RTP packets to be sent over the network. An RTP Packetization Descriptor stream of the PINNAME_RTP_PD Category is used to generate RTP packetization descriptors to be used synchronously with an H.26x compressed video or still-image capture stream and facilitate RTP fragmentation.

The packetization descriptors contain payload header data to be inserted in front of the fragmented payload data by the RTP send network layer. They also describe at what points in the compressed data the packets start and end. Each of the samples of the RTP packetization descriptors stream is synchronized to a unique sample of the capture stream. Nonetheless, the RTP packetization descriptors may be used to describe multi-layer encoded data.

5.2 Input streams

Analog video capture devices expose a single input stream representing the analog video input to the digitizer. If a device supports multiple inputs, it must create a separate crossbar driver to choose between the analog inputs.

Digital capture devices such as USB and IEEE 1394 cameras do not expose an analog stream.

If a crossbar interface is available, the TAPI MSP queries it for a list of supported inputs and expose this list to the users for selection.

6. Video capture filter stream formats

Stream types are described in DirectShow using the AM_MEDIA_TYPE structure. This structure includes GUID fields for majortype, subtype and formattype as well as fields specifying other sample features. It is defined as follows:

typedef struct _MediaType

{

 GUID majortype;

 GUID subtype;

 BOOL bFixedSizeSamples;

 BOOL bTemporalCompression;

 ULONG lSampleSize;

 GUID formattype;

 IUnknown *pUnk;

 ULONG cbFormat;

 /* [size_is] */ BYTE __RPC_FAR *pbFormat;

} AM_MEDIA_TYPE;

The following describes the AM_MEDIA_TYPE members.

majortype

Specifies the major type of the stream.

subtype

Specifies the subtype of the stream.

bFixedSizeSamples

Specifies that all the samples are the same size if set to TRUE.

bTemporalCompression

Specifies that each sample is a synchronization point (keyframe) if set to FALSE.

lSampleSize

Specifies the maximum size of the samples in bytes.

formattype

Specifies the format type of the stream.

pUnk

Specifies a pointer to the IUnknown interface.

cbFormat

Specifies the size of the format section of the media type.

pbFormat

Specifies a pointer to the format section of the media type.

For all the digital video and still-image streams generated by the TAPI MSP Video Capture filter, the majortype type is MEDIATYPE_Video, and the formattype is set to FORMAT_VideoInfo. The subtype, along with the Format block, is used to convey details of the particular video data type.

The low-order four bytes of the subtype shall match the FourCC values used in the BITMAPINFOHEADER.biCompression field of the VIDEOINFOHEADER structure pointed to by the pbFormat field. For example, the following GUID identifies the FourCC (M263) for the H.263 video format:

3336324D-0000-0010-8000-00AA00389B71

 4D = 'M'

 32 = '2'

 36 = '6'

33 = '3'

6.1 Media types for video preview streams

Here’s a list of common video RGB formats (and their associated subtype) that do not require insertion of a decoder filter between the TAPI MSP Video Capture filter preview output pin and the downstream DirectShow Video Renderer Sink filter input pin:

Video Format
GUID

RGB 4
E436EB79-524F-11CE-9F53-0020AF0BA770

RGB 8
E436EB7A-524F-11CE-9F53-0020AF0BA770

RGB 565
E436EB7B-524F-11CE-9F53-0020AF0BA770

RGB 555
E436EB7C-524F-11CE-9F53-0020AF0BA770

RGB24
E436EB7D-524F-11CE-9F53-0020AF0BA770

By design, VfW capture devices do not have a digital preview stream (ignoring support for analog overlay). The TAPI MSP Video Capture filter for VfW capture devices simply tees the video frames generated on the video capture output pin to the video preview output pin using a smart-tee mechanism. It also converts the data to one of the RGB formats above using its own color conversion if the format of the data is a YUV format it knows about, or loads an ICM codec in order to perform the necessary conversion.

WDM capture devices and Videoconferencing Accelerators typically have a video preview pin. If they don’t, the TAPI MSP Video Capture filter applies the same tee operation than in the VfW case. If also converts the data before delivering it to the downstream DirectShow Video Renderer Sink filter, if it is not in RGB format, using the same mechanism described in the previous paragraph.

6.2 Media types for capture and still-image streams

Here’s a list of common video YUV formats (and their associated subtype) currently supported by the TAPI MSP Video Encoder filter that do not require insertion of a decoder filter between the TAPI MSP Video Capture filter and TAPI MSP Video Encoder filter:

Video Format FourCC
GUID

YVU9
39555659-0000-0010-8000-00AA00389B71

YUY2
32595559-0000-0010-8000-00AA00389B71

UYVY
59565955-0000-0010-8000-00AA00389B71

I420
30323449-0000-0010-8000-00AA00389B71

IYUV
56555949-0000-0010-8000-00AA00389B71

If the format of the video capture output pin does not belong to this list, the TAPI MSP Video Capture filter loads an ICM codec in order to convert the video capture data to RGB.

6.3 Media type for H.26x compressed video and still-image streams

Here’s a complete list of ITU formats currently supported by TAPI and their associated subtype:

Video Format
FourCC
GUID

ITU H.263 version 1
M263
3336324D-0000-0010-8000-00AA00389B71

ITU H.263 version 2
N263
3336324E-0000-0010-8000-00AA00389B71

ITU H.261
M261
3136324D-0000-0010-8000-00AA00389B71

For all H.26x compressed video and still-image streams generated by the TAPI MSP Video Capture filter, the majortype type is MEDIATYPE_Video, the formattype is set to FORMAT_VideoInfo, and the bFixedSizeSamples and bTemporalCompression fields are respectively set to FALSE and TRUE. The subtype, along with the Format block, is used to convey details of the particular video data type, as detailed next.

6.3.1 Video info header structure for H.263 video streams

TAPI defines the VIDEOINFOHEADER_H263 structure to specify details of the video stream. The pbFormat field of the AM_MEDIA_TYPE structure shall point to a structure of the VIDEOINFOHEADER_H263 type, instead of a regular VIDEOINFOHEADER structure, when describing H.263 video streams.

Note that it is similar to the VIDEOINFOHEADER structure:

typedef struct tagVIDEOINFOHEADER_H263 {

 RECT rcSource;

 RECT rcTarget;

 DWORD dwBitRate;

 DWORD dwBitErrorRate;

 REFERENCE_TIME AvgTimePerFrame;

 BITMAPINFOHEADER_H263 bmiHeader;

} VIDEOINFOHEADER_H263, *PVIDEOINFOHEADER_H263;

where

rcSource

Specifies a RECT structure that defines the source video window.

rcTarget

Specifies a RECT structure that defines the destination video window.

dwBitRate

Specifies a DWORD value that indicates the video stream's approximate data rate, in bits per second.

dwBitErrorRate

Specifies a DWORD value that indicates the video stream's data error rate, in bit errors per second.

AvgTimePerFrame

Specifies a REFERENCE TIME value that indicates the video frame's average display time, in 100-nanosecond units.

bmiHeader

Specifies a BITMAPINFOHEADER_H263 structure that contains detailed format information for the H.263 video data.

6.3.2 Video info header structure for H.261 video streams

TAPI also defines the VIDEOINFOHEADER_H261 structure to specify details of an H.261 video stream. The pbFormat field of the AM_MEDIA_TYPE structure shall point to a structure of the VIDEOINFOHEADER_H261 type, instead of a regular VIDEOINFOHEADER structure, when describing H.261 video streams.

Note that it is similar to the VIDEOINFOHEADER structure:

typedef struct tagVIDEOINFOHEADER_H261 {

 RECT rcSource;

 RECT rcTarget;

 DWORD dwBitRate;

 DWORD dwBitErrorRate;

 REFERENCE_TIME AvgTimePerFrame;

 BITMAPINFOHEADER_H261 bmiHeader;

} VIDEOINFOHEADER_H261, *PVIDEOINFOHEADER_H261;

where

rcSource

Specifies a RECT structure that defines the source video window.

rcTarget

Specifies a RECT structure that defines the destination video window.

dwBitRate

Specifies a DWORD value that indicates the video stream's approximate data rate, in bits per second.

dwBitErrorRate

Specifies a DWORD value that indicates the video stream's data error rate, in bit errors per second.

AvgTimePerFrame

Specifies a REFERENCE TIME value that indicates the video frame's average display time, in 100-nanosecond units.

bmiHeader

Specifies a BITMAPINFOHEADER_H261 structure that contains detailed format information for the H.261 video data.

6.3.3 Bitmap info header structure for H.263 video streams

The H.263 specification allows for many compression options. The TAPI MSP Video Capture filter is left responsible to chose what options to implement. On the other hand, when TAPI sets a specific video format on the compressed video output pin, it effectively indicates what options the receiver specified it supported by setting the H.263 specific fields of the extended bitmap info header defined below:

typedef struct tagBITMAPINFOHEADER_H263 {

 // Generic bitmap info header fields

 BITMAPINFOHEADER bmi;

 // H.263 specific fields

 DWORD dwMaxBitrate;

 DWORD dwBppMaxKb;

 DWORD dwHRD_B;

 // Options

 DWORD fUnrestrictedVector:1;

 DWORD fArithmeticCoding:1;

 DWORD fAdvancedPrediction:1;

 DWORD fPBFrames:1;

 DWORD fErrorCompensation:1;

 DWORD fAdvancedIntraCoding:1;

 DWORD fDeblockingFilter:1;

 DWORD fImprovedPBFrames:1;

 DWORD fUnlimitedMotionVectors:1;

 DWORD fFullPictureFreeze:1;

 DWORD fPartialPictureFreezeAndRelease:1;

 DWORD fResizingPartPicFreezeAndRelease:1;

 DWORD fFullPictureSnapshot:1;

 DWORD fPartialPictureSnapshot:1;

 DWORD fVideoSegmentTagging:1;

 DWORD fProgressiveRefinement:1;

 DWORD fDynamicPictureResizingByFour:1;

 DWORD fDynamicPictureResizingSixteenthPel:1;

 DWORD fDynamicWarpingHalfPel:1;

 DWORD fDynamicWarpingSixteenthPel:1;

 DWORD fIndependentSegmentDecoding:1;

 DWORD fSlicesInOrder_NonRect:1;

 DWORD fSlicesInOrder_Rect:1;

 DWORD fSlicesNoOrder_NonRect:1;

 DWORD fSlicesNoOrder_Rect:1;

 DWORD fAlternateInterVLC:1;

 DWORD fModifiedQuantization:1;

 DWORD fReducedResolutionUpdate:1;

 DWORD fReserved:4;

 // Reserved

 DWORD dwReserved[4];

} BITMAPINFOHEADER_H263, *PBITMAPINFOHEADER_H263;

The BITMAPINFOHEADER is the well known GDI bitmap info header structure. It contains information on the video format such as actual image dimensions and the pixel depth. The following list describes the H.263 specific members of BITMAPINFOHEADER_H263:

dwMaxBitrate

Specifies the maximum bit rate in units of 100 bits/s at which the receiver can receive video. This value is valid between 1 and 192400.

dwBppMaxKb

Specifies the maximum number of bits for one coded picture that the receiver can receive and decode correctly, and is measured in units of 1024 bits. This value is valid between 0 and 65535.

dwHRD_B

Specifies the Hypothetical Reference Decoder parameter B as described in Annex B of H.263. This value is valid between 0 and 524287.

fUnrestrictedVector

Specifies that the receiver can receive video data using the unrestricted motion vectors mode as defined in Annex D of H.263.

fArithmeticCoding

Specifies that the receiver can receive video data using the syntax based arithmetic coding mode as defined in Annex E of H.263.

fAdvancedPrediction

Specifies that the receiver can receive video data using the advanced prediction mode as defined in Annex F of H.263.

fPBFrames

Specifies that the receiver can receive video data using the PB-frames mode as defined in Annex G of H.263.

fErrorCompensation

Specifies that the receiver can identify MBs received with transmission errors, treat them as not coded, and send appropriate videoNotDecodedMBs indications.

fAdvancedIntraCoding

Specifies that the receiver can receive video data using the advanced INTRA coding mode as defined in Annex I of H.263.

fDeblockingFilter

Specifies that the receiver can receive video data using the deblocking filter mode as defined in Annex J of H.263.

fImprovedPBFrames

Specifies that the receiver can receive video data using the improved PB-frames mode as defined in Annex M of H.263.

fUnlimitedMotionVectors

Specifies that the receiver can receive video data using the unrestricted motion vector range when unrestricted motion vector mode as defined in Annex D of H.263 is also indicated.

fFullPictureFreeze

Specifies that the receiver can receive Full Picture Freeze commands as described in Annex L of H.263.

fPartialPictureFreezeAndRelease

Specifies that the receiver can receive Full Picture Freeze and Release commands as described in Annex L of H.263.

fResizingPartPicFreezeAndRelease

Specifies that the receiver can receive the Resizing Partial Picture Freeze and Release commands as described in Annex L of H.263.

fFullPictureSnapshot

Specifies that the receiver can receive Full Picture snapshots of the video content as described in Annex L of H.263.

fPartialPictureSnapshot

Specifies that the receiver can receive Partial Picture Snapshots of the video content as described in Annex L of H.263.

fVideoSegmentTagging

Specifies that the receiver can receive Video Segment tagging for the video content as described in Annex L of H.263.

fProgressiveRefinement

Specifies that the receiver can receive Progressive Refinement tagging as described in Annex L of H.263. In addition, when true, the encoder shall respond to the progressive refinement miscellaneous commands doOneProgression, doContinuousProgressions, doOneIndependentProgression, doContinuousIndependentProgressions, progressiveRefinementAbortOne, and progressiveRefinementAbortContinuous. In addition, the encoder shall insert the Progressive Refinement Segment Start Tags and the Progressive Refinement Segment End Tags as defined in the Supplemental Enhancement Information Specification (Annex L) of Recommendation H.263. Note, Progressive Refinement tagging can be sent by an encoder and received by a decoder even when not commanded in a miscellaneous command.

fDynamicPictureResizingByFour

Specifies that the receiver supports the picture resizing-by-four (with clipping) submode of the implicit Reference Picture Resampling Mode (Annex P) of H.263.

fDynamicPictureResizingSixteenthPel

Specifies that the receiver supports resizing a reference picture to any width and height using the implicit Reference Picture Resampling mode (Annex P) of H.263 (with clipping). If DynamicPictureResizingSixteenthPel is true then DynamicPictureResizingByFour shall be true

fDynamicWarpingHalfPel

Specifies that the receiver supports the arbitrary picture warping operation within the Reference Picture Resampling mode (Annex P) of H.263 (with any fill mode) using half-pixel accuracy warping.

fDynamicWarpingSixteenthPel

Specifies that the receiver supports the arbitrary picture warping operation within the Reference Picture Resampling mode (Annex P) of H.263 (with any fill mode) using either half-pixel or sixteenth pixel accuracy warping.

fIndependentSegmentDecoding

Specifies that the receiver supports the Independent Segment Decoding Mode (H.263 Annex R) of H.263.

fSlicesInOrder_NonRect

Specifies that the receiver supports the submode of Slice Structured Mode (H.263 Annex K) where slices are transmitted in order and contain macroblocks in scanning order of the picture.

fSlicesInOrder_Rect

Specifies that the receiver supports the submode of Slice Structured Mode (H.263 Annex K) where slices are transmitted in order and the slice occupies a rectangular region of the picture.

fSlicesNoOrder_NonRect

Specifies that the receiver supports the submode of Slice Structured Mode (H.263 Annex K) where slices contain macroblocks in scanning order of the picture and need not be transmitted in order.

fSlicesNoOrder_Rect

Specifies that the receiver supports the submode of Slice Structured Mode (H.263 Annex K) where slices occupy a rectangular region of the picture and need not be transmitted in order.

fAlternateInterVLC

Specifies that the receiver can receive video data using the alternate inter VLC mode as defined in Annex S of H.263.

fModifiedQuantization

Specifies that the receiver can receive video data using the modified quantization mode as defined in Annex T of H.263.

fReducedResolutionUpdate

Specifies that the receiver can receive video data using the reduced resolution update mode as defined in Annex Q of H.263.

fReserved

Reserved. Shall be set to NULL.

dwReserved[4]

Reserved. Shall all be set to NULL.

Again, when one of the H.263 specific fields is set to TRUE (1), this does not mean that the compressed video output pin should generate data using that optional mode. Instead, TAPI is merely indicating that the option is supported by the receiver.

Alternatively, when the TAPI MSP requests from the TAPI MSP Video Capture filter a list of supported formats, the Boolean flags shall be set to TRUE for all the optional modes the compressed video output pin supports. The dwMaxBitrate field shall be set to the maximum bitrate in units of 100 bits/s at which the compressed video output pin can generate video data. Finally, the dwBppMaxKb field shall be set to the maximum number of bits for one coded picture that the compressed video output pin can generate in units of 1024 bits. This number shall be equivalent to the biSizeImage field of the bmi (bitmap info header) structure.

6.3.4 Bitmap info header structure for H.261 video streams

The TAPI MSP applies the following H.261 video format structure on the compressed video output pin to indicate what maximum video bitrate the receiver can receive, and if it is capable of receiving still images as defined in Annex D of H.261:

typedef struct tagBITMAPINFOHEADER_H261 {

 // Generic bitmap info header fields

 BITMAPINFOHEADER bmi;

 // H.261 specific fields

 DWORD dwMaxBitrate;

 BOOL fStillImageTransmission;

 // Reserved

 DWORD dwReserved[4];

} BITMAPINFOHEADER_H261, *PBITMAPINFOHEADER_H261;

The BITMAPINFOHEADER is the well-known GDI bitmap info header structure. It contains information on the video stream such as actual image dimensions and the pixel depth. The following list describes the H.261 specific members of BITMAPINFOHEADER_H261:

dwMaxBitrate

Specifies the maximum bit rate in units of 100 bits/s at which the receiver can receive video. This value is only valid between 1 and 19200.

fStillImageTransmission

Specifies that the receiver can receive still images as defined in Annex D of H.261.

dwReserved[4]

Reserved. Shall all be set to NULL.

If the fStillImageTransmission H.261 specific field is set to TRUE (1) when setting a format on the compressed video output pin, this does not mean that it should generate data using that optional mode. Instead, the TAPI MSP is merely indicating that the option is supported by the receiver.

Alternatively, when the TAPI MSP requests from the compressed video output pin a list of supported formats, the fStillImageTransmission field shall be set to TRUE if the pin is capable of generating still images as described in Annex D of H.261. The dwMaxBitrate field shall be set to the maximum bitrate in units of 100 bits/s at which the compressed output pin can generate video data.

6.4 Media type for RTP packetization descriptor streams

For RTP packetization descriptor streams, the majortype type is MEDIATYPE_RTP_PD, the formattype is set to FORMAT_None, and the subtype is initialized to MEDIASUBTYPE_None. Only the Format block is used to convey details of the particular RTP packetization descriptor type.

The following table shows the actual GUID values for type fields of the AM_MEDIA_TYPE structure used to describe RTP packetization descriptor streams:

Type
GUID

MEDIATYPE_RTP_PD
64707472-5245-4945-5252-45464C494850

FORMAT_None
0F6417D6-C318-11D0-A43F-00A0C9223196

MEDIASUBTYPE_None
E436EB8E-524F-11CE-9F53-0020AF0BA770

The bFixedSizeSamples and bTemporalCompression fields are both set to FALSE.

6.4.1 Configuration capabilities structure for RTP packetization descriptor streams

In order to allow the TAPI MSP to use the IAMStreamConfig::GetStreamCaps method to get information on the minimum and maximum RTP packet size the RTP packetization descriptor output pin can generate, the RTP_PD_CONFIG_CAPS structure is defined as follows:

typedef struct tagRTP_PD_CONFIG_CAPS {

 DWORD dwSmallestRTPPacketSize;

 DWORD dwLargestRTPPacketSize;

 DWORD dwRTPPacketSizeGranularity;

 DWORD dwSmallestNumLayers;

 DWORD dwLargestNumLayers;

 DWORD dwNumLayersGranularity;

 DWORD dwNumStaticPayloadTypes;

 DWORD dwStaticPayloadTypes[4];

 DWORD dwNumDescriptorVersions;

 DWORD dwDescriptorVersions[4];

 DWORD dwReserved[4];

} RTP_PD_CONFIG_CAPS;

where

dwSmallestRTPPacketSize

Specifies the size in bytes of the smallest RTP packet the stream can describe.

dwLargestRTPPacketSize

Specifies the size in bytes of the largest packet the stream can describe.

dwRTPPacketSizeGranularity

Specifies the granularity of the increments between the smallest and largest packet size the stream supports.

dwSmallestNumLayers

Specifies the smallest number of encoding layers the stream can describe.

dwLargestNumLayers

Specifies the largest number of encoding layers the stream can describe.

dwNumLayersGranularity

Specifies the granularity of the increments between the smallest and largest number of encoding layers the stream supports.

dwNumStaticPayloadTypes

Specifies the number of static payload types the stream supports. This value is valid between 0 and 4.

dwStaticPayloadTypes[4]

Specifies an array of static payload types the stream supports. A stream can support at most 4 static payload types. The number of valid entries in this array is indicated by the dwNumStaticPayloadTypes field.

dwNumDescriptorVersions

Specifies the number of packetization descriptor versions the stream supports. This value is valid between 1 and 4.

dwDescriptorVersions[4]

Specifies an array of version identifiers qualifying the format of packetization descriptors. A stream can support at most 4 packetization descriptor versions. The number of valid entries in this array is indicated by the dwNumDescriptorVersions field.

dwReserved[4]

Reserved. Shall all be set to NULL.

6.4.2 Information header structure for RTP packetization descriptor streams

Finally, the details of the format are specified using the RTP_PD_INFO structure defined as:

typedef struct tagRTP_PD_INFO {

 REFERENCE_TIME
AvgTimePerSample;

 DWORD

dwMaxRTPPacketizationDescriptorBufferSize;

 DWORD

dwMaxRTPPayloadHeaderSize;

 DWORD

dwMaxRTPPacketSize;

 DWORD

dwNumLayers;

 DWORD

dwPayloadType;

 DWORD

dwDescriptorVersion;

 DWORD

dwReserved[4];

} RTP_PD_INFO, *PRTP_PD_INFO;

where

AvgTimePerSample

Specifies the average time per list of RTP packet descriptor, in 100ns units. This value shall be identical to the value of the AvgTimePerFrame field of the video info header of the related compressed video stream format

dwMaxRTPPacketizationDescriptorBufferSize

Specifies the maximum size in bytes of the entire RTP packetization descriptor buffer. The format of this buffer is described in the following section. The maximum size of the entire RTP packetization descriptor buffer rarely needs to exceed a few hundred bytes.

dwMaxRTPPayloadHeaderSize

Specifies the maximum size in bytes of the payload header data for one RTP packet. For example, the maximum size of a payload header for H.263 version 1 is 12 bytes (Mode C header).

dwMaxRTPPacketSize

Specifies the maximum RTP packet size in bytes to be described by the list of packetization descriptor. Typically, this number is just below the MTU size of the network.

dwNumLayers

Specifies the number of encoding layers to be described by the list of packetization descriptor. Typically, this number is equal to 1. Only in the case of multi-layered encoders would this number be higher than 1.

dwPayloadType

Specifies the static payload type the stream describes. If the RTP packetization descriptors do not apply to an existing static payload type but a dynamic payload type, this field shall be set to DYNAMIC_PAYLOAD_TYPE (defined as MAXDWORD).

dwDescriptorVersion

Specifies a version identifier qualifying the format of packetization descriptors. This field shall be set to VERSION_1 (defined as 1UL) to identify the packetization descriptor structures described in the next section.

dwReserved[4]

Reserved. Shall all be set to NULL.

Again, this structure is pointed to by the pbFormat field of the AM_MEDIA_TYPE structure used to describe the RTP packetization descriptor stream.

6.4.3 RTP packetization descriptor format

The format of the RTP packetization descriptors begins with a single header structure, RTP_PD_HEADER, defined as follows:

typedef struct tagRTP_PD_HEADER {

 DWORD dwThisHeaderLength;

 DWORD dwTotalByteLength;

 DWORD dwNumHeaders;

 DWORD dwReserved;

} RTP_PD_HEADER, *PRTP_PD_HEADER;

where

dwThisHeaderLength

Specifies the length, in bytes, of this structure. This field is the offset to the first RTP_PD structure.

dwTotalByteLength

Specifies the length, in bytes, of the entire data. This includes this structure, the RTP_PD structures, and the payload information.

dwNumHeaders

Specifies the number of RTP_PD structures.

dwReserved

Reserved. Shall be set to NULL.

This structure is followed by RTP_PD_HEADER.dwNumHeaders structures of type RTP_PD. Those structures are defined as follows:

typedef struct tagRTP_PD {

 DWORD dwThisHeaderLength;

 DWORD dwPayloadHeaderOffset;

 DWORD dwPayloadHeaderLength;

 DWORD dwPayloadStartBitOffset;

 DWORD dwPayloadEndBitOffset;

 BOOL fEndMarkerBit;

 DWORD dwLayerId;

 DWORD dwTimestamp;

 union {

 DWORD dwAudioAttributes;

 DWORD dwVideoAttributes;

 };

 DWORD dwReserved;

} RTP_PD, *PRTP_PD;

where

dwThisHeaderLength

Specifies the length, in bytes, of this structure. This field is the offset to the next RTP_PD structure, if there is one, or the start of the payload headers.

dwPayloadHeaderOffset

Specifies the offset from the start of the RTP packetization descriptor data to the first byte of the payload header.

dwPayloadHeaderLength

Specifies the length, in bytes, of the payload header.

dwPayloadStartBitOffset

Specifies the offset from the start of the corresponding compressed video buffer to the first bit of the payload data associated with this RTP_PD structure.

dwPayloadEndBitOffset

Specifies the offset from the start of the corresponding compressed video buffer to the last bit of the payload data associated with this RTP_PD structure.

fEndMarkerBit

If set to TRUE, this flag signals that this structure applies to the last chunk of a video frame. Typically, only the last packet descriptor in a series of descriptors would have this flag turned on. However, this may not be the case for video encoder filters that do not respect frame boundaries and fill buffers with truncated or multiple video frames.

dwLayerId

Specifies the ID of the encoding layer this descriptor applies to. For standard video encoders, this field is always set to 0. In the case of multi-layered encoders, this field shall be set to 0 for the base layer, 1 for the first enhancement layer, 2 for the next enhancement layer, etc.

dwTimestamp

Specifies the value of the RTP timestamp field to be set by the downstream filter when creating the RTP header for this packet. The units and ranges for this field shall adhere to the definition of timestamp given in section 5.1 of RFC 1889.

dwAudioAttributes

Specifies some bitfield attributes used to characterize the sample in the audio stream associated to this RTP packetization descriptor. This field shall always be set to 0UL, unless the audio sample described by this RTP packetization descriptor structure is a silent frame, in which case, this field shall be set to AUDIO_SILENT (defined as 1UL).

dwVideoAttributes

Specifies some bitfield attributes used to characterize the sample in the video stream associated to this RTP packetization descriptor. There are no video attributes defined at this time. Therefore, this field shall always be set to 0UL.

dwReserved

Reserved. Shall be set to NULL.

The payload header data does not need to start right after the end of the last of the RTP_PD structures. The downstream filter will use the dwPayloadHeaderOffset field of each of the RTP_PD structures to jump to the appropriate memory location in the RTP packetization descriptor buffer, as the example below shows. This illustrates packetization of the first I-frame of an H.263 video stream in three fragments using a mode A header (4 bytes long) for each fragment:

6.4.4 RTP packetization descriptor and video streams synchronization

The TAPI MSP will always try to connect the compressed video output pin first. If this operation fails, there will be no attempt to connect an RTP packetization descriptor output pin to an input pin of the downstream filter. Once the compressed video output pin has been connected, the TAPI MSP will try to connect the RTP packetization descriptor pin.

Synchronization of the RTP packetization descriptors and video streams is achieved by generating identical presentation timestamps for a compressed video sample and the corresponding RTP packetization descriptor sample. The downstream filter will look at those timestamps to establish how samples should be matched between the two streaming output pins. These timestamps should not be confused with the timestamp field of the RTP header that the network send downstream filter generates using other means.

Whenever the TAPI MSP decides to pause or stop the stream compressed video output pin, the TAPI MSP Video Capture filter does not bother returning data on the associated RTP packetization descriptor output pin.

6.5 Media type enumeration

Complete media type enumeration is necessary to allow the downstream TAPI MSP Video Encoder filter to build H.245 video capabilities based on the list of formats supported by the capture device for installable codecs, and to allow to let the TAPI MSP Video Capture filter build those same capabilities when using its own H.26x encoders.

Unfortunately, there is no programmatic way to enumerate the formats supported by VfW capture devices. The TAPI MSP Video Capture filter maintains a database of VfW capture devices and their supported media types, based on the friendly name of the capture device driver, the version number of this driver, and the date of the driver file. We differentiate between the media type enumeration process for a capture device that the TAPI MSP Video Capture filter has already used in the past or not.

Even though WDM capture devices and Videoconferencing Accelerators do support enumeration of their capabilities using datarange structures, we still add them to the database maintained by the TAPI MSP Video Capture filter in order to tune some of those capabilities based on the results of our in-house testing.

6.5.1 First time use

If there is no entry for the VfW capture device in the list maintained by the TAPI MSP Video Capture filter, the TAPI MSP Video Capture filter will first query the capture device for its current video capture format, and save this information in case the following steps result in a crash.

Then, the TAPI MSP Video Capture filter applies a set of preferred formats on the capture device using SendDriverMessage with the DVM_FORMAT message. For each applied format, the TAPI MSP Video Capture filter will not only verify the return code of the SendDriverMessage, but also query back the current format to make sure the set format operation really succeeded. If the capture device fails one of the two previous steps, the TAPI MSP Video Capture filter will assume that the format is not supported. Once the TAPI MSP Video Capture filter is done with the entire list of preferred formats and no crash occurred, the list of video formats supported by the capture device is added to the list maintained by the TAPI MSP Video Capture filter.

As soon as the enumeration process succeeds for one “small” (128x96 or 160x120), one “medium” (176x144 or 160x120), one “large” (352x288 or 320x240) and one “very large” size (704x576 or 640x480), the TAPI MSP Video Capture filter stops the enumeration process and adds the resulting list of formats to its database. The TAPI MSP Video Capture filter will test the previous sizes for I420, IYUV, YUY2, UYVY, YVU9, RGB16, RGB24, RGB8, and RGB4 formats, in this described order.

Similarly, if there is no entry for the WDM capture device or Videoconferencing Accelerator in the list maintained by the TAPI MSP Video Capture filter, the TAPI MSP Video Capture filter queries the capture device for a list of datarange structures, and save this information in its database.

The device will also be marked as a frame-grabbing device in the TAPI MSP Video Capture filter device database.

6.5.2 Known capture device

If there is an entry for the VfW capture device in the list maintained by the TAPI MSP Video Capture filter, the TAPI MSP Video Capture filter first verifies if the information contained is a complete list of supported formats, or only a default format. The entry will only contain a default format if the capture device did not support any of the preferred formats, or a crash occurred during the enumeration process.

If there is only a default format stored for the VfW capture device, the TAPI MSP Video Capture filter will build a list of media types that can be built from the default format using black-banding and/or cropping. If the default format is in a compressed format, the TAPI MSP Video Capture filter will try and locate and ICM driver that can do the decompression from the compressed format to RGB.

If the device supports a list of formats from the preferred list of formats, the TAPI MSP Video Capture filter will use this list to advertise the capabilities of the capture device.

In all cases (VfW and WDM capture devices, Videoconferencing Accelerators), the TAPI MSP Video Capture filter won’t query the device for capabilities but always use the list of formats stored in its database for this capture device.

6.5.3 Quality Assurance

Experience acquired in the NetMeeting group shows that in-house testing is still required to validate the formats capture devices pretend they support. Some devices will not work well in streaming mode and perform more consistently in frame grabbing mode, some will generate data in compressed mode without providing a decoder for their compressed data, some will simply use 100% of the CPU in streaming mode, some will in fact not function correctly at some frame size or in some formats… Some on the other hand may provide very impressive performances in streaming mode, and we should allow them to capture in this mode.

In order to guarantee the best user experience, it is necessary that we test the drivers for the most common devices here at Microsoft, and update the content of the database used by the TAPI MSP Video Capture filter with the necessary modifications. Details on how to test those devices will be discussed in a separate document.

7. Video capture filter application interfaces

This section documents the list of video capture filter DirectShow interfaces indirectly exposed to applications. Those applications use TAPI IT* interfaces whose method calls are delegated to the interfaces presented here.

For VfW, WDM capture devices and Videoconferencing Accelerators, the TAPI MSP Video Capture filter implements the IAMVideoProcAmp interface to control video quality such as brightness, contrast, hue, saturation, gamma, and sharpness, the IAMCameraControl interface to adjust or inquire about camera control settings, and the IAMVideoControl interface to flip a picture horizontally and/or vertically, as well as enumerate available frame rates.

The TAPI MSP Video Capture filter exposes the IAMVfwCaptureDialogs interface only for VfW capture devices in order to allow the application to display one of the VfW dialog boxes.

7.1 VfW specific capture device application interface

The TAPI MSP exposes the IAMVfwCaptureDialogs DirectShow interfaces supported by the TAPI MSP Video Capture filter for VfW capture devices to the client application. Typically, these applications indirectly use the IAMVfwCaptureDialogs interface that contains methods to display one of the three dialog boxes (Source, Format, or Display) provided by Microsoft Video for Windows capture drivers.

Note that the application do not get a direct pointer to those interfaces. Instead, the methods on those interfaces are called through delegation.

The IAMVfwCaptureDialogs interface is implemented by the TAPI MSP Video Capture filter itself, not its output pins. The TAPI MSP calls QueryInterface on the IBaseFilter interface exposed by the TAPI MSP Video Capture filter to get pointers to this DirectShow interface.

The IAMVfwCaptureDialogs interface contains the following methods:

HasDialog

Used to determine if the specified dialog box exists in the driver.

ShowDialog

Used to display the specified dialog box.

SendDriverMessage

Used to send a driver-specific message.

The IAMVfwCaptureDialogs interface uses the VfwCaptureDialogs enumerated data type to describe a dialog box that might exist in a Video for Windows capture driver.

The methods on the IAMVfwCaptureDialogs interface are implemented using the Installable Driver Function SendDriverMessage.

7.1.1 VfwCaptureDialogs enumerated data type

This enumerated data type is defined as follows:

typedef enum {

 VfwCaptureDialog_Source = 1,

 VfwCaptureDialog_Format = 2,

 VfwCaptureDialog_Display = 4

} VfwCaptureDialogs;
where:

VfwCaptureDialog_Source

Specifies the video source dialog box.

VfwCaptureDialog_Format

Specifies the video format dialog box.

VfwCaptureDialog_Display

Specifies the video display dialog box.

7.1.2 HasDialog method

This method is used to determine if the specified dialog box exists in the Vfw capture driver. The HasDialog method is declared as follows:

HRESULT HasDialog([IN]int iDialog)

where

iDialog

Used to specify the desired dialog box. This is a member of the VfwCaptureDialogs enumerated data type

This method returns an HRESULT value that depends on the implementation of the interface. HRESULT can include one of the following standard constants, or other values not listed:

HRESULT
Meaning

E_FAIL
Failure

E_INVALIDARG
Invalid argument

E_NOTIMPL
Method is not supported

S_OK
Driver contains the dialog box

S_FALSE
Driver does not contain the dialog box

The IAMVfwCaptureDialogs::HasDialog interface method is implemented using the Installable Driver Function SendDriverMessage. The hdrvr parameter is set to the handle of the VfW capture device video in, external video in, or external video out channel based on the value of iDialog, the msg parameter is set to DVM_DIALOG, the lParam1 parameter is set to the handle of the desktop window, and the lParam2 parameter is set to VIDEO_DLG_QUERY.

7.1.3 ShowDialog method

This method is used to display the specified Vfw capture driver dialog box. The ShowDialog method is declared as follows:

HRESULT ShowDialog([IN]int iDialog, [IN]HWND hWnd)

where

iDialog

Used to specify the dialog box to display. This is a member of the VfwCaptureDialogs enumerated data type.

hWnd

Used to provide a handle to the dialog box's parent window.

This method returns an HRESULT value that depends on the implementation of the interface. HRESULT can include one of the following standard constants, or other values not listed:

HRESULT
Meaning

E_FAIL
Failure

E_INVALIDARG
Invalid argument

E_NOTIMPL
Method is not supported

NOERROR
No error

The IAMVfwCaptureDialogs::ShowDialog interface method is implemented using the Installable Driver Function SendDriverMessage. The hdrvr parameter is set to the handle of the VfW capture device video in, external video in, or external video out channel based on the value of iDialog, the msg parameter is set to DVM_DIALOG, the lParam1 parameter is set to the handle of the parent window hWnd, and the lParam2 parameter is set to 0.

7.1.4 SendDriverMessage method

This method is used to send a driver-specific message to the Vfw capture driver. The SendDriverMessage method is declared as follows:

HRESULT SendDriverMessage([IN]int iDialog, [IN]int uMsg, [IN]long dw1, [IN]long dw2)

where

iDialog

Used to specify the handle of the driver dialog box. This is a member of the VfwCaptureDialogs enumerated data type.

uMsg

Used to specify the message to send to the driver.

dw1

Used to specify some message data.

dw2

Used to specify some message data.

This method returns an HRESULT value that depends on the implementation of the interface. HRESULT can include one of the following standard constants, or other values not listed:

HRESULT
Meaning

E_FAIL
Failure

E_INVALIDARG
Invalid argument

E_NOTIMPL
Method is not supported

NOERROR
No error

The IAMVfwCaptureDialogs:: SendDriverMessage interface method is implemented using the Installable Driver Function SendDriverMessage. The hdrvr parameter is set to the handle of the VfW capture device video in, external video in, or external video out channel based on the value of iDialog, the msg parameter is set to uMsg, the lParam1 parameter is set to dw1, and the lParam2 parameter is set to dw2.

7.2 WDM capture device and Videoconferencing Accelerator specific application interfaces

The crossbar can be used to route either digital or analog signals in WDM capture devices and Videoconferencing Accelerators. A single crossbar can route both video and audio signals. Video pins can optionally indicate an audio pin, which is related to the video pin. The crossbar is modeled after a general switching matrix, with N inputs and M outputs. Any of the input signals can be routed to one or more of the outputs. Actual hardware implementations probably allow only a subset of this general routing capability.

7.2.1 IAMCrossbar interface

The crossbar can be used to route either digital or analog signals in WDM capture devices and Videoconferencing Accelerators. A single crossbar can route both video and audio signals. Video pins can optionally indicate an audio pin, which is related to the video pin. The crossbar is modeled after a general switching matrix, with N inputs and M outputs. Any of the input signals can be routed to one or more of the outputs. Actual hardware implementations probably allow only a subset of this general routing capability.

The IAMCrossbar interface contains the following methods:

get_PinCounts

Used to retrieve the number of input and output pins.

CanRoute

Used to determine if the crossbar filter can route the analog or digital signal.

Route

Used to route an input pin to an output pin.

get_IsRoutedTo

Used to retrieve the input pin connected to a given output pin.

get_CrossbarPinInfo

Used to retrieve a pin that has audio or video data relating to a given pin.

All the methods in this interface are implemented by the IAMCrossbar interface handler provided in KsXBar.ax.

The IAMCrossbar interface uses the PhysicalConnectorType enumerated data type to identify specific connector types. This enumerated data type is defined as follows:

7.2.2 PhysicalConnectorType enumerated data type

This enumerated data type is defined as follows:

typedef enum tagPhysicalConnectorType

{

 PhysConn_Video_Tuner = 1,

 PhysConn_Video_Composite,

 PhysConn_Video_SVideo,

 PhysConn_Video_RGB,

 PhysConn_Video_YRYBY,

 PhysConn_Video_SerialDigital,

 PhysConn_Video_ParallelDigital,

 PhysConn_Video_SCSI,

 PhysConn_Video_AUX,

 PhysConn_Video_1394,

 PhysConn_Video_USB,

 PhysConn_Video_VideoDecoder,

 PhysConn_Video_VideoEncoder,

 PhysConn_Video_SCART,

 PhysConn_Video_Black,

 PhysConn_Audio_Tuner = 4096,

 PhysConn_Audio_Line,

 PhysConn_Audio_Mic,

 PhysConn_Audio_AESDigital,

 PhysConn_Audio_SPDIFDigital,

 PhysConn_Audio_SCSI,

 PhysConn_Audio_AUX,

 PhysConn_Audio_1394,

 PhysConn_Audio_USB,

 PhysConn_Audio_AudioDecoder

} PhysicalConnectorType;

7.2.3 get_PinCounts method

This method is used to retrieve the number of input and output pins. The get_PinCounts method is declared as follows:

HRESULT get_PinCounts([OUT]long *OutputPinCount, [OUT]long *InputPinCount)

where

OutputPinCount

Used to retrieve the number of audio and video output pins.

InputPinCount

Used to retrieve the number of audio and video input pins.

This method returns an HRESULT value that depends on the implementation of the interface. HRESULT can include one of the following standard constants, or other values not listed:

HRESULT
Meaning

E_FAIL
Failure

E_POINTER
Null pointer argument

E_NOTIMPL
Method is not supported

NOERROR
No error

7.2.4 CanRoute method

This method is used to determine if routing is possible. The CanRoute method is declared as follows:

HRESULT CanRoute([IN]long OutputPinIndex, [IN]long InputPinIndex)

where

OutputPinIndex

Used to specify the output pin.

InputPinIndex

Used to specify the input pin.

This method returns an HRESULT value that depends on the implementation of the interface. HRESULT can include one of the following standard constants, or other values not listed:

HRESULT
Meaning

E_FAIL
Failure

E_INVALIDARG
Invalid argument

E_NOTIMPL
Method is not supported

NOERROR
No error

7.2.5 Route method

This method is used to route an input pin to an output pin. The Route method is declared as follows:

HRESULT Route([IN]long OutputPinIndex, [IN]long InputPinIndex)

where

OutputPinIndex

Used to specify the output pin.

InputPinIndex

Used to specify the input pin.

This method returns an HRESULT value that depends on the implementation of the interface. HRESULT can include one of the following standard constants, or other values not listed:

HRESULT
Meaning

E_FAIL
Failure

E_INVALIDARG
Invalid argument

E_NOTIMPL
Method is not supported

NOERROR
No error

7.2.6 get_IsRoutedTo method

This method is used to retrieve the input pin connected to a given output pin. The get_IsRoutedTo method is declared as follows:

HRESULT get_IsRoutedToo([IN]long OutputPinIndex, [OUT]long *InputPinIndex)

where

OutputPinIndex

Used to specify the output pin.

InputPinIndex

Used to retrieve the connected input pin.

This method returns an HRESULT value that depends on the implementation of the interface. HRESULT can include one of the following standard constants, or other values not listed:

HRESULT
Meaning

E_FAIL
Failure

E_POINTER
Null pointer argument

E_INVALIDARG
Invalid argument

E_NOTIMPL
Method is not supported

NOERROR
No error

7.2.7 get_CrossbarPinInfo method

This method is used to retrieve a pin that has audio or video data relating to a given pin. The get_CrossbarPinInfo method is declared as follows:

HRESULT get_CrossbarPinInfo([IN]BOOL IsInputPin, [IN]long PinIndex, [OUT]long *PinIndexRelated, [OUT]long *PhysicalType)

where

IsInputPin

Set to TRUE to specify the pin to be retrieved should be an input pin, FALSE for an output pin.

PinIndex

Used to specify the pin to find a related pin for.

PinIndexRelated

Used to retrieve the index value of the related pin.

PhysicalType

Used to retrieve the physical type of the related pin. Pointer to a member of the PhysicalConnectorType enumerated type

This method returns an HRESULT value that depends on the implementation of the interface. HRESULT can include one of the following standard constants, or other values not listed:

HRESULT
Meaning

E_FAIL
Failure

E_POINTER
Null pointer argument

E_INVALIDARG
Invalid argument

E_NOTIMPL
Method is not supported

NOERROR
No error

7.3 VfW, WDM capture device and Videoconferencing Accelerator application interfaces

The TAPI MSP exposes a few DirectShow interfaces supported by the VfW, WDM capture devices and Videoconferencing Accelerators to the client application. Typically, these applications indirectly use those interfaces to modify video quality settings, or provide simulated camera control capabilities if the video capture filter supports such features. Those interfaces are the IAMVideoProcAmp, IAMCameraControl and IAMVideoControl interfaces.

Note that the application do not get a direct pointer to those interfaces. Instead, the methods on those interfaces are called through delegation.

All interfaces listed below are implemented by the TAPI MSP Video Capture filter itself, not its output pins. The TAPI MSP calls QueryInterface on the IBaseFilter interface exposed by the TAPI MSP Video Capture filter to get pointers to the DirectShow interfaces mentioned in this section.

Note that for VfW capture devices, it is the encoder function that implements the IAMVideoProcAmp, IAMCameraControl and IAMVideoControl interfaces.

7.3.1 IAMVideoProcAmp interface

The IAMVideoProcAmp interface contains methods for controlling video quality such as brightness, contrast, hue, saturation, gamma, and sharpness. It defines a uniform range for these settings regardless of whether the adjustment is made in the analog or digital domain.

The IAMVideoProcAmp interface contains the following methods:

GetRange

Used to retrieve minimum, maximum, and default values of a video quality setting.

Set

Used to set the value of a video quality setting.

Get

Used to retrieve the value of a video quality setting.

For WDM capture devices and Videoconferencing Accelerators, all the methods in this interface are implemented by the IAMVideoProcAmp interface handler provided in KsWDMCap.ax.

The TAPI MSP Video Capture filter uses the IAMVideoProcAmp interface handler provided in KsWDMCap.ax that relies on the PROPSETID_VIDCAP_VIDEOPROCAMP property set to implement the methods of this interface. This set contains the following properties:

KSPROPERTY_VIDEOPROCAMP_BRIGHTNESS

Used to set and retrieve the brightness setting.

KSPROPERTY_VIDEOPROCAMP_CONTRAST

Used to set and retrieve the contrast or luma gain setting.

KSPROPERTY_VIDEOPROCAMP_HUE

Used to set and retrieve the hue setting.

KSPROPERTY_VIDEOPROCAMP_SATURATION

Used to set and retrieve the saturation or chroma gain setting.

KSPROPERTY_VIDEOPROCAMP_SHARPNESS

Used to set and retrieve the sharpness setting.

KSPROPERTY_VIDEOPROCAMP_GAMMA

Used to set and retrieve the gamma setting.

KSPROPERTY_VIDEOPROCAMP_COLORENABLE

Used to set and retrieve the color enable setting.

KSPROPERTY_VIDEOPROCAMP_WHITEBALANCE

Used to set and retrieve the white balance setting.

KSPROPERTY_VIDEOPROCAMP_BACKLIGHT_COMPENSATION

Used to set and retrieve the backlight compensation setting.

All properties within this property set use the same structure to set and retrieve individual properties.

typedef struct {

 KSPROPERTY Property;

 LONG Value;

 ULONG Flags;

 ULONG Capabilities;

} KSPROPERTY_VIDEOPROCAMP_S;

where

Property

Used to specify the property used.

Value

Used to specify a value for the property.

Flags

Contains one of the flags in VideoProcAmpFlags.

Capabilities

Contains one of the flags in VideoProcAmpFlags.

The IAMVideoProcAmp interface uses the VideoProcAmpProperty enumerated data type to identify specific quality settings, and the VideoProcAmpFlags enumerated data type to qualify if the quality setting can be set manually and/or automatically.

7.3.1.1 VideoProcAmpProperty enumerated data type

This enumerated data type is defined as follows:

typedef enum tagVideoProcAmpProperty

{

 VideoProcAmp_Brightness,

 VideoProcAmp_Contrast,

 VideoProcAmp_Hue,

 VideoProcAmp_Saturation,

 VideoProcAmp_Sharpness,

 VideoProcAmp_Gamma,

 VideoProcAmp_ColorEnable,

 VideoProcAmp_WhiteBalance,

 VideoProcAmp_BacklightCompensation

} VideoProcAmpProperty;

where:

VideoProcAmp_Brightness

Specifies the brightness setting in IRE units * 100. The range for Value is -10000 to 10000; the default value is 750 (7.5 IRE)

VideoProcAmp_Contrast

Specifies the contrast or luma gain setting in gain factor * 100. The Value range is from zero to 10000, and the default is 100 (1x). Note that a particular video encoder filter may only implement a subset of this range.

VideoProcAmp_Hue

Specifies the hue setting in degrees * 100. Value range is from -18000 to 18000 (-180 to +180 degrees), and the default is zero. Note that a particular video encoder filter may only implement a subset of this range.

VideoProcAmp_Saturation

Specifies the saturation or chroma gain setting in gain * 100. Value ranges from zero to 10000, and the default is 100 (1x). Note that a particular video encoder filter may only implement a subset of this range.

VideoProcAmp_Sharpness

Specifies the sharpness setting in arbitrary units. Value ranges from zero to 100, and the default is 50. Note that a particular video encoder filter may only implement a subset of this range.

VideoProcAmp_Gamma

Specifies the gamma setting in gamma * 100. Value ranges from 1 to 500, and the default is 100 (gamma = 1). Note that a particular video encoder filter may only implement a subset of this range.

VideoProcAmp_ColorEnable

Specifies the color enable setting as a Boolean value. Value ranges from zero to 1, and the default is 1.

VideoProcAmp_WhiteBalance

Specifies the white balance setting expressed as a color temperature in degrees Kelvin. The range and default values for this setting are video encoder filter dependent.

VideoProcAmp_BacklightCompensation

Specifies the backlight compensation setting which is a Boolean. Zero indicates backlight compensation is disabled, and 1 indicates backlight compensation is enabled.

7.3.1.2 VideoProcAmpFlags enumerated data type

This enumerated data type is defined as follows:

typedef enum tagVideoProcAmpFlags

{

 VideoProcAmp_Flags_Manual = 0x0000,

 VideoProcAmp_Flags_Auto = 0x0001

} VideoProcAmpFlags;

where:

VideoProcAmp_Flags_Manual

Specifies that the quality setting can be modified manually.

VideoProcAmp_Flags_Auto

Specifies that the quality setting can be modified automatically.

7.3.1.3 GetRange method

This method is used to retrieve the minimum, maximum, and default values for specific video quality settings. The GetRange method is declared as follows:

HRESULT GetRange([IN]long Property, [OUT]long *pMin, [OUT]long *pMax, [OUT]long *pSteppingDelta, [OUT]long *pDefault, [OUT]long *pCapsFlags)

where

Property

Used to specify the video quality setting to determine the range of. Use a member of the VideoProcAmpProperty enumerated type.

pMin

Used to retrieve the minimum value of the video quality setting range.

pMax

Used to retrieve the maximum value of the video quality setting range.

pSteppingDelta

Used to retrieve the stepping delta of the video quality setting range.

pDefault

Used to retrieve the default value of the video quality setting range.

pCapsFlags

Used to retrieve the capabilities of the video quality setting. Pointer to a member of the VideoProcAmpFlags enumerated type.

This method returns an HRESULT value that depends on the implementation of the interface. HRESULT can include one of the following standard constants, or other values not listed:

HRESULT
Meaning

E_FAIL
Failure

E_POINTER
Null pointer argument

E_INVALIDARG
Invalid argument

E_NOTIMPL
Method is not supported

NOERROR
No error

The TAPI MSP Video Capture filter relies on the KSPROPERTY_VIDEOPROCAMP_S structure to implement the IAMVideoProcAmp::GetRange method.

7.3.1.4 Set method

This method is used to set the value of a specific video quality setting. The Set method is declared as follows:

HRESULT Set([IN]long Property, [IN]long lValue, [IN]long Flags)

where

Property

Used to specify the video quality setting to set the value of. Use a member of the VideoProcAmpProperty enumerated type.

lValue

Used to specify the new value of the video quality setting.

Flags

A member of the VideoProcAmpFlags enumerated type.

This method returns an HRESULT value that depends on the implementation of the interface. HRESULT can include one of the following standard constants, or other values not listed:

HRESULT
Meaning

E_FAIL
Failure

E_INVALIDARG
Invalid argument

E_NOTIMPL
Method is not supported

NOERROR
No error

The TAPI MSP Video Capture filter relies on the KSPROPERTY_VIDEOPROCAMP_S structure to implement the IAMVideoProcAmp::Set method.

7.3.1.5 Get method

This method is used to get the current value of a specific video quality setting. The Get method is declared as follows:

HRESULT Get([IN]long Property, [OUT]long *lValue, [OUT]long *Flags)

where

Property

Used to specify the video quality setting to get the value of. Use a member of the VideoProcAmpProperty enumerated type.

lValue

Used to retrieve the current value of the video quality setting.

Flags

Pointer to a member of the VideoProcAmpFlags enumerated type.

This method returns an HRESULT value that depends on the implementation of the interface. HRESULT can include one of the following standard constants, or other values not listed:

HRESULT
Meaning

E_FAIL
Failure

E_POINTER
Null pointer argument

E_INVALIDARG
Invalid argument

E_NOTIMPL
Method is not supported

NOERROR
No error

The TAPI MSP Video Capture filter relies on the KSPROPERTY_VIDEOPROCAMP_S structure to implement the IAMVideoProcAmp::Get method.

7.3.2 IAMCameraControl interface

The IAMCameraControl interface contains methods to adjust or inquire about camera control settings. The controls are a subset of the proposed ITU T.RDC standard at http://www.itu.ch.

The IAMCameraControl interface contains the following methods:

GetRange

Used to retrieve minimum, maximum, and default values of a camera control setting.

Set

Used to set the value of a camera control setting.

Get

Used to retrieve the value of a camera control setting.

For WDM capture devices and Videoconferencing Accelerators, the TAPI MSP Video Capture filter uses the IAMCameraControl interface handler provided in KsWDMCap.ax that relies on the PROPSETID_VIDCAP_CAMERACONTROL property set to implement the methods of this interface. This set contains the following properties:

KSPROPERTY_CAMERACONTROL_PAN

Used to set and retrieve the camera pan setting.

KSPROPERTY_CAMERACONTROL_TILT

Used to set and retrieve the camera tilt setting.

KSPROPERTY_CAMERACONTROL_ROLL

Used to set and retrieve the roll setting.

KSPROPERTY_CAMERACONTROL_ZOOM

Used to set and retrieve the zoom setting.

KSPROPERTY_CAMERACONTROL_EXPOSURE

Used to set and retrieve the exposure setting.

KSPROPERTY_CAMERACONTROL_IRIS

Used to set and retrieve the iris setting.

KSPROPERTY_CAMERACONTROL_FOCUS

Used to set and retrieve the focus setting.

All properties within this property set use the same structure to set and retrieve individual properties.

typedef struct {

 KSPROPERTY Property;

 LONG Value;

 ULONG Flags;

 ULONG Capabilities;

} KSPROPERTY_CAMERACONTROL_S;

where

Property

Used to specify the property used.

Value

Used to specify a value for the property.

Flags

Contains the flags described in the following table.

Capabilities

Contains the flags described in the following table.

Flags
Description

KSPROPERTY_VIDEOPROCAMP_FLAGS_MANUAL
The property is to be adjusted manually

KSPROPERTY_VIDEOPROCAMP_FLAGS_AUTO
The property is to be adjusted automatically

KSPROPERTY_CAMERACONTROL_FLAGS_ABSOLUTE
The setting is in absolute values

KSPROPERTY_CAMERACONTROL_FLAGS_RELATIVE
The setting is in relative values

The IAMCameraControl interface uses the CameraControlProperty enumerated data type to describe specific camera control settings, and the CameraControlFlags enumerated data type to qualify if the camera control setting can be set manually and/or automatically.

7.3.2.1 CameraControlProperty enumerated data type

This enumerated data type is defined as follows:

typedef enum tagCameraControlProperty

{

 CameraControl_Pan,

 CameraControl_Tilt,

 CameraControl_Roll,

 CameraControl_Zoom,

 CameraControl_Exposure,

 CameraControl_Iris,

 CameraControl_Focus

} CameraControlProperty;

where:

CameraControl_Pan

Specifies the simulated camera pan setting in degrees. Values range from -180 to +180, and the default is zero. Positive values are clockwise from the origin (the simulated camera rotates clockwise when viewed from above), and negative values are counterclockwise from the origin. Note that a particular video capture filter may only implement a subset of this range.

CameraControl_Tilt

Specifies the simulated camera tilt setting in degrees. Values range from -180 to +180, and the default is zero. Positive values point the imaging plane up, and negative values point the imaging plane down. Note that a particular video capture filter may only implement a subset of this range.

CameraControl_Roll

Specifies the simulated roll setting in degrees. Values range from -180 to +180, and the default is zero. Positive values cause a clockwise rotation of the simulated camera along the image viewing axis, and negative values cause a counterclockwise rotation of the simulated camera. Note that a particular video capture filter may only implement a subset of this range.

CameraControl_Zoom

Specifies the simulated zoom setting in millimeter units. Values range from 10 to 600, and the default is video capture filter specific.

CameraControl_Exposure

Specifies the simulated exposure setting in seconds using the following formula. For values less than zero, the exposure time is 1/2n seconds. For positive values and zero, the exposure time is 2n seconds. Note that a particular video capture filter may only implement a subset of this range.

CameraControl_Iris

Specifies the simulated iris setting expressed as the fstop * 10.

CameraControl_Focus

Specifies the simulated camera focus setting as the distance to the optimally focused target in millimeters. The range and default values are video encoder filter specific. Note that a particular video capture filter may only implement a subset of this range.

7.3.2.2 CameraControlFlags enumerated data type

This enumerated data type is defined as follows:

typedef enum tagCameraControlFlags

{

 CameraControl_Flags_Manual = 0x0000,

 CameraControl_Flags_Auto = 0x0001

} CameraControlFlags;

where:

CameraControl_Flags_Manual

Specifies that the camera control setting can be modified manually.

CameraControl_Flags_Auto

Specifies that the camera control setting can be modified automatically.

7.3.2.3 GetRange method

This method is used to retrieve the minimum, maximum, and default values for specific camera control settings. The GetRange method is declared as follows:

HRESULT GetRange([IN]long Property, [OUT]long *pMin, [OUT]long *pMax, [OUT]long *pSteppingDelta, [OUT]long *pDefault, [OUT]long *pCapsFlags)

where

Property

Used to specify the camera control setting to determine the range of. Use a member of the CameraControlProperty enumerated type.

pMin

Used to retrieve the minimum value of the camera control setting range.

pMax

Used to retrieve the maximum value of the camera control setting range.

pSteppingDelta

Used to retrieve the stepping delta of the camera control setting range.

pDefault

Used to retrieve the default value of the camera control setting range.

pCapsFlags

Used to retrieve the capabilities of the camera control setting. Pointer to a member of the CameraControlFlags enumerated type.

This method returns an HRESULT value that depends on the implementation of the interface. HRESULT can include one of the following standard constants, or other values not listed:

HRESULT
Meaning

E_FAIL
Failure

E_POINTER
Null pointer argument

E_INVALIDARG
Invalid argument

E_NOTIMPL
Method is not supported

NOERROR
No error

The TAPI MSP Video Capture filter relies on the KSPROPERTY_CAMERACONTROL_S structure to implement the IAMCameraControl::GetRange method.

7.3.2.4 Set method

This method is used to set the value of a specific camera control setting. The Set method is declared as follows:

HRESULT Set([IN]long Property, [IN]long lValue, [IN]long Flags)

where

Property

Used to specify the camera control setting to set the value of. Use a member of the CameraControlProperty enumerated type.

lValue

Used to specify the new value of the camera control setting.

Flags

A member of the CameraControlFlags enumerated type.

This method returns an HRESULT value that depends on the implementation of the interface. HRESULT can include one of the following standard constants, or other values not listed:

HRESULT
Meaning

E_FAIL
Failure

E_INVALIDARG
Invalid argument

E_NOTIMPL
Method is not supported

NOERROR
No error

The TAPI MSP Video Capture filter relies on the KSPROPERTY_CAMERACONTROL_S structure to implement the IAMCameraControl::Set method.

7.3.2.5 Get method

This method is used to get the current value of a specific camera control setting. The Get method is declared as follows:

HRESULT Get([IN]long Property, [OUT]long *lValue, [OUT]long *Flags)

where

Property

Used to specify the camera control setting to get the value of. Use a member of the CameraControlProperty enumerated type.

lValue

Used to retrieve the current value of the camera control setting.

Flags

Pointer to a member of the CameraControlFlags enumerated type.

This method returns an HRESULT value that depends on the implementation of the interface. HRESULT can include one of the following standard constants, or other values not listed:

HRESULT
Meaning

E_FAIL
Failure

E_POINTER
Null pointer argument

E_INVALIDARG
Invalid argument

E_NOTIMPL
Method is not supported

NOERROR
No error

The TAPI MSP Video Capture filter relies on the KSPROPERTY_CAMERACONTROL_S structure to implement the IAMCameraControl::Get method.

7.3.3 IAMVideoControl interface

The IAMVideoControl interface contains methods to flip a picture horizontally and/or vertically, as well as enumerate available frame rates. The following list identifies the methods of IAMVideoControl interface exposed by TAPI:

GetCaps

Used to retrieve the capabilities of the video capture filter regarding flipping pictures, external triggering and available frame rates.

SetMode

Used to set the video control mode of operation.

GetMode

Used to retrieve the video control mode of operation.

GetCurrentActualFrameRate

Used to retrieve the actual frame rate at which the video capture filter is streaming.

GetMaxAvailableFrameRate

Used to retrieve the maximum frame rate currently available on the video capture filter.

GetFrameRateList

Used to retrieve the list of available frame rates.

For WDM capture devices and Videoconferencing Accelerators, the TAPI MSP Video Capture filter uses the IAMVideoControl interface handler provided in KsWDMCap.ax that relies on the PROPSETID_VIDCAP_VIDEOCONTROL property set to control additional aspects of the capture process such as enumerating available frame rates and image orientation. This property set consists of the following properties:

KSPROPERTY_VIDEOCONTROL_CAPS

Used to identify the video control capabilities of the device. This is a read-only property.

KSPROPERTY_VIDEOCONTROL_ACTUAL_FRAME_RATE

Used to retrieve the current actual frame rate, and current maximum available frame rate. This is a read-only property.

KSPROPERTY_VIDEOCONTROL_FRAME_RATES

Used to enumerate the available frame rates. This is a read-only property.

KSPROPERTY_VIDEOCONTROL_MODE

Used to control the mode of image production. This is a read/write property.

The KSPROPERTY_VIDEOCONTROL_CAPS property uses the following structure:

typedef struct {

 KSPROPERTY Property;

 ULONG VideoControlCaps; // KS_VideoControlFlags_*

} KSPROPERTY_VIDEOCONTROL_CAPS_S, *PKSPROPERTY_VIDEOCONTROL_CAPS_S;
where

Property

Used to specify the property used.

VideoControlCaps

Used to specify the video control capabilities from the KS_VideoControlFlags_* of the property set.

When using the KSPROPERTY_VIDEOCONTROL_FRAME_RATES read-only property, the available frame rates are returned in a structure of type KSMULTIPLE_ITEM with individual values given in units of 100ns.

Finally, the KSPROPERTY_VIDEOCONTROL_MODE read-write property uses the following structure:

typedef struct {

 KSPROPERTY Property;

 LONG Mode; // KS_VideoControlFlags_*

} KSPROPERTY_VIDEOCONTROL_MODE_S,

*PKSPROPERTY_VIDEOCONTROL_MODE_S;

where

Property

Used to specify the property used.

Mode

Used to specify the mode, from the KS_VideoControlFlags_* of the property set.

 The IAMVideoControl interface uses the VideoControlFlags enumerated data type to describe flip modes.

7.3.3.1 VideoControlFlags enumerated data type

This enumerated data type is defined as follows:

typedef enum tagVideoControlFlags

{

 VideoControlFlag_FlipHorizontal = 0x0001,

 VideoControlFlag_FlipVertical = 0x0002,

 VideoControlFlag_ExternalTriggerEnable = 0x0004,

 VideoControlFlag_Trigger = 0x0008

} VideoControlFlags;

where:

VideoControlFlag_FlipHorizontal

Specifies that the picture is flipped horizontally.

VideoControlFlag_FlipVertical

Specifies that the picture is flipped vertically.

VideoControlFlag_ExternalTriggerEnable

Sets up a stream to capture a trigger from an external source, for example, a push button on a camera. Buffers can be queued to the driver but will not be passed up from the WDM capture driver (for compression, display, or writing to a file) until the external event happens.

VideoControlFlag_Trigger

In software, simulates an external trigger when the stream has the VideoControlFlag_ExternalTriggerEnable flag set.

7.3.3.2 GetCaps method

This method is used to retrieve the capabilities of the TAPI MSP Video Capture filter regarding flipping pictures and external triggers. The GetCaps method is declared as follows:

HRESULT GetCaps([IN]IPin *pPin, [OUT]long *pCapsFlags)

where

pPin

Used to specify the video output pin to query capabilities from.

pCapsFlags

Used to retrieve a value representing a combination of the flags from the VideoControlFlags enumeration.

This method returns an HRESULT value that depends on the implementation of the interface. HRESULT can include one of the following standard constants, or other values not listed:

HRESULT
Meaning

E_FAIL
Failure

E_POINTER
Null pointer argument

E_INVALIDARG
Invalid argument

E_NOTIMPL
Method is not supported

NOERROR
No error

The TAPI MSP Video Capture filter relies on the KSPROPERTY_VIDEOCONTROL_CAPS property and KSPROPERTY_VIDEOCONTROL_CAPS_S structure to implement the IAMVideoControl::GetCaps method.

7.3.3.3 SetMode method

This method is used to set the video control mode of operation. The SetMode method is declared as follows:

HRESULT SetMode([IN]IPin *pPin, [IN]long Mode)

where

pPin

Used to specify the pin to set the video control mode on.

Mode

Used to specify a combination of the flags from the VideoControlFlags enumeration.

This method returns an HRESULT value that depends on the implementation of the interface. HRESULT can include one of the following standard constants, or other values not listed:

HRESULT
Meaning

E_FAIL
Failure

E_POINTER
Null pointer argument

E_INVALIDARG
Invalid argument

E_NOTIMPL
Method is not supported

NOERROR
No error

The TAPI MSP Video Capture filter relies on the KSPROPERTY_VIDEOCONTROL_MODE property and KSPROPERTY_VIDEOCONTROL_MODE_S structure to implement the IAMVideoControl::SetMode method.

7.3.3.4 GetMode method

This method is used to retrieve the video control mode of operation. The GetCaps method is declared as follows:

HRESULT GetCaps([IN]IPin *pPin, [OUT]long *Mode)

where

pPin

Used to specify the pin to get the video control mode from.

Mode

Pointer to a value representing a combination of the flags from the VideoControlFlags enumeration.

This method returns an HRESULT value that depends on the implementation of the interface. HRESULT can include one of the following standard constants, or other values not listed:

HRESULT
Meaning

E_FAIL
Failure

E_POINTER
Null pointer argument

E_INVALIDARG
Invalid argument

E_NOTIMPL
Method is not supported

NOERROR
No error

The TAPI MSP Video Capture filter relies on the KSPROPERTY_VIDEOCONTROL_MODE property and KSPROPERTY_VIDEOCONTROL_MODE_S structure to implement the IAMVideoControl::GetMode method.

7.3.3.5 GetCurrentActualFrameRate method

This method is used to retrieve the actual frame rate, expressed as a frame duration in 100 ns units. USB (Universal Serial Bus) and IEEE 1394 cameras may provide lower frame rates than requested, due to bandwidth availability. This is only available during video streaming. The GetCurrentActualFrameRate method is declared as follows:

HRESULT GetCurrentActualFrameRate([IN]IPin *pPin, [OUT]LONGLONG * ActualFrameRate)

where

pPin

Used to specify the pin to retrieve the frame rate from.

ActualFrameRate

Pointer to the frame rate in frame duration in 100 nS units.

This method returns an HRESULT value that depends on the implementation of the interface. HRESULT can include one of the following standard constants, or other values not listed:

HRESULT
Meaning

E_FAIL
Failure

E_POINTER
Null pointer argument

E_INVALIDARG
Invalid argument

E_NOTIMPL
Method is not supported

NOERROR
No error

The TAPI MSP Video Capture filter relies on the KSPROPERTY_VIDEOCONTROL_FRAME_RATES property and KSMULTIPLE_ITEM structure to implement the IAMVideoControl::GetCurrentActualFrameRate method.

7.3.3.6 GetFrameRateList method

This method is used to retrieve the list of available frame rates. The GetFrameRateList method is declared as follows:

HRESULT GetFrameRateList([IN]IPin *pPin, [IN]long iIndex, [IN]SIZE Dimensions, [OUT]long *ListSize, [OUT]LONGLONG **FrameRates)

where

pPin

Used to specify the pin to retrieve the frame rates from.

iIndex

Used to specify the index of the format to query for frame rates. This index corresponds to the order in which formats are enumerated by IAMStreamConfig::GetStreamCaps. The value must range between 0 and the number of supported VIDEO_STREAM_CONFIG_CAPS structures returned by IAMStreamConfig::GetNumberOfCapabilities.

Dimensions

Used to specify the frame's image size (width and height) in pixels.

ListSize

Used to specify the number of elements in the list of frame rates.

FrameRates

Pointer to an array of frame rates in 100 ns units. Can be NULL if only ListSize is wanted.

This method returns an HRESULT value that depends on the implementation of the interface. HRESULT can include one of the following standard constants, or other values not listed:

HRESULT
Meaning

E_FAIL
Failure

E_POINTER
Null pointer argument

E_INVALIDARG
Invalid argument

E_NOTIMPL
Method is not supported

NOERROR
No error

The TAPI MSP Video Capture filter relies on the KSPROPERTY_VIDEOCONTROL_FRAME_RATES property and KSMULTIPLE_ITEM structure to implement the IAMVideoControl::GetFrameRateList method.

7.3.3.7 GetMaxAvailableFrameRate method

This method is used to retrieve the maximum frame rate currently available, based on bus bandwidth usage for connections, such as USB (Universal Serial Bus) and IEEE 1394, where the maximum frame rate may be limited due to bandwidth availability. The GetMaxAvailableFrameRate method is declared as follows:

HRESULT GetMaxAvailableFrameRate([IN]IPin *pPin, [IN]long iIndex, [IN]SIZE Dimensions, [OUT]LONGLONG *MaxAvailableFrameRate)

where

pPin

Used to specify the pin to retrieve the maximum frame rate from.

iIndex

Used to specify the index of the format to query for frame rates. This index corresponds to the order in which formats are enumerated by IAMStreamConfig::GetStreamCaps. The value must range between 0 and the number of supported VIDEO_STREAM_CONFIG_CAPS structures returned by IAMStreamConfig::GetNumberOfCapabilities.

Dimensions

Used to specify the frame's image size (width and height) in pixels.

MaxAvailableFrameRate

Pointer to the maximum available frame rate in frame duration in 100 nS units.

This method returns an HRESULT value that depends on the implementation of the interface. HRESULT can include one of the following standard constants, or other values not listed:

HRESULT
Meaning

E_FAIL
Failure

E_POINTER
Null pointer argument

E_INVALIDARG
Invalid argument

E_NOTIMPL
Method is not supported

NOERROR
No error

The TAPI MSP Video Capture filter relies on the KSPROPERTY_VIDEOCONTROL_FRAME_RATES property and KSMULTIPLE_ITEM structure to implement the IAMVideoControl::GetMaxAvailableFrameRate method.

8. Video capture filter H.245 video capability MSP interface

The TAPI MSP Capability module is responsible for coordinating capability advertisement and resolution with respect to the limits configured in the TAPI MSP Quality Controller. The TAPI MSP Video Capture filter implements the IH245VideoCapability interface on behalf of VfW and WDM capture devices (including Videoconferencing Accelerators) in order to provide the TAPI MSP Capability module with a table of estimated steady-state resource requirements as related to each format that the capture device supports.

While run-time resource requirements fluctuate within a continuum, the steady-state resource requirements are meant to indicate relative resource requirements under near-ideal conditions and no network loss. At minimum, the resource requirements include the typical maximum bitrate and CPU utilization (in % of the host CPU) for each supported format. The steady-state resource requirement information is used only by the TAPI MSP Capability module to ensure that negotiated formats always fall within the maximum configured resource budget. Given the steady-state resource requirements of all filters and the resource limits configured in the TAPI MSP Quality Controller, the TAPI MSP Capability module is able to build the local simultaneous capability descriptors and to disable advertisement and selection of formats which exceed or approach the configured resource limits. Once streaming is active, fluctuations in actual bitrate and CPU load are then managed by the TAPI MSP Quality Controller.

8.1.1 IH245VideoCapability interface

The IH245VideoCapability interface contains methods to enumerate, translate, and compare video formats.

The IH245VideoCapability interface contains the following methods:

GetH245VersionID

Used to retrieve a version identifier that indicates the version of H.245 that the TAPI MSP Video Capture filter supports.

GetFormatTable

Used to retrieve a table of supported formats as related to estimated system resources. This table may be dynamically allocated by the TAPI MSP Video Capture filter.

ReleaseFormatTable

Used to release the format table allocated by GetFormatTable.

IntersectFormats

Used to compare a local capability and remote capability and produce configuration structures and parameters that are compatible with both.

GetLocalFormat

Used to retrieve local format parameters that are compatible with a specific remote capability and parameters.

GetNegotiatedLimitProperty

Used to retrieve the value of a negotiated limiting parameter.

ReleaseNegotiatedCapability

Used to release resources that were allocated by IntersectFormats or GetLocalFormat.

SetIDBase

Used to control the range of sequential numbers that uniquely identify individual capabilities

FindIDByRange

Used to find a specific capability that corresponds to a formatted AM_MEDIA_TYPE structure.

The IH245VideoCapability interface uses the NegotiatedVideoLimit enumerated data type to describe negotiated video limiting parameters. Only generic properties which are useful to the TAPI MSP Quality Controller module are defined.

The IH245VideoCapability interface is not a standard DirectShow interface. Therefore, it is not implemented natively by KSProxy. Instead, the TAPI MSP Video Capture filter implements this interface with an interface handler using the DirectShow IAMStreamConfig interface to retrieve format information on each of the output pins of TAPI MSP Video Capture filter.

8.1.2 NegotiatedVideoLimit enumerated data type

This enumerated data type is defined as follows:

typedef enum tagNegotiatedVideoLimit

{

 NegotiatedVideo_MaxFrameRate,

 NegotiatedVideo_MaxBitRate,

 NegotiatedVideo_MaxBitsPerPicture,

} NegotiatedVideoLimit;

where:

NegotiatedVideo_MaxFrameRate

Specifies the smaller of the maximum continuous video frame rate that the receiver is capable of receiving or the transmitter is capable of transmitting.

NegotiatedVideo_MaxBitRate

Specifies smaller of the maximum average video bit rate that the receiver is capable of receiving or the transmitter is capable of transmitting.

NegotiatedVideo_MaxBitsPerPicture

Specifies the maximum number of bits that may be contained in a single video frame. If there is no negotiated maximum, this shall be zero.

8.1.3 VideoResourceBounds structure

TAPI defines the VideoResourceBounds structure to specify the estimated maximum continuous resource requirements of the TAPI MSP Video Capture filter at a specific frame rate:

typedef enum tag_VideoResourceBounds

{

 int iPicturesPerSecond;

 DWORD dwBitsPerPicture;

 WORD wCPUUtilization;

} VideoResourceBounds;

where:

iPicturesPerSecond

Specifies an INTEGER value that indicates the video frame rate, in frames per second, for which the resource bounds are being specified. Frame rates of less than 1 frame per second are indicated by a negative value in units of seconds per frame.

dwBitsPerPicture

Specifies a DWORD value that indicates the approximate average number of bits per video frame at an average frame rate of iPicturesPerSecond.

wCPUUtilization

Specifies a WORD value that indicates the approximate average CPU utilization, in percent, of the TAPI MSP Video Capture filter at the average frame rate of iPicturesPerSecond.

8.1.4 H245VideoCapabilityMap structure

TAPI defines the H245VideoCapabilityMap structure to specify the relationship between supported formats and estimated maximum system resources for the supported format:

typedef enum tag_H245VideoCapabilityMap

{

 AM_MEDIA_TYPE *pAMMediaType;

 H245VideoCapability h245VideoCapability;

 GUID filterGuid;

 DWORD dwUniqueID;

 UINT uNumRatesSupported;

 VideoResourceBounds *pResourceBoundArray;

} H245VideoCapabilityMap;

where:

pAMMediaType

Specifies a pointer to an AM_MEDIA_TYPE structure that describes the format of the video stream.

h245VideoCapability

Specifies the H.245 video format, including all parameters and options. This structure is H.245 version specific: its definition depends on the version of H.245 used by the TAPI MSP Video Capture filter. This structure may indicate format parameters for more than one standard video size at a time if the resource requirements are similar for all sizes.

filterGuid

Specifies a GUID value that uniquely identifies the TAPI MSP Video Capture filter.

dwUniqueID

Specifies a DWORD value that uniquely identifies the capability of the TAPI MSP Video Capture filter.

uNumRatesSupported

This indicates the number of elements referenced by pResourceBoundArray and specifies the number of integral frame rates that are supported for the format options specified in pAMMediaType and h245VideoCapability.

pResourceBoundArray

Specifies an array of VideoResourceBounds structures that indicate the approximate resource bounds of each supported integral frame rate.

8.1.5 H245VideoCapabilityTable structure

TAPI defines the H245VideoCapabilityTable structure to specify the set of formats that are supported by the TAPI MSP Video Capture filter:

typedef enum tag_H245VideoCapabilityTable

{

 UINT uMappedCapabilities;

 H245VideoCapabilityMap *pCapabilityArray;

} H245VideoCapabilityTable;

where:

uMappedCapabilities

Specifies the number of H245VideoCapabilityMap structures in pCapabilityArray.

pCapabilityArray

Specifies a pointer to an array of H245VideoCapabilityMap structures.

8.1.6 GetH245VersionID method

This method returns a DWORD value that identifies the platform version that the TAPI MSP Video Capture filter was designed for. The platform version is defined as TAPI_H245_VERSION_ID. The GetH245VersionID method is declared as:

DWORD GetH245VersionID()

8.1.7 GetFormatTable method

This method is used to obtain H245VideoCapabilityMap structures for all formats and format options that the TAPI MSP Video Capture filter supports. The content of the capability information that the TAPI MSP Capability module obtains via the GetFormatTable method is a two dimensional table that relates every supported transmit format to steady-state resource requirements of that format.

The GetFormatTable method is declared as follows:

HRESULT GetFormatTable([IN]IPin *pPin, [OUT]H245VideoCapabilityTable *pTable)

where

pPin

Used to specify the video capture or still-image output pin of the capture device. The TAPI MSP Video Capture filter enumerates the list of formats supported by this pin to build its own video capability table.

pTable

Pointer to an H245VideoCapabilityTable structure.

This method returns an HRESULT value that depends on the implementation of the interface. HRESULT can include one of the following standard constants, or other values not listed:

HRESULT
Meaning

E_FAIL
Failure

E_POINTER
Null pointer argument

E_INVALIDARG
Invalid argument

E_NOTIMPL
Method is not supported

NOERROR
No error

8.1.8 ReleaseFormatTable method

This method is used to release memory allocated by the GetFormatTable method. The ReleaseFormatTable method is declared as follows:

HRESULT ReleaseFormatTable([IN]H245VideoCapabilityTable *pTable)

where

pTable

Pointer to an H245VideoCapabilityTable structure.

This method returns an HRESULT value that depends on the implementation of the interface. HRESULT can include one of the following standard constants, or other values not listed:

HRESULT
Meaning

E_FAIL
Failure

E_POINTER
Null pointer argument

E_INVALIDARG
Invalid argument

E_NOTIMPL
Method is not supported

NOERROR
No error

8.1.9 IntersectFormats method

This method is used to compare and intersect one local capability and one remote capability and to obtain configuration parameters. The IntersectFormats method is declared as follows:

HRESULT IntersectFormats([IN]H245VideoCapability *pLocalCapability, [IN]H245VideoCapability *pRemoteCapability, [OUT]HANDLE *phIntersectionCookie, [OUT]H245VideoCapability *pIntersectedCapability, [IN]AM_MEDIA_TYPE *pAMMediaType)

where

pLocalCapability

Specifies the H.245 video format, including all parameters and options defined by H.245, of a local video capability.

pRemoteCapability

Specifies the H.245 video format, including all parameters and options defined by H.245, of a remote video capability.

phIntersectionCookie

Identifies the dynamic instance of intersected capabilities. When the TAPI MSP Video Capture filter creates the intersection, it may allocate memory for the intersected capability parameters. The intersection cookie identifies this allocation. This is used to release internal allocations and also as an argument to the GetNegotiatedLimitProperty method.

pIntersectedCapability

Specifies the H.245 video format, of the resolved common local and remote capability options and limits.

pAMMediaType

Pointer to an AM_MEDIA_TYPE structure that has been initialized to regard negotiated options.

This method returns an HRESULT value that depends on the implementation of the interface. HRESULT can include one of the following standard constants, or other values not listed:

HRESULT
Meaning

E_INCOMPATIBLECAPS
Failure

E_FAIL
Failure

E_POINTER
Null pointer argument

E_INVALIDARG
Invalid argument

E_NOTIMPL
Method is not supported

NOERROR
No error

8.1.10 GetLocalFormat method

This method is used to obtain the local TAPI MSP Video Capture filter configuration parameters that are compatible with a remote capability. The GetLocalFormat method is declared as follows:

HRESULT GetLocalFormat([IN]H245VideoCapability *pRemoteCapability, [OUT]HANDLE *phIntersectionCookie, [IN]AM_MEDIA_TYPE *pAMMediaType)

where

pRemoteCapability

Specifies the H.245 video format, including all parameters and options defined by H.245, of a remote video capability.

phIntersectionCookie

Identifies the dynamic instance of intersected capabilities. When the TAPI MSP Video Capture filter creates the intersection, it may allocate memory for the intersected capability parameters. The intersection cookie identifies this allocation. This is used to release internal allocations and also as an argument to the GetNegotiatedLimitProperty method.

pAMMediaType

Pointer to an AM_MEDIA_TYPE structure that has been initialized to regard negotiated options.

This method returns an HRESULT value that depends on the implementation of the interface. HRESULT can include one of the following standard constants, or other values not listed:

HRESULT
Meaning

E_INCOMPATIBLECAPS
No local compatible capability exists

E_FAIL
Failure

E_POINTER
Null pointer argument

E_INVALIDARG
Invalid argument

E_NOTIMPL
Method is not supported

NOERROR
No error

8.1.11 GetNegotiatedLimitProperty method

This method is used to obtain negotiated limits that were determined by either the IntersectFormats or GetLocalFormat method. The GetNegotiatedLimitProperty method is declared as follows:

HRESULT GetNegotiatedLimitProperty([IN]HANDLE hIntersectionCookie, [IN]NegotiatedVideoLimit LimitProperty, [OUT]DWORD *pdwValue)

where

hIntersectionCookie

Identifies the dynamic instance of intersected capabilities.

LimitProperty

Identifies the limit property being retrieved.

pdwValue

Pointer to a DWORD value to receive the value of the specified limit property.

This method returns an HRESULT value that depends on the implementation of the interface. HRESULT can include one of the following standard constants, or other values not listed:

HRESULT
Meaning

E_FAIL
Failure

E_POINTER
Null pointer argument

E_INVALIDARG
Invalid argument

E_NOTIMPL
Method is not supported

NOERROR
No error

8.1.12 ReleaseNegotiatedCapability method

This method is used to release the TAPI MSP Video Capture filter internal memory allocated by either the IntersectFormats or GetLocalFormat method. The ReleaseNegotiatedCapability method is declared as follows:

HRESULT ReleaseNegotiatedCapability([IN]HANDLE hIntersectionCookie)

where

hIntersectionCookie

Identifies the dynamic instance of intersected capabilities.

This method returns an HRESULT value that depends on the implementation of the interface. HRESULT can include one of the following standard constants, or other values not listed:

HRESULT
Meaning

E_FAIL
Failure

E_INVALIDARG
Invalid argument

E_NOTIMPL
Method is not supported

NOERROR
No error

8.1.13 SetIDBase method

This method is used to control the sequential numbering range used to uniquely identify the TAPI MSP Video Capture filter capabilities. The SetIDBase method is declared as follows:

HRESULT SetIDBase([IN]DWORD dwIDBase)

where

dwIDBase

A DWORD value that indicates the beginning number in the sequence .

This method returns an HRESULT value that depends on the implementation of the interface. HRESULT can include one of the following standard constants, or other values not listed:

HRESULT
Meaning

E_FAIL
Failure

E_INVALIDARG
Invalid argument

E_NOTIMPL
Method is not supported

NOERROR
No error

8.1.14 FindIDByRange method

This method is used to obtain the unique format ID of a capability that corresponds to an AM_MEDIA_TYPE. The FindIDByRange method is declared as follows:

HRESULT FindIDByRange([IN]AM_MEDIA_TYPE *pAMMediaType,[OUT]DWORD *pdwID)

where

pAMMediaType

Pointer to an AM_MEDIA_TYPE structure that has been initialized indicate a specific format.

pdwID

Pointer to a DWORD output parameter that will contain the unique format ID.

This method returns an HRESULT value that depends on the implementation of the interface. HRESULT can include one of the following standard constants, or other values not listed:

HRESULT
Meaning

E_FAIL
Failure

E_INVALIDARG
Invalid argument

E_NOTIMPL
Method is not supported

NOERROR
No error

9. Video capture output pin TAPI interfaces

This section documents the list of video capture output pin TAPI interfaces indirectly exposed to applications. Those applications use TAPI IT* interfaces whose method calls are delegated to the interfaces presented here.

For VfW, WDM capture devices and Videoconferencing Accelerators, the TAPI MSP Video Capture filter implements the ICPUControl interface to control the maximum capture and post-processing time per frame and CPU load not be exceeded by the capture device, the IFrameRateControl interface to initialize and regulate the frame rate of the capture output pin, the IH245EncoderCommand interface to communicate H.245 commands to the compressed video output pin, the INetworkStats interface to inform the compressed video output pin of the transmission channel conditions (packet loss…), the IProgressiveRefinement interface to communicate progressive refinement H.245 commands to the compressed video or still-image output pin, and the IBitrateControl interface to initialize and regulate the outgoing bitrate of the compressed video output pin.

Note that for VfW and traditional WDM capture devices, it is the encoder function that implements the IH245EncoderCommand, IProgressiveRefinement, INetworkStats, ICPUControl, and IBitrateControl interfaces. Therefore, those interfaces are only available on the TAPI MSP Video Capture filter if it isn’t connected to a downstream installable codec.

9.1 VfW and WDM capture device capture output pin TAPI interfaces

The TAPI MSP Video Capture filter only exposes two interfaces supported by its capture video output pin to the TAPI MSP Quality Controller whenever it is connected to an installable codec. The TAPI MSP Quality Controller uses the optional ICPUControl interface to initialize and adjust the maximum capture and post-processing time per frame and CPU load not be exceeded by the capture device. Similarly, it uses the IFrameRateControl interface to initialize and regulate the frame rate of the capture video output pin.

The TAPI MSP calls QueryInterface on the IPin interface exposed by the capture output pin of the TAPI MSP Video Capture filter to get pointers to the interfaces defined in this section.

9.1.1 ICPUControl interface

Capture output pins may implement the optional ICPUControl interface. The methods on this interface are called at the beginning of a call to initialize the maximum CPU load and frame post-processing time, and then periodically by the TAPI MSP Quality Controller during the entire call. The initial and limit values for the maximum CPU load and frame post-processing time are based on user-defined settings provided by the application.

See section 9.2.3 for more information on the ICPUControl interface definition.

For VfW frame grabbing devices, the post-processing time is composed of the time spent between the request for a grab occurred and the moment the frame was returned from the capture device, as well as the black banding code execution time. For VfW streaming devices, the post-processing time only measures the black banding code time.

WDM capture devices are streaming devices. However, a lot of them appear to function better (less CPU usage) and easier to control when used in frame grabbing mode, that is, when there is only one outstanding overlapped IO. Here again, for WDM capture devices used in frame grabbing mode, the post-processing time is composed of the time spent between the request for a grab occurred and the moment the frame was returned from the capture device, as well as the black banding code execution time. For WDM capture devices used in streaming mode, the post-processing time only measures the black banding code time.

9.1.2 IFrameRateControl interface

The IFrameRateControl interface specifies a target frame rate to the capture output pin of the video capture filter. The methods on this interface are called at the beginning of a call by the TAPI MSP Quality Controller to initialize the target frame rates, and then periodically during the entire call. The dynamic values for the target frame rates are based on the TAPI MSP Quality Controller CPU usage measurements using NT’s CPU performance counters, as well as the past performance of the TAPI MSP Video Encoder filter output bitrate controller. The initial and limit values for the target frame rate are based on user-defined settings provided by the application to the TAPI MSP Quality Controller and the result of capability negotiations between the two connected endpoints provided by the TAPI MSP Channel Controller.

The IFrameRateControl interface is defined in section 9.2.5.

For VfW frame grabbing devices, or WDM capture devices used in frame grabbing mode, the capture frame rate is adjusted by regulating the time between each request for a frame grab. VfW and WDM streaming devices are not able to easily adjust their capture frame rate on the fly. Therefore, VfW and WDM streaming capture devices are always asked to capture at 30fps, but only a fraction of those frames are delivered to the downstream filter, hence, achieving dynamic frame rate control.

9.2 Compressed video output pin TAPI interfaces

The TAPI MSP Video Capture filter exposes a few interfaces supported by its compressed video output pin to the TAPI MSP Channel Controller, the TAPI MSP Network Sink filter, or the TAPI MSP Quality Controller. The TAPI MSP Channel Controller uses the IH245EncoderCommand interface to communicate H.245 commands to the compressed video output pin. This same TAPI MSP Channel Controller uses the IProgressiveRefinement interface to communicate progressive refinement H.245 commands to the compressed video or still-image output pin. The network sink filter uses the INetworkStats interface to inform the compressed video output pin of the transmission channel conditions (packet loss…). The TAPI MSP Quality Controller uses the optional ICPUControl interface to initialize and adjust the maximum encoding time per frame and CPU load not be exceeded by the encoder’s compression algorithm. Similarly, it uses the IBitrateControl and IFrameRateControl interfaces to initialize and regulate the outgoing bitrate and frame rate of the compressed video output pin.

The TAPI MSP calls QueryInterface on the IPin interface exposed by the video output pin of the TAPI MSP Video Capture filter to get pointers to the IH245EncoderCommand, IProgressiveRefinement, INetworkStats, ICPUControl, IBitrateControl, and IFrameRateControl interfaces. The TAPI MSP Video Capture filter implements those interfaces using the generic IKsControl interface methods to control the WDM or Videoconferencing Accelerator video output stream.

Note that for VfW and traditional WDM capture devices, it is the encoder function that implements the IH245EncoderCommand, IProgressiveRefinement, INetworkStats, ICPUControl, and IBitrateControl interfaces. Therefore, those interfaces are only available on the TAPI MSP Video Capture filter if it isn’t connected to a downstream installable codec.

The IAMTVTuner, IAMTVAudio, IAMAnalogVideoDecoder, and IAMAnalogVideoEncoder
interfaces, are not explicitly used by the TAPI MSP.

The GUIDs of the new property sets introduced in this section are defined as follows:

Name
GUID

PROPSETID_H245COMMAND
35343268-5245-4945-5252-45464C494850

PROPSETID_NETWORKSTATS
7374656E-5245-4945-5252-45464C494850

PROPSETID_CPUCONTROL
63757063-5245-4945-5252-45464C494850

PROPSETID_BITRATECONTROL
63737062-5245-4945-5252-45464C494850

PROPSETID_FRAMERATECONTROL
63737066-5245-4945-5252-45464C494850

To set and retrieve values for some of the properties in those new sets, the following structure is defined.

typedef struct {

 KSPROPERTY Property;

 union {

 DWORD dwParam;

 LONGLONG llParam;

 }

} KSPROPERTY_PARAM_S;

where

Property

Specifies the property.

dwParam

Specifies a parameter for the property as a DWORD.

llParam

Specifies a parameter for the property as a LONGLONG.

To retrieve minimum, maximum, stepping delta and default values for some of the properties in those new sets, the following structure is defined.

typedef struct {

 KSPROPERTY_DESCRIPTION PropertyDescription;

 KSPROPERTY_MEMBERSHEADER MembersHeader;

 union {

 KSPROPERTY_STEPPING_LONG SteppingLong;

 KSPROPERTY_STEPPING_LONGLONG SteppingLongLong;

 LONG DefaultLong;

 LONGLONG DefaultLongLong;

 };

} KSPROPERTY_LIST_S;

where

PropertyDescription

Specifies access flags (KSPROPERTY_TYPE_GET and KSPROPERTY_TYPE_SET), the inclusive size of the entire values information, the property value type information, and the number of members lists that would typically follow the structure.

MembersHeader

Used to provide information on a property member header.

SteppingLong

Specifies the stepping delta, minimum and maximum values as LONGs.

SteppingLongLong

Specifies the stepping delta, minimum and maximum values as LONGLONGs.

DefaultLong

Specifies the default value as a LONG.

DefaultLongLong

Specifies the default value as a LONGLONG.

9.2.1 IH245EncoderCommand interface

H.245 commands exist for various purposes. Fast update requests are generally issued when source switching occurs in multipoint applications, or packet loss was detected. The flow control command is used to allow the bit rate of the video stream to be controlled by the remote endpoint. This has a number of purposes: interworking with terminals that only support a finite number of bit rates; multi-point applications where the rates from different sources should be matched; and flow control is congested. The temporal/spatial trade-off command is used by a remote endpoint to indicate preferences in terms of video quality vs. frame rate.

In order to handle H.245 commands and indications, the compressed video output pin provides the TAPI MSP Channel Controller with a pointer to an IH245EncoderCommand interface containing the following methods:

videoFastUpdadePicture

Used to command the compressed video output pin to enter the fast-update mode at its earliest opportunity.

videoFastUpdateGOB

Used to command the compressed video output to perform a fast update of one or more GOBs.

videoFastUpdateMB

Used to command the compressed video output pin to perform a fast update of one or more MBs.

videoSendSyncEveryGOB

Used to command the compressed video output pin to use sync for every GOB as defined in H.263.

videoSendSyncEveryGOBCancel

Used to command the compressed video output pin to decide the frequency of GOB syncs.

videoNotDecodedMBs

Used to indicate to the compressed video output pin that a set of MBs has been received with errors and that any MB in the specified set has been treated as not coded.

Note that the flow control, temporal/spatial trade-off command and mode changes are not propagated to the video output pin directly. Those commands are implemented using other means as described in sections 9.2.1.6 to 9.2.1.8.

The IH245EncoderCommand interface is not a standard DirectShow interface. The TAPI MSP Video Capture filter implements this interface using the generic IKsControl interface and a property set called PROPSETID_H245COMMAND. The properties defined in this new set are controlled on a stream basis.

The PROPSETID_H245COMMAND property set contains the following properties:

KSPROPERTY_H245COMMAND_VIDEOFASTUPDATEPICTURE

Used to command the compressed video output stream to enter the fast-update picture mode at its earliest opportunity. This is a write-only property.

KSPROPERTY_H245COMMAND_VIDEOFASTUPDATEGOB

Used to command the compressed video output stream to perform a fast update of one or more GOBs. This is a write-only property.

KSPROPERTY_H245COMMAND_VIDEOFASTUPDATEMB

Used to command the compressed video output stream to perform a fast update of one or more MBs. This is a write-only property.

KSPROPERTY_H245COMMAND_SENDSYNCEVERYGOB

Used to command the compressed video output stream to perform a fast update of one or more GOBs. This is a write-only property.

KSPROPERTY_H245INDICATION_VIDEONOTDECODEDMB

Used to command the compressed video output stream to perform a fast update of one or more GOBs. This is a write-only property.

9.2.1.1 videoFastUpdatePicture command

This H.245 command is used to specify to the compressed video output pin to enter the fast-update picture mode at its earliest opportunity. To handle this command, we define the videoFastUpdatePicture method on the IH245EncoderCommand interface as follows:

HRESULT videoFastUpdatePicture()

This method returns an HRESULT value that depends on the implementation of the interface. HRESULT can include one of the following standard constants, or other values not listed:

HRESULT
Meaning

E_FAIL
Failure

E_NOTIMPL
Method is not supported

NOERROR
No error

This command shall be used with all video compression algorithms as a generic way to generate a keyframe (I-frame).

The TAPI MSP Video Capture filter propagates this command to the video output stream by calling IKsControl::KsProperty. The first parameter is a pointer to a KSPROPERTY structure, with a KSPROPERTY.Set field set to PROPSETID_H245COMMAND, a KSPROPERTY.Id field set to KSPROPERTY_H245COMMAND_VIDEOFASTUPDATEPICTURE and KSPROPERTY.Flags field set to KSPROPERTY_TYPE_SET.

9.2.1.2 videoFastUpdateGOB command

This H.245 command is used to specify to the compressed video output pin to perform a fast update of one or more GOBs. To handle this command, we define the videoFastUpdateGOB method on the IH245EncoderCommand interface as follows:

HRESULT videoFastUpdateGOB([IN]DWORD dwFirstGOB, [IN]DWORD dwNumberOfGOBs)

where

dwFirstGOB

Specifies the number of the first GOB to be updated. This value is only valid between 0 and 17.

dwNumberOfGOBs

Specifies the number of GOBs to be updated. This value is only valid between 1 and 18.

This method returns an HRESULT value that depends on the implementation of the interface. HRESULT can include one of the following standard constants, or other values not listed:

HRESULT
Meaning

E_FAIL
Failure

E_INVALIDARG
Invalid argument

E_NOTIMPL
Method is not supported

NOERROR
No error

This command shall only be used with video compression algorithms that define GOBs such as H.261 and H.263.

The TAPI MSP Video Capture filter propagates this command to the video output stream by calling IKsControl::KsProperty. The Property parameter points to a KSPROPERTY structure, with a KSPROPERTY.Set field set to PROPSETID_H245COMMAND, a KSPROPERTY.Id field set to KSPROPERTY_H245COMMAND_VIDEOFASTUPDATEGOB and KSPROPERTY.Flags field set to KSPROPERTY_TYPE_SET. The PropertyData parameter points to a VIDEOFASTUPDATEGOB_S structure defined as follows:

typedef struct {

 DWORD dwFirstGOB;

 DWORD dwNumberOfGOBs;

} VIDEOFASTUPDATEGOB_S;

where

dwFirstGOB

Specifies the number of the first GOB to be updated. This value is only valid between 0 and 17.

dwNumberOfGOBs

Specifies the number of GOBs to be updated. This value is only valid between 1 and 18.

9.2.1.3 videoFastUpdateMB command

This H.245 command is used to specify to the compressed video output pin to perform a fast update of one or more MBs. To handle this command, we define the videoFastUpdateMB method on the IH245EncoderCommand interface as follows:

HRESULT videoFastUpdateMB([IN]DWORD dwFirstGOB, [IN]DWORD dwFirstMB, [IN]DWORD dwNumberOfMBs)

where

dwFirstGOB

Specifies the number of the first GOB to be updated and is only relative to H.263. This value is only valid between 0 and 255.

dwFirstMB

Specifies the number of the first MB to be updated and is only relative to H.261. This value is only valid between 1 and 8192.

dwNumberOfMBs

Specifies the number of MBs to be updated. This value is only valid between 1 and 8192.

This method returns an HRESULT value that depends on the implementation of the interface. HRESULT can include one of the following standard constants, or other values not listed:

HRESULT
Meaning

E_FAIL
Failure

E_INVALIDARG
Invalid argument

E_NOTIMPL
Method is not supported

NOERROR
No error

This command shall only be used with video compression algorithms that define MBs such as H.261 and H.263. The encoder may respond to this command with a GOB update which includes the MBs requested.

The TAPI MSP Video Capture filter propagates this command to the video output stream by calling IKsControl::KsProperty. The Property parameter points to a KSPROPERTY structure, with a KSPROPERTY.Set field set to PROPSETID_H245COMMAND, a KSPROPERTY.Id field set to KSPROPERTY_H245COMMAND_VIDEOFASTUPDATEMB and KSPROPERTY.Flags field set to KSPROPERTY_TYPE_SET. The PropertyData parameter points to a VIDEOFASTUPDATEMB_S structure defined as follows:

The VIDEOFASTUPDATEMB_S structure is defined as follows:

typedef struct {

 DWORD dwFirstGOB;

 DWORD dwFirstMB;

 DWORD dwNumberOfMBs;

} VIDEOFASTUPDATEMB_S;

where

dwFirstGOB

Specifies the number of the first GOB to be updated and is only relative to H.263. This value is only valid between 0 and 255.

dwFirstMB

Specifies the number of the first MB to be updated and is only relative to H.261. This value is only valid between 1 and 8192.

dwNumberOfMBs

Specifies the number of MBs to be updated. This value is only valid between 1 and 8192.

9.2.1.4 videoSendSyncEveryGOB and videoSendSyncEveryGOBCancel commands

The videoSendSyncEveryGOB H.245 command is used to specify to the compressed video output pin to use sync for every GOB as defined in H.263. Reciprocally, the videoSendSyncEveryGOBCancel command is used to allow the video output pin to decide the frequency of GOB syncs. To handle these commands, we define the videoSendSyncEveryGOB method on the IH245EncoderCommand interface as follows:

HRESULT videoSendSyncEveryGOB([IN]BOOL fEnable)

where

fEnable

If set to TRUE, specifies that the video output pin should use sync for every GOB; if set to FALSE, specifies that the video output pin should decide the frequency of GOB syncs on its own.

This method returns an HRESULT value that depends on the implementation of the interface. HRESULT can include one of the following standard constants, or other values not listed:

HRESULT
Meaning

E_FAIL
Failure

E_NOTIMPL
Method is not supported

NOERROR
No error

This command shall only be used with video encoded according to H.263.

The TAPI MSP Video Capture filter propagates this command to the video output stream by calling IKsControl::KsProperty. The Property parameter points to a KSPROPERTY structure, with a KSPROPERTY.Set field set to PROPSETID_H245COMMAND, a KSPROPERTY.Id field set to KSPROPERTY_H245COMMAND_SENDSYNCEVERYGOB and KSPROPERTY.Flags field set to KSPROPERTY_TYPE_SET. The PropertyData parameter points to a boolean. If set to TRUE, this boolean specifies that the video output stream should use sync for every GOB; if set to FALSE, it specifies that the video output stream should decide the frequency of GOB syncs on its own.

9.2.1.5 videoNotDecodedMBs indication

This H.245 indication is used to indicate to the compressed video output pin that a set of MBs has been received with errors and that any MB in the specified set has been treated as not coded. To handle this indication, we define the videoNotDecodedMBs method on the IH245EncoderCommand interface as follows:

HRESULT videoNotDecodedMBs([IN]DWORD dwFirstMB, [IN]DWORD dwNumberOfMBs, [IN]DWORD dwTemporalReference)

where

dwFirstMB

Specifies the number of the first MB treated as not coded. This value is only valid between 1 and 8192.

dwNumberOfMBs

Specifies the number of MBs treated as not coded. This value is only valid between 1 and 8192.

dwTemporalReference

Specifies the temporal reference of the picture containing not decoded MBs. This value is only valid between 0 and 255.

This method returns an HRESULT value that depends on the implementation of the interface. HRESULT can include one of the following standard constants, or other values not listed:

HRESULT
Meaning

E_FAIL
Failure

E_INVALIDARG
Invalid argument

E_NOTIMPL
Method is not supported

NOERROR
No error

This compressed video output pin may use this information to compensate transmission errors, as illustrated in Appendix II of H.263.

The TAPI MSP Video Capture filter propagates this command to the video output stream by calling IKsControl::KsProperty. The Property parameter points to a KSPROPERTY structure, with a KSPROPERTY.Set field set to PROPSETID_H245COMMAND, a KSPROPERTY.Id field set to KSPROPERTY_H245INDICATION_VIDEONOTDECODEDMBS and KSPROPERTY.Flags field set to KSPROPERTY_TYPE_SET. The PropertyData parameter points to a VIDEONOTDECODEDMBS_S structure defined as follows:

The VIDEONOTDECODEDMBS_S structure is defined as follows:

typedef struct {

 DWORD dwFirstMB;

 DWORD dwNumberOfMBs;

 DWORD dwTemporalReference;

} VIDEONOTDECODEDMBS_S;

where

dwFirstMB

Specifies the number of the first MB treated as not coded. This value is only valid between 1 and 8192.

dwNumberOfMBs

Specifies the number of MBs treated as not coded. This value is only valid between 1 and 8192.

dwTemporalReference

Specifies the temporal reference of the picture containing not decoded MBs. This value is only valid between 0 and 255.

9.2.1.6 FlowControl command

The flow control command is used to allow the bit rate of the video stream to be controlled by the remote endpoint. This has a number of purposes: interworking with terminals that only support a finite number of bit rates; multi-point applications where the rates from different sources should be matched; and flow control is congested.

This command is propagated to the compressed video output pin using the IBitrateControl::SetMaxBitrate method as described in section 9.2.4.1.

9.2.1.7 videoTemporalSpatialTradeOff command

The temporal/spatial trade-off command is used by a remote endpoint to indicate preferences in terms of video quality vs. frame rate. This command is not propagated directly to the compressed video output pin. Instead, and only if necessary, the TAPI MSP dynamically adjusts the frame rate on the compressed video output pin using the IFrameRateControl::SetMaxFrameRate method as described in section 9.2.5.1.

9.2.1.8 H.245 mode requests

The mode request procedures allow a terminal to request a remote terminal to use a particular mode of operation in its transmit direction. The TAPI MSP does not propagate those requests down to the compressed video output pin. Instead, new formats are set on the compressed video output pins, based on the content of the video mode request. The TAPI MSP Video Capture filter handles this operation dynamically, without pausing or stopping the streams, whenever possible.

9.2.2 INetworkStats interface

Compressed video output streams may have smart ways to improve their resiliency to packet loss. They may decide to code their data in different ways or use some specific redundancy payload definitions to provide better error resilience.

Compressed video or still-image output pins may support the INetworkStats interface that can be used to communicate the network channel characteristics (losses). The INetworkStats interface methods are called by the TAPI video capture filter periodically based on monitored network performances. The compressed output pin is responsible for taking appropriate actions, if needed.

The INetworkStats interface contains the following methods:

SetChannelErrors

Used to inform the compressed output pin of the error channel conditions.

GetChannelErrors

Used to supply to the network sink filter the error channel conditions the compressed output pin is currently setup for.

GetChannelErrorsRange

Used to retrieve support, minimum, maximum, and default values for the error channel conditions the compressed output pin may be setup for.

SetPacketLossRate

Used to inform the compressed output pin of the channel packet loss rate.

GetPacketLossRate

Used to supply to the network sink filter the channel packet loss rate the compressed output pin is currently setup for.

GetPacketLossRateRange

Used to retrieve support, minimum, maximum, and default values for the channel packet loss rate the compressed output pin may be setup for.

The INetworkStats interface is not a standard DirectShow interface. The TAPI MSP Video Capture filter implements this interface using the generic IKsControl interface and a property set called PROPSETID_NETWORKSTATS. The properties defined in this new set are controlled on a stream basis.

The PROPSETID_NETWORKSTATS property set contains the following properties:

KSPROPERTY_NETWORKSTATS_CHANNELERRORS

Used to inform the compressed output pin of the error channel conditions, or supply to the network sink filter the error channel conditions the compressed video output pin is currently setup for. This is a read/write property.

KSPROPERTY_NETWORKSTATS_PACKETLOSSRATE

Used to inform the compressed output pin of the channel packet loss rate, or supply to the network sink filter the packet loss rate the compressed video output pin is currently setup for. This is a read/write property.

To set and retrieve values for the first property, the following structure is defined:

typedef struct {

 DWORD dwRandomBitErrorRate;

 DWORD dwBurstErrorDuration;

 DWORD dwBurstErrorMaxFrequency;

} CHANNELERRORS;

where

dwRandomBitErrorRate

Specifies the random bit error rate of the channel in multiples of 10-6.

dwBurstErrorDuration

Specifies the duration for short burst errors in ms.

dwBurstErrorMaxFrequency

Specifies the maximum frequency for short burst errors in Hz.

9.2.2.1 SetChannelErrors method

This network statistics method is used to inform the compressed output pin of the error channel conditions. The SetChannelErrors method is declared as follows:

HRESULT SetChannelErrors([IN]CHANNELERRORS *pChannelErrors, [IN]DWORD dwLayerId)

where

pChannelErrors

Specifies the error channel conditions.

dwLayerId

Specifies the ID of the encoding layer the error channel conditions apply to. For standard video encoders, this field is always set to 0. In the case of multi-layered encoders, this field shall be set to 0 for the base layer, 1 for the first enhancement layer, 2 for the next enhancement layer, etc.

This method returns an HRESULT value that depends on the implementation of the interface. HRESULT can include one of the following standard constants, or other values not listed:

HRESULT
Meaning

E_FAIL
Failure

E_INVALIDARG
Invalid argument

E_NOTIMPL
Method is not supported

NOERROR
No error

The TAPI MSP Video Capture filter propagates this command to the video output stream by calling IKsControl::KsProperty. The Property parameter points to a KSPROPERTY_PARAM_S structure, with a KSPROPERTY_PARAM_S.Property.Set field set to PROPSETID_NETWORKSTATS, a KSPROPERTY_PARAM_S.Property.Id field set to KSPROPERTY_NETWORKSTATS_CHANNELERRORS and KSPROPERTY_PARAM_S.Property.Flags field set to KSPROPERTY_TYPE_SET and the KSPROPERTY_PARAM_S.dwParam set to the ID of the encoding layer the error channel conditions apply to. The PropertyData parameter points to a CHANNELERRORS structure.

9.2.2.2 GetChannelErrors method

This network statistics method is used to supply to the network sink filter the error channel conditions the compressed output pin is currently setup for. The GetChannelErrors method is declared as follows:

HRESULT GetChannelErrors([OUT]CHANNELERRORS *pChannelErrors, [IN]DWORD dwLayerId)

where

pChannelErrors

Specifies a pointer to a structure to receive error channel conditions.

dwLayerId

Specifies the ID of the encoding layer the error channel conditions apply to. For standard video encoders, this field is always set to 0. In the case of multi-layered encoders, this field shall be set to 0 for the base layer, 1 for the first enhancement layer, 2 for the next enhancement layer, etc.

This method returns an HRESULT value that depends on the implementation of the interface. HRESULT can include one of the following standard constants, or other values not listed:

HRESULT
Meaning

E_FAIL
Failure

E_POINTER
Null pointer argument

E_NOTIMPL
Method is not supported

NOERROR
No error

The TAPI MSP Video Capture filter propagates this command to the video output stream by calling IKsControl::KsProperty. The Property parameter points to a KSPROPERTY_PARAM_S structure, with a KSPROPERTY_PARAM_S.Property.Set field set to PROPSETID_NETWORKSTATS, a KSPROPERTY_PARAM_S.Property.Id field set to KSPROPERTY_NETWORKSTATS_CHANNELERRORS and KSPROPERTY_PARAM_S.Property.Flags field set to KSPROPERTY_TYPE_GET and the KSPROPERTY_PARAM_S.dwParam set to the ID of the encoding layer the error channel conditions apply to. The PropertyData parameter points to a CHANNELERRORS structure.

9.2.2.3 GetChannelErrorsRange method

This CPU control method is used to retrieve support, minimum, maximum, and default values for the channel error conditions the compressed output pin may be setup for. The GetChannelErrorsRange method is declared as follows:

HRESULT GetChannelErrorsRange([OUT]CHANNELERRORS *pMin, [OUT]CHANNELERRORS *pMax, [OUT]CHANNELERRORS *pSteppingDelta, [OUT]CHANNELERRORS *pDefault, [IN]DWORD dwLayerId)

where

pMin

Used to retrieve the minimum values of channel error conditions the compressed video output pin maybe setup for.

pMax

Used to retrieve the maximum values of channel error conditions the compressed video output pin maybe setup for.

pSteppingDelta

Used to retrieve the stepping delta values of channel error conditions the compressed video output pin maybe setup for.

pDefault

Used to retrieve the default values of channel error conditions the compressed video output pin maybe setup for.

This method returns an HRESULT value that depends on the implementation of the interface. HRESULT can include one of the following standard constants, or other values not listed:

HRESULT
Meaning

E_FAIL
Failure

E_POINTER
Null pointer argument

E_NOTIMPL
Method is not supported

NOERROR
No error

The TAPI MSP Video Capture filter propagates this command to the video output stream by calling IKsControl::KsProperty twice.

The first call retrieves the minimum, maximum and stepping values. The Property parameter points to a KSPROPERTY_PARAM_S structure, with a KSPROPERTY_PARAM_S.Property.Set field set to PROPSETID_NETWORKSTATS, a KSPROPERTY_PARAM_S.Property.Id field set to KSPROPERTY_NETWORKSTATS_CHANNELERRORS and KSPROPERTY_PARAM_S.Property.Flags field set to KSPROPERTY_TYPE_BASICSUPPORT and the KSPROPERTY_PARAM_S.dwParam set to the ID of the encoding layer the error channel conditions apply to. The PropertyData parameter points to a KSCHANNELERRORS_LIST_S structure defined as follows:

typedef struct {

 KSPROPERTY_DESCRIPTION PropertyDescription;

 KSPROPERTY_MEMBERSHEADER MembersHeader;

 union {

 KSPROPERTY_STEPPING_LONG SteppingRandomBitErrorRate;

 LONG DefaultRandomBitErrorRate;

 };

 union {

 KSPROPERTY_STEPPING_LONG SteppingBurstErrorDuration;

 LONG DefaultBurstErrorDuration;

 };

 union {

 KSPROPERTY_STEPPING_LONG SteppingBurstErrorMaxFrequency;

 LONG DefaultBurstErrorMaxFrequency;

 };

} KSCHANNELERRORS_LIST_S;

where

PropertyDescription

Specifies access flags (KSPROPERTY_TYPE_GET and KSPROPERTY_TYPE_SET), the inclusive size of the entire values information, the property value type information, and the number of members lists that would typically follow the structure.

MembersHeader

Used to provide information on a property member header.

RandomBitErrorRate

Used to specify values for random bit error rate.

BurstErrorDuration

Used to specify values for short burst errors.

BurstErrorMaxFrequency

Used to specify values for the maximum frequency for short burst errors.

The second call retrieves the default values. The Property parameter points to a KSPROPERTY_PARAM_S structure, with a KSPROPERTY_PARAM_S.Property.Set field set to PROPSETID_NETWORKSTATS, a KSPROPERTY_PARAM_S.Property.Id field set to KSPROPERTY_NETWORKSTATS_CHANNELERRORS and KSPROPERTY_PARAM_S.Property.Flags field set to KSPROPERTY_TYPE_DEFAULTVALUES and the KSPROPERTY_PARAM_S.dwParam set to the ID of the encoding layer the error channel conditions apply to. The PropertyData parameter points to a KSCHANNELERRORS_LIST_S structure.

9.2.2.4 SetPacketLossRate method

This network statistics method is used to inform the compressed output pin of the channel packet loss rate. The SetPacketLossRate method is declared as follows:

HRESULT SetPacketLossRate([IN]DWORD dwPacketLossRate, [IN]DWORD dwLayerId)

where

dwPacketLossRate

Specifies the packet loss rate of the channel in multiples of 10-6.

dwLayerId

Specifies the ID of the encoding layer the error channel packet loss rate applies to. For standard video encoders, this field is always set to 0. In the case of multi-layered encoders, this field shall be set to 0 for the base layer, 1 for the first enhancement layer, 2 for the next enhancement layer, etc.

This method returns an HRESULT value that depends on the implementation of the interface. HRESULT can include one of the following standard constants, or other values not listed:

HRESULT
Meaning

E_FAIL
Failure

E_INVALIDARG
Invalid argument

E_NOTIMPL
Method is not supported

NOERROR
No error

The TAPI MSP Video Capture filter propagates this command to the video output stream by calling IKsControl::KsProperty. The Property parameter points to a KSPROPERTY_PARAM_S structure, with a KSPROPERTY_PARAM_S.Property.Set field set to PROPSETID_NETWORKSTATS, a KSPROPERTY_PARAM_S.Property.Id field set to KSPROPERTY_NETWORKSTATS_PACKETLOSSRATE and KSPROPERTY_PARAM_S.Property.Flags field set to KSPROPERTY_TYPE_SET and the KSPROPERTY_PARAM_S.dwParam set to the ID of the encoding layer the channel packet loss rate applies to. The PropertyData parameter points to a DWORD specifying the packet loss rate of the channel in multiples of 10-6.

9.2.2.5 GetPacketLossRate method

This network statistics method is used to supply to the network sink filter the packet loss rate channel conditions the compressed output pin is currently setup for. The GetPacketLossRate method is declared as follows:

HRESULT GetPacketLossRate([OUT]DWORD *pdwPacketLossRate, [IN]DWORD dwLayerId)

where

pdwPacketLossRate

Specifies a pointer to a DWORD to receive the packet loss rate of the channel the compressed output pin is currently setup for in multiples of 10-6.

dwLayerId

Specifies the ID of the encoding layer the packet loss rate applies to. For standard video encoders, this field is always set to 0. In the case of multi-layered encoders, this field shall be set to 0 for the base layer, 1 for the first enhancement layer, 2 for the next enhancement layer, etc.

This method returns an HRESULT value that depends on the implementation of the interface. HRESULT can include one of the following standard constants, or other values not listed:

HRESULT
Meaning

E_FAIL
Failure

E_POINTER
Null pointer argument

E_NOTIMPL
Method is not supported

NOERROR
No error

The TAPI MSP Video Capture filter propagates this command to the video output stream by calling IKsControl::KsProperty. The Property parameter points to a KSPROPERTY_PARAM_S structure, with a KSPROPERTY_PARAM_S.Property.Set field set to PROPSETID_NETWORKSTATS, a KSPROPERTY_PARAM_S.Property.Id field set to KSPROPERTY_NETWORKSTATS_PACKETLOSSRATE and KSPROPERTY_PARAM_S.Property.Flags field set to KSPROPERTY_TYPE_GET and the KSPROPERTY_PARAM_S.dwParam set to the ID of the encoding layer the channel packet loss rate applies to. The PropertyData parameter points to a DWORD to receive the packet loss rate of the channel in multiples of 10-6 the compressed output pin is currently setup for.

9.2.2.6 GetPacketLossRateRange method

This CPU control method is used to retrieve support, minimum, maximum, and default values for the packet loss rate conditions the compressed output pin may be setup for. The GetPacketLossRateRange method is declared as follows:

HRESULT GetPacketLossRateRange([OUT]DWORD *pMin, [OUT]DWORD *pMax, [OUT]DWORD *pSteppingDelta, [OUT]DWORD *pDefault, [IN]DWORD dwLayerId)

where

pMin

Used to retrieve the minimum packet loss rate the compressed video output pin maybe setup for.

pMax

Used to retrieve the maximum packet loss rate the compressed video output pin maybe setup for.

pSteppingDelta

Used to retrieve the stepping delta values of packet loss rate the compressed video output pin maybe setup for.

pDefault

Used to retrieve the default packet loss rate the compressed video output pin is setup for.

This method returns an HRESULT value that depends on the implementation of the interface. HRESULT can include one of the following standard constants, or other values not listed:

HRESULT
Meaning

E_FAIL
Failure

E_POINTER
Null pointer argument

E_NOTIMPL
Method is not supported

NOERROR
No error

The TAPI MSP Video Capture filter propagates this command to the video output stream by calling IKsControl::KsProperty twice.

The first call retrieves the minimum, maximum and stepping values. The Property parameter points to a KSPROPERTY_PARAM_S structure, with a KSPROPERTY_PARAM_S.Property.Set field set to PROPSETID_NETWORKSTATS, a KSPROPERTY_PARAM_S.Property.Id field set to KSPROPERTY_NETWORKSTATS_PACKETLOSSRATE and KSPROPERTY_PARAM_S.Property.Flags field set to KSPROPERTY_TYPE_BASICSUPPORT and the KSPROPERTY_PARAM_S.dwParam set to the ID of the encoding layer the packet loss rate of the channel applies to. The PropertyData parameter points to a KSPROPERTY_LIST_S structure. The output stream updates the KSPROPERTY_LIST_S.SteppingLong field with the appropriate minimum, maximum, and stepping delta values.

The second call retrieves the default values. The Property parameter points to a KSPROPERTY_PARAM_S structure, with a KSPROPERTY_PARAM_S.Property.Set field set to PROPSETID_NETWORKSTATS, a KSPROPERTY_PARAM_S.Property.Id field set to KSPROPERTY_NETWORKSTATS_PACKETLOSSRATE and KSPROPERTY_PARAM_S.Property.Flags field set to KSPROPERTY_TYPE_DEFAULTVALUES and the KSPROPERTY_PARAM_S.dwParam set to the ID of the encoding layer the packet loss rate of the channel applies to. The PropertyData parameter points to a KSPROPERTY_LIST_S structure. The output stream updates the KSPROPERTY_LIST_S.DefaultLong field with the appropriate default value.

9.2.3 ICPUControl interface

Compressed video output streams may also support the optional ICPUControl interface in order to receive bounds on the encoding time (latency) and CPU load that should not be exceeded during the compression process. The methods on this interface are called at the beginning of a call to initialize the maximum CPU load and frame encoding time, and then periodically by the TAPI MSP Quality Controller during the entire call. The initial and limit values for the maximum CPU load and frame encoding time are based on user-defined settings provided by the application.

The ICPUControl interface contains the following methods:

SetMaxProcessingTime

Used to specify to the compressed video output pin the maximum encoding time per frame, in 100-nanosecond units.

GetMaxProcessingTime

Used to retrieve the maximum encoding time per frame the compressed video output pin is currently setup for, in 100-nanosecond units.

GetMaxProcessingTimeRange

Used to retrieve support, minimum, maximum, and default values for the maximum encoding time per frame the compressed video output pin may be setup for, in 100-nanosecond units.

SetMaxCPULoad

Used to specify to the compressed video output pin the maximum encoding algorithm CPU load.

GetMaxCPULoad

Used to retrieve the maximum encoding algorithm CPU load the compressed video output pin is currently setup for.

GetMaxCPULoadRange

Used to retrieve support, minimum, maximum, and default values for the maximum CPU load the compressed video output pin may be setup for, in 100-nanosecond units.

The optional ICPUControl interface is not a standard DirectShow interface. The TAPI MSP Video Capture filter implements this interface using the generic IKsControl interface and a property set called PROPSETID_CPUCONTROL. The properties defined in this new set are controlled on a stream basis.

The PROPSETID_CPUCONTROL property set contains the following properties:

KSPROPERTY_CPUCONTROL_MAXPROCESSINGTIME

Used to specify to the compressed video output pin the maximum encoding time per frame, or supply to the TAPI MSP Quality Controller the maximum encoding time per frame the compressed video output pin is currently setup for. This is a read/write property.

KSPROPERTY_CPUCONTROL_MAXCPULOAD

Used to specify to the compressed video output pin the maximum encoding algorithm CPU load, or supply to the TAPI MSP Quality Controller the maximum encoding algorithm CPU load the compressed video output pin is currently setup for. This is a read/write property.

9.2.3.1 SetMaxProcessingTime method

This CPU control method is used to specify to the compressed video output pin the maximum encoding time per frame. The SetMaxProcessingTime method is declared as follows:

HRESULT SetMaxProcessingTime([IN]REFERENCE_TIME MaxProcessingTime)

where

MaxProcessingTime

Specifies the maximum encoding time per frame, in 100-nanosecond units.

This method returns an HRESULT value that depends on the implementation of the interface. HRESULT can include one of the following standard constants, or other values not listed:

HRESULT
Meaning

E_FAIL
Failure

E_INVALIDARG
Invalid argument

E_NOTIMPL
Method is not supported

NOERROR
No error

The TAPI MSP Video Capture filter propagates this command to the video output stream by calling IKsControl::KsProperty. The Property parameter points to a KSPROPERTY structure, with a KSPROPERTY.Set field set to PROPSETID_CPUCONTROL, a KSPROPERTY.Id field set to KSPROPERTY_CPUCONTROL_MAXPROCESSINGTIME and KSPROPERTY.Flags field set to KSPROPERTY_TYPE_SET. The PropertyData parameter points to a REFERENCE_TIME value specifying the maximum encoding time per frame, in 100-nanosecond units.

9.2.3.2 GetMaxProcessingTime method

This CPU control method is used to retrieve the maximum encoding time per frame the compressed video output pin is currently setup for or for an hypothetical CPU load. The GetMaxProcessingTime method is declared as follows:

HRESULT GetMaxProcessingTime([OUT]REFERENCE_TIME *pMaxProcessingTime, [IN]DWORD dwMaxCPULoad)

where

pMaxProcessingTime

Used to retrieve the maximum encoding time per frame the compressed video output pin is currently setup for, in 100-nanosecond units.

dwMaxCPULoad

Specifies an hypothetical CPU load, in percentage units. If this parameter is set to -1, this method shall use the value of the CPU load the compressed video output pin is currently setup for.

This method returns an HRESULT value that depends on the implementation of the interface. HRESULT can include one of the following standard constants, or other values not listed:

HRESULT
Meaning

E_FAIL
Failure

E_POINTER
Null pointer argument

E_NOTIMPL
Method is not supported

NOERROR
No error

The TAPI MSP Video Capture filter propagates this command to the video output stream by calling IKsControl::KsProperty. The Property parameter points to a KSPROPERTY_PARAM_S structure, with a KSPROPERTY_PARAM_S.Property.Set field set to PROPSETID_CPUCONTROL, a KSPROPERTY_PARAM_S.Property.Id field set to KSPROPERTY_CPUCONTROL_MAXPROCESSINGTIME and KSPROPERTY_PARAM_S.Property.Flags field set to KSPROPERTY_TYPE_GET and the KSPROPERTY_PARAM_S.dwParam set to -1 or an hypothetical CPU load, in percentage units. The PropertyData parameter points to a REFERENCE_TIME value to receive the maximum encoding time per frame, in 100-nanosecond units.

9.2.3.3 GetMaxProcessingTimeRange method

This CPU control method is used to retrieve support, minimum, maximum, and default encoding time per frame the compressed video output pin may be setup for or for an hypothetical CPU load. The GetMaxProcessingTimeRange method is declared as follows:

HRESULT GetMaxProcessingTimeRange([OUT]REFERENCE_TIME *pMin, [OUT]REFERENCE_TIME *pMax, [OUT]REFERENCE_TIME *pSteppingDelta, [OUT]REFERENCE_TIME *pDefault, [IN]DWORD dwMaxCPULoad)

where

pMin

Used to retrieve the minimum value of encoding time per frame the compressed video output pin maybe setup for, in 100-nanosecond units.

pMax

Used to retrieve the maximum value of encoding time per frame the compressed video output pin maybe setup for, in 100-nanosecond units.

pSteppingDelta

Used to retrieve the stepping delta of encoding time per frame the compressed video output pin maybe setup for, in 100-nanosecond units.

pDefault

Used to retrieve the default value of encoding time per frame the compressed video output pin is setup for, in 100-nanosecond units.

dwMaxCPULoad

Specifies an hypothetical CPU load, in percentage units. If this parameter is set to -1, this method shall use the value of the CPU load the compressed video output pin is currently setup for.

This method returns an HRESULT value that depends on the implementation of the interface. HRESULT can include one of the following standard constants, or other values not listed:

HRESULT
Meaning

E_FAIL
Failure

E_POINTER
Null pointer argument

E_NOTIMPL
Method is not supported

NOERROR
No error

The TAPI MSP Video Capture filter propagates this command to the video output stream by calling IKsControl::KsProperty twice.

The first call retrieves the minimum, maximum and stepping values. The Property parameter points to a KSPROPERTY_PARAM_S structure, with a KSPROPERTY_PARAM_S.Property.Set field set to PROPSETID_CPUCONTROL, a KSPROPERTY_PARAM_S.Property.Id field set to KSPROPERTY_CPUCONTROL_MAXPROCESSINGTIME and KSPROPERTY_PARAM_S.Property.Flags field set to KSPROPERTY_TYPE_BASICSUPPORT and the KSPROPERTY_PARAM_S.dwParam set to -1 or an hypothetical CPU load, in percentage units. The PropertyData parameter points to a KSPROPERTY_LIST_S structure. The output stream updates the KSPROPERTY_LIST_S.SteppingLongLong field with the appropriate minimum, maximum, and stepping delta values.

The second call retrieves the default value. The Property parameter points to a KSPROPERTY_PARAM_S structure, with a KSPROPERTY_PARAM_S.Property.Set field set to PROPSETID_CPUCONTROL, a KSPROPERTY_PARAM_S.Property.Id field set to KSPROPERTY_CPUCONTROL_MAXPROCESSINGTIME and KSPROPERTY_PARAM_S.Property.Flags field set to KSPROPERTY_TYPE_DEFAULTVALUES and the KSPROPERTY_PARAM_S.dwParam set to -1 or an hypothetical CPU load, in percentage units. The PropertyData parameter points to a KSPROPERTY_LIST_S structure. The output stream updates the KSPROPERTY_LIST_S.DefaultLongLong field with the appropriate default value.

9.2.3.4 SetMaxCPULoad method

This CPU control method is used to specify to the compressed video output pin the maximum encoding algorithm CPU load. The SetMaxCPULoad method is declared as follows:

HRESULT SetMaxCPULoad([IN]DWORD dwMaxCPULoad)

where

dwMaxCPULoad

Specifies the maximum encoding algorithm CPU load, in percentage units.

This method returns an HRESULT value that depends on the implementation of the interface. HRESULT can include one of the following standard constants, or other values not listed:

HRESULT
Meaning

E_FAIL
Failure

E_INVALIDARG
Invalid argument

E_NOTIMPL
Method is not supported

NOERROR
No error

The TAPI MSP Video Capture filter propagates this command to the video output stream by calling IKsControl::KsProperty. The Property parameter points to a KSPROPERTY structure, with a KSPROPERTY.Set field set to PROPSETID_CPUCONTROL, a KSPROPERTY.Id field set to KSPROPERTY_CPUCONTROL_MAXCPULOAD and KSPROPERTY.Flags field set to KSPROPERTY_TYPE_SET. The PropertyData parameter points to a DWORD value that specifies the maximum encoding algorithm CPU load, in percentage units.

9.2.3.5 GetMaxCPULoad method

This CPU control method is used to retrieve the maximum encoding algorithm CPU load the compressed video output pin is currently setup for or for an hypothetical maximum encoding time per frame. The GetMaxCPULoad method is declared as follows:

HRESULT GetMaxCPULoad([OUT]DWORD *pdwMaxCPULoad, [IN]REFERENCE_TIME MaxProcessingTime)

where

pdwMaxCPULoad

Used to retrieve the maximum encoding algorithm CPU load the compressed video output pin is currently setup for, in percentage units.

MaxProcessingTime

Specifies an hypothetical maximum encoding time per frame, in 100-nanosecond units. If this parameter is set to -1, this method shall use the value of the maximum encoding time per frame the compressed video output pin is currently setup for.

This method returns an HRESULT value that depends on the implementation of the interface. HRESULT can include one of the following standard constants, or other values not listed:

HRESULT
Meaning

E_FAIL
Failure

E_POINTER
Null pointer argument

E_NOTIMPL
Method is not supported

NOERROR
No error

The TAPI MSP Video Capture filter propagates this command to the video output stream by calling IKsControl::KsProperty. The Property parameter points to a KSPROPERTY_PARAM_S structure, with a KSPROPERTY_PARAM_S.Property.Set field set to PROPSETID_CPUCONTROL, a KSPROPERTY_PARAM_S.Property.Id field set to KSPROPERTY_CPUCONTROL_MAXCPULOAD and KSPROPERTY_PARAM_S.Property.Flags field set to KSPROPERTY_TYPE_GET and the KSPROPERTY_PARAM_S.llParam set to -1 or an hypothetical maximum encoding time per frame, in 100-nanosecond units. The PropertyData parameter points to a DWORD value to receive the maximum encoding algorithm CPU load, in percentage units.

9.2.3.6 GetMaxCPULoadRange method

This CPU control method is used to retrieve support, minimum, maximum, and default encoding algorithm CPU load the compressed video output pin may be setup for or for an hypothetical maximum encoding time per frame. The GetMaxCPULoadRange method is declared as follows:

HRESULT GetMaxCPULoadRange([OUT]DWORD *pMin, [OUT]DWORD *pMax, [OUT]DWORD *pSteppingDelta, [OUT]DWORD *pDefault, [IN]REFERENCE_TIME MaxProcessingTime)

where

pMin

Used to retrieve the minimum value of encoding algorithm CPU load the compressed video output pin maybe setup for, in percentage units.

pMax

Used to retrieve the maximum value of encoding algorithm CPU load the compressed video output pin maybe setup for, in percentage units.

pSteppingDelta

Used to retrieve the stepping delta of encoding algorithm CPU load the compressed video output pin maybe setup for, in percentage units.

pDefault

Used to retrieve the default value of encoding algorithm CPU load the compressed video output pin is setup for, in percentage units.

MaxProcessingTime

Specifies an hypothetical maximum encoding time per frame, in 100-nanosecond units. If this parameter is set to -1, this method shall use the value of the maximum encoding time per frame the compressed video output pin is currently setup for.

This method returns an HRESULT value that depends on the implementation of the interface. HRESULT can include one of the following standard constants, or other values not listed:

HRESULT
Meaning

E_FAIL
Failure

E_POINTER
Null pointer argument

E_NOTIMPL
Method is not supported

NOERROR
No error

The TAPI MSP Video Capture filter propagates this command to the video output stream by calling IKsControl::KsProperty twice.

The first call retrieves the minimum, maximum and stepping values. The Property parameter points to a KSPROPERTY_PARAM_S structure, with a KSPROPERTY_PARAM_S.Property.Set field set to PROPSETID_CPUCONTROL, a KSPROPERTY_PARAM_S.Property.Id field set to KSPROPERTY_CPUCONTROL_MAXCPULOAD and KSPROPERTY_PARAM_S.Property.Flags field set to KSPROPERTY_TYPE_BASICSUPPORT and the KSPROPERTY_PARAM_S.llParam set to -1 or an hypothetical maximum encoding time per frame, in 100-nanosecond units. The PropertyData parameter points to a KSPROPERTY_LIST_S structure. The output stream updates the KSPROPERTY_LIST_S.SteppingLong field with the appropriate minimum, maximum, and stepping delta values.

The second call retrieves the default value. The Property parameter points to a KSPROPERTY_PARAM_S structure, with a KSPROPERTY_PARAM_S.Property.Set field set to PROPSETID_CPUCONTROL, a KSPROPERTY_PARAM_S.Property.Id field set to KSPROPERTY_CPUCONTROL_MAXCPULOAD and KSPROPERTY_PARAM_S.Property.Flags field set to KSPROPERTY_TYPE_DEFAULTVALUES and the KSPROPERTY_PARAM_S.llParam set to -1 or an hypothetical maximum encoding time per frame, in 100-nanosecond units. The PropertyData parameter points to a KSPROPERTY_LIST_S structure. The output stream updates the KSPROPERTY_LIST_S.DefaultLong field with the appropriate default value.

9.2.4 IBitrateControl interface

The IBitrateControl interface specifies a maximum bitrate to the compressed video output stream. The methods on this interface are called at the beginning of a call by the TAPI MSP Quality Controller to initialize the target bitrate, and then periodically during the entire call. The dynamic values for the target bitrates are based on network statistics provided by the TAPI MSP Network Sink filter to the TAPI MSP Quality Controller. The initial and limit values for the target bitrate are based on user-defined settings provided by the application to the TAPI MSP Quality Controller and the result of capability negotiations between the two connected endpoints provided by the TAPI MSP Channel Controller. Note that the IBitrateControl::SetMaxBitrate is also called by the TAPI MSP Channel Controller whenever it receives a FlowControl command.

The IBitrateControl interface contains the following methods:

SetMaxBitrate

Used to specify to the compressed video output pin the upper limit in bandwidth transmission.

GetMaxBitrate

Used to retrieve the upper limit in bandwidth transmission the compressed video output pin is currently setup for.

GetMaxBitrateRange

Used to retrieve support, minimum, maximum, and default values for the upper limit in bandwidth transmission the compressed video output pin may be setup for.

The IBitrateControl interface is not a standard DirectShow interface. The TAPI MSP Video Capture filter implements this interface using the generic IKsControl interface and a property set called PROPSETID_BITRATECONTROL. The properties defined in this new set are controlled on a stream basis.

The PROPSETID_ BITRATECONTROL property set contains the following property:

KSPROPERTY_BITRATECONTROL_MAXBITRATE

Used to specify to the compressed video output pin the upper limit in bandwidth transmission, or supply to the TAPI MSP Quality Controller the upper limit in bandwidth transmission the compressed video output pin is currently setup for. This is a read/write property.

9.2.4.1 SetMaxBitrate method

This bitrate control method is used to specify to the compressed video output pin the upper limit in bandwidth transmission. The SetMaxBitrate method is declared as follows:

HRESULT SetMaxBitrate([IN]DWORD dwMaxBitrate, [IN]DWORD dwLayerId)

where

dwMaxBitrate

Specifies the new upper limit in bandwidth transmission in bits/s.

dwLayerId

Specifies the ID of the encoding layer the new upper limit in bandwidth transmission applies to. For standard video encoders, this field is always set to 0. In the case of multi-layered encoders, this field shall be set to 0 for the base layer, 1 for the first enhancement layer, 2 for the next enhancement layer, etc.

This method returns an HRESULT value that depends on the implementation of the interface. HRESULT can include one of the following standard constants, or other values not listed:

HRESULT
Meaning

E_FAIL
Failure

E_INVALIDARG
Invalid argument

E_NOTIMPL
Method is not supported

NOERROR
No error

Whenever this method is called, the compressed video output pin updates its internal compression parameters accordingly (e.g., quantization parameters) to generate compressed data at the new target bitrate.

Compression parameters are adjusted independently of network protocol overhead. The dwMaxBitrate value characterizes the target bitrate without the RTP/UDP/IP network stream headers.

Note that both the TAPI MSP Channel Controller (FlowControl H.245 command) and TAPI MSP Quality Controller may call upon this method to adjust the output bitrate of the compressed video output pin.

The TAPI MSP Video Capture filter propagates this command to the video output stream by calling IKsControl::KsProperty. The Property parameter points to a KSPROPERTY_PARAM_S structure, with a KSPROPERTY_PARAM_S.Property.Set field set to PROPSETID_BITRATECONTROL, a KSPROPERTY_PARAM_S.Property.Id field set to KSPROPERTY_BITRATECONTROL_MAXBITRATE, KSPROPERTY_PARAM_S.Property.Flags field set to KSPROPERTY_TYPE_SET and the KSPROPERTY_PARAM_S.dwParam set to the ID of the encoding layer the upper limit in bandwidth transmission applies to. The PropertyData parameter points to a DWORD specifying the upper limit in bandwidth transmission in bits/s.

9.2.4.2 GetMaxBitrate method

This method is used to retrieve the upper limit in bandwidth transmission the compressed video output pin is currently setup for. The GetMaxBitrate method is declared as follows:

HRESULT GetMaxBitrate([OUT]DWORD *pdwMaxBitrate, [IN]DWORD dwLayerId)

where

pdwMaxBitrate

Used to receive to the compressed video output pin the upper limit in bandwidth transmission in bits/s.

dwLayerId

Specifies the ID of the encoding layer the new upper limit in bandwidth transmission applies to. For standard video encoders, this field is always set to 0. In the case of multi-layered encoders, this field shall be set to 0 for the base layer, 1 for the first enhancement layer, 2 for the next enhancement layer, etc.

This method returns an HRESULT value that depends on the implementation of the interface. HRESULT can include one of the following standard constants, or other values not listed:

HRESULT
Meaning

E_FAIL
Failure

E_POINTER
Null pointer argument

E_NOTIMPL
Method is not supported

NOERROR
No error

The TAPI MSP Video Capture filter propagates this command to the video output stream by calling IKsControl::KsProperty. The Property parameter points to a KSPROPERTY_PARAM_S structure, with a KSPROPERTY_PARAM_S.Property.Set field set to PROPSETID_BITRATECONTROL, a KSPROPERTY_PARAM_S.Property.Id field set to KSPROPERTY_BITRATECONTROL_MAXBITRATE, KSPROPERTY_PARAM_S.Property.Flags field set to KSPROPERTY_TYPE_GET and the KSPROPERTY_PARAM_S.dwParam set to the ID of the encoding layer the upper limit in bandwidth transmission applies to. The PropertyData parameter points to a DWORD to receive the upper limit in bandwidth transmission in bits/s.

9.2.4.3 GetMaxBitrateRange method

This method is used to retrieve support, minimum, maximum, and default values for the upper limit in bandwidth transmission the compressed video output pin may be setup for. The GetMaxBitrateRange method is declared as follows:

HRESULT GetMaxBitrateRange([OUT]DWORD *pMin, [OUT]DWORD *pMax, [OUT]DWORD *pSteppingDelta, [OUT]DWORD *pDefault, [IN]DWORD dwLayerId)

where

pMin

Used to retrieve the minimum limit in bandwidth transmission the compressed video output pin maybe setup for, in bits/s.

pMax

Used to retrieve the maximum limit in bandwidth transmission the compressed video output pin maybe setup for, in bits/s.

pSteppingDelta

Used to retrieve the stepping delta in bandwidth transmission the compressed video output pin maybe setup for, in bits/s.

pDefault

Used to retrieve the default limit in bandwidth transmission the compressed video output pin is setup for, in bits/s.

dwLayerId

Specifies the ID of the encoding layer the command applies to. For standard video encoders, this field is always set to 0. In the case of multi-layered encoders, this field shall be set to 0 for the base layer, 1 for the first enhancement layer, 2 for the next enhancement layer, etc.

This method returns an HRESULT value that depends on the implementation of the interface. HRESULT can include one of the following standard constants, or other values not listed:

HRESULT
Meaning

E_FAIL
Failure

E_POINTER
Null pointer argument

E_NOTIMPL
Method is not supported

NOERROR
No error

The TAPI MSP Video Capture filter propagates this command to the video output stream by calling IKsControl::KsProperty twice.

The first call retrieves the minimum, maximum and stepping values. The Property parameter points to a KSPROPERTY_PARAM_S structure, with a KSPROPERTY_PARAM_S.Property.Set field set to PROPSETID_BITRATECONTROL, a KSPROPERTY_PARAM_S.Property.Id field set to KSPROPERTY_BITRATECONTROL_MAXBITRATE and KSPROPERTY_PARAM_S.Property.Flags field set to KSPROPERTY_TYPE_BASICSUPPORT and the KSPROPERTY_PARAM_S.dwParam set to the ID of the encoding layer the command applies to. The PropertyData parameter points to a KSPROPERTY_LIST_S structure. The output stream updates the KSPROPERTY_LIST_S.SteppingLong field with the appropriate minimum, maximum, and stepping delta values.

The second call retrieves the default value. The Property parameter points to a KSPROPERTY_PARAM_S structure, with a KSPROPERTY_PARAM_S.Property.Set field set to PROPSETID_BITRATECONTROL, a KSPROPERTY_PARAM_S.Property.Id field set to KSPROPERTY_BITRATECONTROL_MAXBITRATE and KSPROPERTY_PARAM_S.Property.Flags field set to KSPROPERTY_TYPE_DEFAULTVALUES and the KSPROPERTY_PARAM_S.dwParam set to the ID of the encoding layer the command applies to. The PropertyData parameter points to a KSPROPERTY_LIST_S structure. The output stream updates the KSPROPERTY_LIST_S.DefaultLong field with the appropriate default value.

9.2.5 IFrameRateControl interface

The IFrameRateControl interface specifies a target frame rate to the preview or compressed video output pins. The methods on this interface are called at the beginning of a call by the TAPI MSP Quality Controller to initialize the target frame rates, and then periodically during the entire call. The dynamic values for the target frame rates are based on the TAPI MSP Quality Controller CPU usage measurements using NT’s CPU performance counters, as well as the past performance of the output bitrate controller. The initial and limit values for the target frame rate are based on user-defined settings provided by the application to the TAPI MSP Quality Controller and the result of capability negotiations between the two connected endpoints provided by the TAPI MSP Channel Controller.

The IFrameRateControl interface contains the following methods:

SetMaxFrameRate

Used to specify to the preview or compressed video output pin the video frame's average display time.

GetMaxFrameRate

Used to retrieve the video frame's average display time the preview or compressed video output pin are currently setup for.

GetMaxFrameRateRange

Used to retrieve support, minimum, maximum, and default values for the video frame's average display time the preview or compressed video output pin may be setup for.

The IFrameRateControl interface is not a standard DirectShow interface. The TAPI MSP Video Capture filter implements this interface using the generic IKsControl interface and a property set called PROPSETID_FRAMERATECONTROL. The properties defined in this set are handled on a stream basis, allowing for different frame rates on the preview and compressed video output pins.

The PROPSETID_ FRAMERATECONTROL property set contains the following property:

KSPROPERTY_FRAMERATECONTROL_MAXFRAMERATE

Used to specify to the preview or compressed video output pin the video frame's average display time, or supply to the TAPI MSP Quality Controller the video frame's average display time the preview or compressed video output pin are currently setup for. This is a read/write property.

9.2.5.1 SetMaxFrameRate method

This frame rate control method is used to specify to the preview or compressed video output pin the video frame’s average display time. The SetMaxFrameRate method is declared as follows:

HRESULT SetMaxFrameRate([IN]REFERENCE_TIME AvgTimePerFrame)

where

AvgTimePerFrame

Specifies a REFERENCE_TIME value that indicates the video frame's average display time, in 100-nanosecond units.

This method returns an HRESULT value that depends on the implementation of the interface. HRESULT can include one of the following standard constants, or other values not listed:

HRESULT
Meaning

E_FAIL
Failure

E_INVALIDARG
Invalid argument

E_NOTIMPL
Method is not supported

NOERROR
No error

Whenever this method is called, the compressed video output pin updates its internal compression parameters accordingly (e.g., quantization parameters) maintain a constant bitrate as specified in VIDEOINFOHEADER_H263.dwBitRate or the last call to IBitrateControl::SetMaxBitrate.

The TAPI MSP Video Capture filter propagates this command to the video output stream by calling IKsControl::KsProperty. The Property parameter points to a KSPROPERTY structure, with a KSPROPERTY.Set field set to PROPSETID_FRAMERATECONTROL, a KSPROPERTY.Id field set to KSPROPERTY_FRAMERATECONTROL_MAXFRAMERATE and KSPROPERTY.Flags field set to KSPROPERTY_TYPE_SET. The PropertyData parameter points to a REFERENCE_TIME value that specifies the video frame's average display time, in 100-nanosecond units.

9.2.5.2 GetMaxFrameRate method

This method is used to retrieve the video frame's average display time the preview or compressed video output pin is currently setup for. The GetMaxFrameRate method is declared as follows:

HRESULT GetMaxFrameRate([OUT]REFERENCE_TIME *pAvgTimePerFrame)

where

pAvgTimePerFrame

Used to receive a REFERENCE_TIME value that indicates the video frame's average display time, in 100-nanosecond units.

This method returns an HRESULT value that depends on the implementation of the interface. HRESULT can include one of the following standard constants, or other values not listed:

HRESULT
Meaning

E_FAIL
Failure

E_POINTER
Null pointer argument

E_NOTIMPL
Method is not supported

NOERROR
No error

The TAPI MSP Video Capture filter propagates this command to the video output stream by calling IKsControl::KsProperty. The Property parameter points to a KSPROPERTY structure, with a KSPROPERTY.Set field set to PROPSETID_FRAMERATECONTROL, a KSPROPERTY.Id field set to KSPROPERTY_FRAMERATECONTROL_MAXFRAMERATE and KSPROPERTY.Flags field set to KSPROPERTY_TYPE_GET. The PropertyData parameter points to a REFERENCE_TIME value to receive video frame's average display time, in 100-nanosecond units.

9.2.5.3 GetMaxFrameRateRange method

This method is used to retrieve the minimum, maximum, and default values for the video frame average display time the preview or compressed video output pin may be setup for. The GetMaxFrameRateRange method is declared as follows:

HRESULT GetMaxFrameRateRange([OUT]REFERENCE_TIME *pMin, [OUT]REFERENCE_TIME *pMax, [OUT]REFERENCE_TIME *pSteppingDelta, [OUT]REFERENCE_TIME *pDefault)

where

pMin

Used to retrieve the minimum video frame display time, in 100-nanosecond units.

pMax

Used to retrieve the maximum video frame display time, in 100-nanosecond units.

pSteppingDelta

Used to retrieve the stepping delta in video frame display time, in 100-nanosecond units.

pDefault

Used to retrieve the default video frame display time, in 100-nanosecond units.

This method returns an HRESULT value that depends on the implementation of the interface. HRESULT can include one of the following standard constants, or other values not listed:

HRESULT
Meaning

E_FAIL
Failure

E_POINTER
Null pointer argument

E_NOTIMPL
Method is not supported

NOERROR
No error

The TAPI MSP Video Capture filter propagates this command to the video output stream by calling IKsControl::KsProperty twice.

The first call retrieves the minimum, maximum and stepping values. The Property parameter points to a KSPROPERTY structure, with a KSPROPERTY.Set field set to PROPSETID_FRAMERATECONTROL, a KSPROPERTY.Id field set to KSPROPERTY_FRAMERATECONTROL_MAXFRAMERATE and KSPROPERTY.Flags field set to KSPROPERTY_TYPE_BASICSUPPORT. The PropertyData parameter points to a KSPROPERTY_LIST_S structure. The output stream updates the KSPROPERTY_LIST_S.SteppingLongLong field with the appropriate minimum, maximum, and stepping delta values.

The second call retrieves the default value. The Property parameter points to a KSPROPERTY structure, with a KSPROPERTY.Set field set to PROPSETID_FRAMERATECONTROL, a KSPROPERTY.Id field set to KSPROPERTY_FRAMERATECONTROL_MAXFRAMERATE and KSPROPERTY.Flags field set to KSPROPERTY_TYPE_DEFAULTVALUES. The PropertyData parameter points to a KSPROPERTY_LIST_S structure. The output stream updates the KSPROPERTY_LIST_S.DefaultLongLong field with the appropriate default value.

9.2.6 IProgressiveRefinement interface

H.245 progressive refinement commands exist to allow for transmission of high resolution still images that are continuously improved on the remote endpoint as more data is received and decompressed. In order to handle those commands, the compressed video output pin provides the TAPI MSP Channel Controller with a pointer to an IProgressiveRefinement interface.

The IProgressiveRefinement interface is defined in section 11.1.

10. Video preview output pin TAPI interfaces

This section documents the list of video preview output pin TAPI interfaces indirectly exposed to applications. Those applications use TAPI IT* interfaces whose method calls are delegated to the interfaces presented here.

We distinguish between VfW and WDM capture devices that only provide the ICPUControl interface to control the maximum capture and post-processing time per frame and CPU load not be exceeded by the capture device for preview, and the IFrameRateControl interface to initialize and regulate the frame rate of the preview output pin; and Videoconferencing Accelerators that natively support those interfaces on their preview output pin.

10.1 VfW and WDM capture device preview output pin TAPI interfaces

The TAPI MSP Video Capture filter exposes two interfaces supported by its preview video output pin to the TAPI MSP Quality Controller. The TAPI MSP Quality Controller uses the optional ICPUControl interface to initialize and adjust the maximum capture and post-processing time per frame and CPU load not be exceeded by the capture device preview pin. Similarly, it uses the IFrameRateControl interface to initialize and regulate the frame rate of the preview video output pin.

The TAPI MSP calls QueryInterface on the IPin interface exposed by the preview output pin of the TAPI MSP Video Capture filter to get pointers to the ICPUControl and IFrameRateControl interfaces.

10.1.1 ICPUControl interface

Preview output pins may implement the optional ICPUControl interface. The methods on this interface are called at the beginning of a call to initialize the maximum CPU load and frame post-processing time, and then periodically by the TAPI MSP Quality Controller during the entire call. The initial and limit values for the maximum CPU load and frame post-processing time are based on user-defined settings provided by the application.

See section 9.2.3 for more information on the ICPUControl interface definition.

For VfW frame grabbing devices, the post-processing time is composed of the time spent between the request for a grab occurred and the moment the frame was returned from the capture device, the black banding code execution time, as well as the color conversion code execution time if the native video capture device format requires a conversion from YUV to RGB for instance. For VfW streaming devices, the post-processing time only measures the black banding code time and color conversion time.

WDM capture devices are streaming devices. However, a lot of them appear to function better (less CPU usage) and easier to control when used in frame grabbing mode, that is, when there is only one outstanding overlapped IO. Here again, for WDM capture devices used in frame grabbing mode, the post-processing time is composed of the time spent between the request for a grab occurred and the moment the frame was returned from the capture device, the black banding code execution time and color conversion time. For WDM capture devices used in streaming mode, the post-processing time only measures the black banding code time and color conversion time.

10.1.2 IFrameRateControl interface

The IFrameRateControl interface specifies a target frame rate to the preview output pin of the video capture filter. The methods on this interface are called at the beginning of a call by the TAPI MSP Quality Controller to initialize the target frame rates, and then periodically during the entire call. The dynamic values for the target frame rates are based on the TAPI MSP Quality Controller CPU usage measurements using NT’s CPU performance counters. The initial and limit values for the target frame rate are based on user-defined settings provided by the application to the TAPI MSP Quality Controller.

The IFrameRateControl interface is defined in section 9.2.5.

For VfW frame grabbing devices, or WDM capture devices used in frame grabbing mode, the capture frame rate is adjusted by regulating the time between each request for a frame grab. VfW and WDM streaming devices are not able to easily adjust their capture frame rate on the fly. Therefore, VfW and WDM streaming capture devices are always asked to capture at 30fps, but only a fraction of those frames are delivered to the downstream filter, hence, achieving dynamic frame rate control.

10.2 Videoconferencing Accelerator preview output pin TAPI interfaces

The TAPI MSP Video Capture filter exposes two interfaces supported by the preview output pin to the TAPI MSP Quality Controller. The TAPI MSP Quality Controller uses the optional ICPUControl interface to initialize and adjust the maximum post-processing time per frame and CPU load not to be exceeded by the TAPI MSP Video Capture filter for preview. Similarly, it uses the IFrameRateControl interface to initialize and regulate the frame rate of the preview video output pin.

The TAPI MSP calls QueryInterface on the IPin interface exposed by the preview video output pin of the TAPI MSP Video Capture filter to get pointers to the ICPUControl and IFrameRateControl interfaces. The TAPI MSP Video Capture filter implements those interfaces by calling the IKsControl methods on the Videoconferencing Accelerator preview video output stream.

The GUIDs of the PROPSETID_CPUCONTROL and PROPSETID_FRAMERATECONTROL property sets are defined as follows:

Name
GUID

PROPSETID_CPUCONTROL
63757063-5245-4945-5252-45464C494850

PROPSETID_FRAMERATECONTROL
63737066-5245-4945-5252-45464C494850

10.2.1 ICPUControl interface

Preview output pins may implement the optional ICPUControl interface. The methods on this interface are called at the beginning of a call to initialize the maximum CPU load and frame post-processing time, and then periodically by the TAPI MSP Quality Controller during the entire call. The initial and limit values for the maximum CPU load and frame post-processing time are based on user-defined settings provided by the application.

See section 9.2.3 for more information on the ICPUControl interface.

10.2.2 IFrameRateControl interface

The IFrameRateControl interface specifies a target frame rate to the preview and compressed video output pins of the Videoconferencing Accelerator. The methods on this interface are called at the beginning of a call by the TAPI MSP Quality Controller to initialize the target frame rates, and then periodically during the entire call. The dynamic values for the target frame rates are based on the TAPI MSP Quality Controller CPU usage measurements using NT’s CPU performance counters, as well as the past performance of the Videoconferencing Accelerator output bitrate controller. The initial and limit values for the target frame rate are based on user-defined settings provided by the application to the TAPI MSP Quality Controller and the result of capability negotiations between the two connected endpoints provided by the TAPI MSP Channel Controller.

The IFrameRateControl interface is defined in section 9.2.5.

11. Compressed still-image output pin TAPI interfaces

The TAPI MSP Video Capture filter exposes a few interfaces supported by the compressed still-image output pin directly to the TAPI MSP Channel Controller, the TAPI MSP Quality Controller, or the TAPI MSP Network Sink filter. TAPI MSP Channel Controller uses the IProgressiveRefinement interface to communicate progressive refinement H.245 commands to the compressed video or still-image output pin. The network sink filter uses the INetworkStats interface to inform the compressed still-image output pin of the transmission channel conditions (packet loss…), as described in section 9.2.2. The TAPI MSP Quality Controller uses the optional ICPUControl interface to initialize and adjust the maximum encoding time per frame and CPU load not be exceeded by the encoder’s compression algorithm, as defined in section 9.2.3. Similarly, it uses the IBitrateControl interface (introduced in section 9.2.4) to initialize and regulate the outgoing bitrate of the compressed still-image output pin.

The TAPI MSP calls QueryInterface on the IPin interface exposed by the still-image output pin of the TAPI MSP Video Capture filter to get pointers to the IProgressiveRefinement, INetworkStats, ICPUControl and IBitrateControl interfaces. The TAPI MSP Video Capture filter implements those interfaces calling the IKsControl methods exposed on the Videoconferencing Accelerator still-image output stream.

Note that for VfW and traditional WDM capture devices, it is the encoder function that implements the IProgressiveRefinement, INetworkStats, ICPUControl and IBitrateControl interfaces. Therefore, those interfaces are only available on the TAPI MSP Video Capture filter if it isn’t connected to a downstream installable codec.

The GUIDs of the property sets discussed in this section are defined as follows:

Name
GUID

PROPSETID_NETWORKSTATS
7374656E-5245-4945-5252-45464C494850

PROPSETID_CPUCONTROL
63757063-5245-4945-5252-45464C494850

PROPSETID_BITRATECONTROL
63737062-5245-4945-5252-45464C494850

PROPSETID_PROGRESSIVEREFINEMENT
676F7270-5245-4945-5252-45464C494850

11.1 IProgressiveRefinement interface

H.245 progressive refinement commands exist to allow for transmission of high resolution still images that are continuously improved on the remote endpoint as more data is received and decompressed. In order to handle those commands, the compressed still-image output pin provides the TAPI MSP Channel Controller with a pointer to an IProgressiveRefinement interface containing the following methods:

doOneProgression

Used to command the compressed still-image output pin to begin producing a progressive refinement sequence for one picture.

doContinuousProgressions

Used to command the compressed still-image output pin to begin producing progressive refinement sequences for several pictures.

doOneIndependentProgression

Used to command the compressed still-image output pin to begin an independent progressive refinement sequence for one Intra picture.

doContinuousIndependentProgressions

Used to command the compressed still-image output pin to begin an independent progressive refinement sequence several Intra pictures.

progressiveRefinementAbortOne

Used to command the compressed still-image output pin to terminate a progressive refinement sequence for the current picture.

progressiveRefinementAbortContinuous

Used to command the compressed still-image output pin to terminate a progressive refinement sequence for all pictures.

These methods return an HRESULT value that depends on the implementation of the interface. HRESULT can include one of the following standard constants, or other values not listed:

HRESULT
Meaning

E_FAIL
Failure

E_NOTIMPL
Method is not supported

NOERROR
No error

The IProgressiveRefinement interface is not a standard DirectShow interface. The TAPI MSP Video Capture filter implements this interface using the generic IKsControl interface and a property set called PROPSETID_PROGRESSIVEREFINEMENT. The properties defined in this set are controlled on a stream basis.

The PROPSETID_PROGRESSIVEREFINEMENT property set contains the following properties:

KSPROPERTY_PROGRESSIVEREFINEMENT_DOONEPROGRESSION
Used to command the compressed still-image output stream to begin producing a progressive refinement sequence for one picture. This is a write-only property.

KSPROPERTY_PROGRESSIVEREFINEMENT_DOCONTINUOUSPROGRESSIONS
Used to command the compressed still-image output stream to begin producing progressive refinement sequences for several pictures. This is a write-only property.

KSPROPERTY_PROGRESSIVEREFINEMENT_DOONEINDEPENDENTPROGRESSION
Used to command the compressed still-image output stream to begin an independent progressive refinement sequence for one Intra picture. This is a write-only property.

KSPROPERTY_PROGRESSIVEREFINEMENT_DOCONTINUOUSINDEPENDENTPROGRESSIONS
Used to command the compressed still-image output stream to begin an independent progressive refinement sequence several Intra pictures. This is a write-only property.

KSPROPERTY_PROGRESSIVEREFINEMENT_ABORTONE
Used to command the compressed still-image output stream to terminate a progressive refinement sequence for the current picture. This is a write-only property.

KSPROPERTY_PROGRESSIVEREFINEMENT_ABORTCONTINUOUS
Used to command the compressed still-image output stream to terminate a progressive refinement sequence for all pictures. This is a write-only property.

11.1.1 doOneProgression method

This H.245 progressive refinement command is used to specify to the compressed still-image output pin to begin producing a progressive refinement sequence. The doOneProgression method is declared as follows:

HRESULT doOneProgression()

In this mode, the compressed still-image output pin produces video data consisting of one picture followed by a sequence of zero or more frames of refinement of the quality of the same picture. The compressed still-image output pin stays in this mode until it decides an acceptable fidelity level has been reached or the progressiveRefinementAbortOne command is received. In addition, the compressed still-image output pin shall insert the Progressive Refinement Segment Start Tag and the Progressive Refinement Segment End Tag to mark the beginning and end of the progressive refinement as defined in the Supplemental Enhancement Information Specification (Annex L) of Recommendation H.263.

The TAPI MSP Video Capture filter propagates this command to the still-image output stream by calling IKsControl::KsProperty. The Property parameter points to a KSPROPERTY structure, with a KSPROPERTY.Set field set to PROPSETID_PROGRESSIVEREFINEMENT, a KSPROPERTY.Id field set to KSPROPERTY_PROGRESSIVEREFINEMENT_DOONEPROGRESSION and KSPROPERTY.Flags field set to KSPROPERTY_TYPE_SET.

11.1.2 doContinuousProgressions method

This H.245 progressive refinement command is used to specify to the compressed still-image output pin to begin producing a progressive refinement sequence. The doContinuousProgressions method is declared as follows:

HRESULT doContinuousProgressions()

In this mode, the compressed still-image output pin produces video data consisting of one picture followed by a sequence of zero or more frames of refinement of the quality of the same picture. When the compressed still-image output pin decides an acceptable fidelity level has been reached or the progressiveRefinementAbortOne command is received, it stops refining the current progression and begins another progressive refinement for a different picture. The sequence of progressive refinements continues until the progressiveRefinementAbortContinuous command is received. In addition, the compressed still-image output pin shall insert Progressive Refinement Segment Start Tags and Progressive Refinement Segment End Tags to mark the start and end of each progressive refinement as defined in the Supplemental Enhancement Information Specification (Annex L) of Recommendation H.263.

The TAPI MSP Video Capture filter propagates this command to the still-image output stream by calling IKsControl::KsProperty. The Property parameter points to a KSPROPERTY structure, with a KSPROPERTY.Set field set to PROPSETID_PROGRESSIVEREFINEMENT, a KSPROPERTY.Id field set to KSPROPERTY_PROGRESSIVEREFINEMENT_DOCONTINUOUSPROGRESSIONS and KSPROPERTY.Flags field set to KSPROPERTY_TYPE_SET.

11.1.3 doOneIndependentProgression method

This H.245 progressive refinement command is used to specify to the compressed still-image output pin to begin an independent progressive refinement sequence. The doOneIndependentProgression method is declared as follows:

HRESULT doOneIndependentProgression()

In this mode, the compressed still-image output pin produces video data consisting of one Intra picture followed by a sequence of zero or more frames of refinement of the quality of the same picture. The compressed still-image output pin stays in this mode until either it decides an acceptable fidelity level has been reached or the progressiveRefinementAbortOne command is received. In addition, the compressed still-image output pin shall insert the Progressive Refinement Segment Start Tag and the Progressive Refinement Segment End Tag to mark the beginning and end of the progressive refinement as defined in the Supplemental Enhancement Information Specification (Annex L) of Recommendation H.263.

The TAPI MSP Video Capture filter propagates this command to the still-image output stream by calling IKsControl::KsProperty. The Property parameter points to a KSPROPERTY structure, with a KSPROPERTY.Set field set to PROPSETID_PROGRESSIVEREFINEMENT, a KSPROPERTY.Id field set to KSPROPERTY_PROGRESSIVEREFINEMENT_DOONEINDEPENDENTPROGRESSION and KSPROPERTY.Flags field set to KSPROPERTY_TYPE_SET.

11.1.4 doContinuousIndependentProgressions method

This H.245 progressive refinement command is used to specify to the compressed still-image output pin to begin producing independent progressive refinement sequences. The doContinuousIndependentProgressions method is declared as follows:

HRESULT doContinuousIndependentProgressions()

In this mode, the compressed still-image output pin produces video data consisting of one Intra picture followed by a sequence of zero or more frames of refinement of the quality of the same picture. When the compressed still-image output pin decides an acceptable fidelity level has been reached or the progressiveRefinementAbortOne command is received, it stops refining the current progression and begins another independent progressive refinement for a different picture. The sequence of independent progressive refinements continues until the progressiveRefinementAbortContinuous command is received. In addition, the terminal shall insert Progressive Refinement Segment Start Tags and Progressive Refinement Segment End Tags to mark the start and end of each independent progressive refinement as defined in the Supplemental Enhancement Information Specification (Annex L) of Recommendation H.263.

The TAPI MSP Video Capture filter propagates this command to the still-image output stream by calling IKsControl::KsProperty. The Property parameter points to a KSPROPERTY structure, with a KSPROPERTY.Set field set to PROPSETID_PROGRESSIVEREFINEMENT, a KSPROPERTY.Id field set to KSPROPERTY_PROGRESSIVEREFINEMENT_DOCONTINUOUSINDEPENDENTPROGRESSIONS and KSPROPERTY.Flags field set to KSPROPERTY_TYPE_SET.

11.1.5 progressiveRefinementAbortOne method

This H.245 progressive refinement command is used to specify to the compressed still-image output pin to terminate doOneProgression, doOneIndependentProgression, or the current progressive refinement in the sequence of progressive refinements in either doContinuousProgressions or doContinuousIndependentProgressions. The progressiveRefinementAbortOne method is declared as follows:

HRESULT progressiveRefinementAbortOne()

The TAPI MSP Video Capture filter propagates this command to the still-image output stream by calling IKsControl::KsProperty. The Property parameter points to a KSPROPERTY structure, with a KSPROPERTY.Set field set to PROPSETID_PROGRESSIVEREFINEMENT, a KSPROPERTY.Id field set to KSPROPERTY_PROGRESSIVEREFINEMENT_ABORTONE and KSPROPERTY.Flags field set to KSPROPERTY_TYPE_SET.

11.1.6 progressiveRefinementAbortContinuous method

This H.245 progressive refinement command is used to specify to the compressed still-image output pin to terminate either doContinuousProgressions or doContinuousIndependentProgressions. The progressiveRefinementAbortContinuous method is declared as follows:

HRESULT progressiveRefinementAbortContinuous()

The TAPI MSP Video Capture filter propagates this command to the still-image output stream by calling IKsControl::KsProperty. The Property parameter points to a KSPROPERTY structure, with a KSPROPERTY.Set field set to PROPSETID_PROGRESSIVEREFINEMENT, a KSPROPERTY.Id field set to KSPROPERTY_PROGRESSIVEREFINEMENT_ABORTCONTINUOUS and KSPROPERTY.Flags field set to KSPROPERTY_TYPE_SET.

11.2 INetworkStats interface

Compressed still-image output pins may chose to also expose an INetworkStats interface. The TAPI MSP Network Sink filter calls methods on this interface periodically based on monitored network performances. The compressed still-image output pin is responsible for taking appropriate actions, if needed.

See section 9.2.2 for more information on the INetworkStats interface.

11.3 ICPUControl interface

Compressed still-image output pins may implement the optional ICPUControl interface. The methods on this interface are called at the beginning of a call to initialize the maximum CPU load and frame encoding time, and then periodically by the TAPI MSP Quality Controller during the entire call. The initial and limit values for the maximum CPU load and frame encoding time are based on user-defined settings provided by the application.

See section 9.2.3 for more information on the ICPUControl interface.

11.4 IBitrateControl interface

The IBitrateControl interface specifies a maximum bitrate to the still-image output pin. The methods on this interface are called at the beginning of a call by the TAPI MSP Quality Controller to initialize the target bitrate, and then periodically during the entire call. The dynamic values for the target bitrates are based on network statistics provided by the TAPI MSP Network Sink filter to the TAPI MSP Quality Controller. The initial and limit values for the target bitrate are based on user-defined settings provided by the application to the TAPI MSP Quality Controller and the result of capability negotiations between the two connected endpoints provided by the TAPI MSP Channel Controller.

See section 9.2.4 for more information on the IBitrateControl interface.

12. RTP packetization descriptor output pin TAPI interface

The TAPI MSP Video Capture filter exposes a new interface supported by the RTP packetization descriptor output pin to the network sink filter. The network sink filter uses the IRTPPDControl interface to dynamically modify or query for the maximum RTP packet size on the RTP Packetization descriptor output pin. Note that in most scenarios, the maximum RTP packet size will be set once at stream creation time through the RTP_PD_INFO structure and never change.

The TAPI MSP calls QueryInterface on the IPin interface exposed by the RTP packetization descriptor output pin of the TAPI MSP Video Capture filter to get a pointer to the IRTPPDControl interface. The TAPI MSP Video Capture filter implements this interface using the generic IKsControl interface and a property set called PROPSETID_RTPPDCONTROL. The properties defined in this set are controlled on a stream basis.

The GUID of the PROPSETID_RTPPDCONTROL property set is defined as follows:

Name
GUID

PROPSETID_RTPPDCONTROL
74636470-5245-4945-5252-45464C494850

12.1 IRTPPDControl interface

In order to dynamically adjust the maximum RTP packet size, the RTP packetization descriptor output pin provides the network filter with a pointer to an IRTPPDControl interface containing the following methods:

SetMaxRTPPacketSize

Used to dynamically adjust the maximum RTP packet size (in bytes) to be described by the list of packetization descriptors. Typically, this number is just below the MTU size of the network.

GetMaxRTPPacketSize

Used to supply to the network sink filter the current maximum RTP packet size (in bytes) described by the list of packetization descriptors.

GetMaxRTPPacketSizeRange

Used to support, minimum, maximum, and default values for the maximum RTP packet size (in bytes) described by the list of packetization descriptors.

The IRTPPDControl interface is not a standard DirectShow interface. The TAPI MSP Video Capture filter implements this interface using the generic IKsControl interface and a property set called PROPSETID_RTPPDCONTROL. The properties defined in this set are controlled on a stream basis.

The PROPSETID_RTPPDCONTROL property set contains the following property:

KSPROPERTY_RTPPDCONTROL_MAXRTPPACKETSIZE

Used to retrieve/set the maximum RTP packet size. This is a read/write property.

12.1.1 SetMaxRTPPacketSize method

This RTP packetization descriptor control method is used to dynamically adjust the maximum RTP packet size (in bytes) to be described by the list of packetization descriptor. Typically, this number is just below the MTU size of the network. The SetMaxRTPPacketSize method is declared as follows:

HRESULT SetMaxRTPPacketSize([IN]DWORD dwMaxRTPPacketSize, [IN]DWORD dwLayerId)

where

dwMaxRTPPacketSize

Specifies the maximum RTP packet size (in bytes) to be described by the list of packetization descriptors.

dwLayerId

Specifies the ID of the encoding layer the maximum RTP packet size applies to. For standard video encoders, this field is always set to 0. In the case of multi-layered encoders, this field shall be set to 0 for the base layer, 1 for the first enhancement layer, 2 for the next enhancement layer, etc.

This method returns an HRESULT value that depends on the implementation of the interface. HRESULT can include one of the following standard constants, or other values not listed:

HRESULT
Meaning

E_FAIL
Failure

E_INVALIDARG
Invalid argument

E_NOTIMPL
Method is not supported

NOERROR
No error

The TAPI MSP Video Capture filter propagates this command to the RTP packetization descriptor output stream by calling IKsControl::KsProperty. The Property parameter points to a KSPROPERTY_PARAM_S structure, with a KSPROPERTY_PARAM_S.Property.Set field set to PROPSETID_RTPPDCONTROL, a KSPROPERTY_PARAM_S.Property.Id field set to KSPROPERTY_RTPPDCONTROL_MAXRTPPACKETSIZE, KSPROPERTY_PARAM_S.Property.Flags field set to KSPROPERTY_TYPE_SET and the KSPROPERTY_PARAM_S.dwParam set to the ID of the encoding layer the maximum RTP packet size applies to. The PropertyData parameter points to a DWORD specifying the maximum RTP packet size (in bytes) to be described by the list of packetization descriptors.

12.1.2 GetMaxRTPPacketSize method

This RTP packetization descriptor control method is used to supply to the network sink filter the maximum RTP packet size (in bytes) described by the list of packetization descriptors. The GetMaxRTPPacketSize method is declared as follows:

HRESULT GetMaxRTPPacketSize([OUT]DWORD *pdwMaxRTPPacketSize, [IN]DWORD dwLayerId)

where

pdwMaxRTPPacketSize

Specifies a pointer to a DWORD to receive the maximum RTP packet size (in bytes) described by the list of packetization descriptors.

dwLayerId

Specifies the ID of the encoding layer the maximum RTP packet size applies to. For standard video encoders, this field is always set to 0. In the case of multi-layered encoders, this field shall be set to 0 for the base layer, 1 for the first enhancement layer, 2 for the next enhancement layer, etc.

This method returns an HRESULT value that depends on the implementation of the interface. HRESULT can include one of the following standard constants, or other values not listed:

HRESULT
Meaning

E_FAIL
Failure

E_POINTER
Null pointer argument

E_NOTIMPL
Method is not supported

NOERROR
No error

The TAPI MSP Video Capture filter propagates this command to the RTP packetization descriptor output stream by calling IKsControl::KsProperty. The Property parameter points to a KSPROPERTY_PARAM_S structure, with a KSPROPERTY_PARAM_S.Property.Set field set to PROPSETID_RTPPDCONTROL, a KSPROPERTY_PARAM_S.Property.Id field set to KSPROPERTY_RTPPDCONTROL_MAXRTPPACKETSIZE, KSPROPERTY_PARAM_S.Property.Flags field set to KSPROPERTY_TYPE_GET and the KSPROPERTY_PARAM_S.dwParam set to the ID of the encoding layer the maximum RTP packet size applies to. The PropertyData parameter points to a DWORD to receive the maximum RTP packet size (in bytes) to be described by the list of packetization descriptors.

12.1.3 GetMaxRTPPacketSizeRange method

This RTP packetization descriptor control method is used to supply to the network sink filter the minimum, maximum, and default values for the RTP packet size (in bytes) described by the list of packetization descriptors. The GetMaxRTPPacketSizeRange method is declared as follows:

HRESULT GetMaxRTPPacketSizeRange([OUT]DWORD *pMin, [OUT]DWORD *pMax, [OUT]DWORD *pSteppingDelta, [OUT]DWORD *pDefault, [IN]DWORD dwLayerId)

where

pMin

Used to retrieve the minimum RTP packet size (in bytes) described by the list of packetization descriptors.

pMax

Used to retrieve the maximum RTP packet size (in bytes) described by the list of packetization descriptors.

pSteppingDelta

Used to retrieve the stepping delta in RTP packet size (in bytes) described by the list of packetization descriptors s.

pDefault

Used to retrieve the default RTP packet size (in bytes) described by the list of packetization descriptors.

dwLayerId

Specifies the ID of the encoding layer the command applies to. For standard video encoders, this field is always set to 0. In the case of multi-layered encoders, this field shall be set to 0 for the base layer, 1 for the first enhancement layer, 2 for the next enhancement layer, etc.

This method returns an HRESULT value that depends on the implementation of the interface. HRESULT can include one of the following standard constants, or other values not listed:

HRESULT
Meaning

E_FAIL
Failure

E_POINTER
Null pointer argument

E_NOTIMPL
Method is not supported

NOERROR
No error

The TAPI MSP Video Capture filter propagates this command to the RTP packetization descriptor output stream by calling IKsControl::KsProperty twice.

The first call retrieves the minimum, maximum and stepping values. The Property parameter points to a KSPROPERTY_PARAM_S structure, with a KSPROPERTY_PARAM_S.Property.Set field set to PROPSETID_RTPPDCONTROL, a KSPROPERTY_PARAM_S.Property.Id field set to KSPROPERTY_RTPPDCONTROL_MAXRTPPACKETSIZE and KSPROPERTY_PARAM_S.Property.Flags field set to KSPROPERTY_TYPE_BASICSUPPORT and the KSPROPERTY_PARAM_S.dwParam set to the ID of the encoding layer the command applies to. The PropertyData parameter points to a KSPROPERTY_LIST_S structure. The output stream updates the KSPROPERTY_LIST_S.SteppingLong field with the appropriate minimum, maximum, and stepping delta values.

The second call retrieves the default value. The Property parameter points to a KSPROPERTY_PARAM_S structure, with a KSPROPERTY_PARAM_S.Property.Set field set to PROPSETID_RTPPDCONTROL, a KSPROPERTY_PARAM_S.Property.Id field set to KSPROPERTY_RTPPDCONTROL_MAXRTPPACKETSIZE and KSPROPERTY_PARAM_S.Property.Flags field set to KSPROPERTY_TYPE_DEFAULTVALUES and the KSPROPERTY_PARAM_S.dwParam set to the ID of the encoding layer the command applies to. The PropertyData parameter points to a KSPROPERTY_LIST_S structure. The output stream updates the KSPROPERTY_LIST_S.DefaultLong field with the appropriate default value.

13. References

13.1 TAPI specifications

Available from Microsoft:

Microsoft® TAPI® Video Decoder Filter – Streams and Interfaces

This design specification describes a video decoder filter architecture for Microsoft NetMeeting 3.0 and other third-party conferencing applications in the Microsoft TAPI environment using DirectShow.

Microsoft® TAPI® Video Encoder Filter – Streams and Interfaces

This design specification describes a video encoder filter architecture for Microsoft NetMeeting 3.0 and other third-party conferencing applications in the Microsoft TAPI environment using DirectShow.

Videoconferencing Acceleration with WDM – RTP Pre-Packetized H.26x Video Encoding

This design specification describes a video hardware compression acceleration architecture for Microsoft NetMeeting 3.0 and other third-party videoconferencing applications in the Microsoft TAPI environment using WDM.

Videoconferencing Acceleration with WDM – RTP Packetized H.26x Video Decoding

This design specification describes a video hardware decompression acceleration architecture for Microsoft NetMeeting 3.0 and other third-party videoconferencing applications in the Microsoft TAPI environment using WDM.

Audioconferencing Acceleration with WDM – G.Series Audio Encoding

This design specification describes an audio hardware compression acceleration architecture for Microsoft NetMeeting 3.0 and other third-party audioconferencing applications in the Microsoft TAPI environment using WDM.

13.2 DirectShow SDK articles and documentation

Available from http://www.microsoft.com/directx/pavilion/dshow
13.3 WDM Stream class, WDM articles and documentation

Available from http://www.microsoft.com/hwdev/desinit/
WDM: Introduction to Win32 Driver Model

Introduces WDM, which is being developed to provide an operating system-independent framework for creating device drivers for some classes of devices.

WDM for Windows and Windows NT

Presents information about WDM support for several device classes under Windows 98 and Windows 2000.

WDM Kernel Streaming

Introduces the concept of kernel-mode streaming and describes the role of the different components of WDM Streaming architecture.

WDM USB Driver Interface

Describes the interface offered to client drivers by the operating-system USB driver stack.

When to Write WDM Class Drivers

Explores whether the best approach for supporting a particular device is to write an additional WDM solution or to use the Microsoft-supplied WDM drivers supplemented with device-specific minidrivers.

VfW-to-WDM Video Capture Mapper on Windows 98 and Windows 2000

Discusses the architecture and limitations of the VfW-to-WDM mapper for video capture devices.

Navigating to WDM Video Capture

Supplies pointers to documents relevant to vendors who are developing video capture-related products for the Microsoft Windows 98 and Windows 2000 operating systems under WDM.

VfW-to-WDM Mapper to Support Analog Solutions

Presents information about how the Video for Windows-to-WDM mapper support works under Windows 2000.

WDM Video Capture Overview

Provides an overview of video capture for the Microsoft Windows 98 and Windows 2000 under WDM.

In the WDM DDK Documentation:

Kernel-Mode Streaming Reference

Stream Class Driver Reference

Kernel Streaming Proxy Reference

Stream Class Video Capture Minidriver Reference

13.4 ITU communications standards

Available from http://www.itu.int/itudoc/itu-t/rec/h
Recommendation H.245 v3 (09/97) – Control protocol for multimedia communication

Recommendation H.261 (03/93) – Video codec for audiovisual services at px64 kbit/s

Recommendation H.263 (03/96) – Video coding for low bit rate communication

Recommendation H.263 v2 (01/98) – Video coding for low bit rate communication

ITU home page: http://www.itu.int/home
13.5 IETF Request for comments

Available from http://www.isi.edu/in-notes
RFC 1889 – RTP: A Transport Protocol for real-time Applications

RFC 2032 – RTP Payload Format for H.261 video streams

RFC 2190 – RTP Payload Format for H.263 video streams

RFC 2429 – RTP Payload Format for the 1998 Version of ITU-T Rec. H.263 Video (H.263+)

User mode

Still-Image Pin

ICPUControl

KSXBar

Code

Kernel mode

KSProxy

Code

+

Functions

Video capture hardware

Digital video capture minidriver (USB/1394)

Analog video capture minidriver (PCI/VPE)

Stream class

IRTPPDControl

Optional RTP Packetization Descriptor Pin

Optional Compressed Still-Image Pin

IProgressiveRefinement

INetworkStats

IBitrateControl

ICPUControl

Format

Change

IFrameRateControl

ICPUControl

IFrameRateControl

ICPUControl

IAMVfwCaptureDialogs

Capture Pin

TAPI MSP

Video Encoder Filter

Capture

video data

Preview

video data

IRTPPDControl

Frame Rate

Control

Size

Change

Format

Change

Frame Rate

Control

Size

Change

Format

Change

Smart

Tee

Optional RTP Packetization Descriptor Pin

Optional Compressed Still-Image Pin

IProgressiveRefinement

INetworkStats

IBitrateControl

ICPUControl

ICPUControl

IFrameRateControl

VfW

Video

Capture

Driver

IRTPPDControl

Preview Pin

TAPI MSP

Video Renderer

Sink Filter

IAMVfwCaptureDialogs

IAMVideoProcAmp

IAMCameraControl

IAMVideoControl

IH245VideoCapability

IH245EncoderCommand

IProgressiveRefinement

INetworkStats

IBitrateControl

ICPUControl

IFrameRateControl

TAPI MSP Video Capture Filter

RTP Packetization Descriptor Pin

Packetization

descriptor data

Compressed

video data

Preview

video data

TAPI MSP Video Capture Filter

H.26x

Encoding

Frame Rate

Control

Size

Change

Format

Change

Size

Change

Frame Rate

Control

Format

Change

Smart

Tee

VfW

Video

Capture

Driver

H.263 Video I-Frame

Payload header - F=0, P=0, SBIT=007, EBIT=000, SRC=011, R=00000, I=1, A=0, S=0, DBQ=00, TRB=000, TR=00000000

Payload header - F=0, P=0, SBIT=000, EBIT=001, SRC=011, R=00000, I=1, A=0, S=0, DBQ=00, TRB=000, TR=00000000

0x00806038

0x00806001

0x00806000

dwThisHeaderLength………………….40

dwPayloadHeaderOffset……….124

dwPayloadHeaderLength…………….4

dwPayloadStartBitOffset21247

dwPayloadEndBitOffset….26031

fEndMarkerBit………………………………….1

dwLayerId…………………………………………..0

dwTimestamp……………………………………..0

dwVideoAttributes……………………..0

dwReserved………………………………………..0

dwThisHeaderLength………………….40

dwPayloadHeaderOffset……….120

dwPayloadHeaderLength…………….4

dwPayloadStartBitOffset10784

dwPayloadEndBitOffset….21246

fEndMarkerBit………………………………….0

dwLayerId…………………………………………..0

dwTimestamp……………………………………..0

dwVideoAttributes……………………..0

dwReserved………………………………………..0

RTP_PD

RTP_PD

RTP_PD_HEADER

dwThisHeaderLength………………….40

dwPayloadHeaderOffset……….116

dwPayloadHeaderLength…………….4

dwPayloadStartBitOffset……….0

dwPayloadEndBitOffset….10783

fEndMarkerBit………………………………….0

dwLayerId…………………………………………..0

dwTimestamp……………………………………..0

dwVideoAttributes……………………..0

dwReserved………………………………………..0

Payload header - F=0, P=0, SBIT=000, EBIT=000, SRC=011, R=00000, I=1, A=0, S=0, DBQ=00, TRB=000, TR=00000000

RTP_PD

dwThisHeaderLength……………………16

dwTotalByteLength………………..128

dwNumHeaders………………………………..…3

dwReserved………………………………………….0

IRTPPDControl

WDM

Video

Capture

Driver

32-bit VfW capture driver (.SYS)

IRTPPDControl

Optional RTP Packetization Descriptor Pin

ICPUControl

IFrameRateControl

TAPI MSP Network Send Filter

TAPI MSP Video Renderer Filter

TAPI MSP

TAPI MSP Video

Capture

Filter

TAPI MSP

Video Capture Source Filter

Compressed Video Pin

Optional Compressed Still-Image Pin

RTP Packetization Descriptor Pin

IH245EncoderCommand

IProgressiveRefinement

INetworkStats

IBitrateControl

ICPUControl

IFrameRateControl

IProgressiveRefinement

INetworkStats

IBitrateControl

ICPUControl

IAMCrossbar

IAMVideoProcAmp

IAMCameraControl

IAMVideoControl

IH245VideoCapability

TAPI MSP

Network Send

Sink Filter

TAPI MSP

Video Renderer

Sink Filter

Preview Pin

Preview Pin

TAPI MSP Video Capture Filter

TAPI MSP

Video Renderer

Sink Filter

Size

Change

Frame Rate

Control

Format

Change

Size

Change

Frame Rate

Control

H.26x

Encoding

Preview

video data

Compressed

video data

Packetization

descriptor data

TAPI MSP

Network Send

Sink Filter

TAPI MSP

Video Capture Source Filter

Compressed Video Pin

RTP Packetization Descriptor Pin

IH245EncoderCommand

IProgressiveRefinement

INetworkStats

IBitrateControl

ICPUControl

IFrameRateControl

IAMVideoProcAmp

IAMCameraControl

IAMVideoControl

IH245VideoCapability

TAPI MSP

Video Renderer

Sink Filter

Preview Pin

IRTPPDControl

ICPUControl

IFrameRateControl

TAPI MSP Video Capture Filter

32-bit VfW capture driver (.DLL)

WDM

Video

Capture

Driver

Format

Change

Size

Change

Frame Rate

Control

Format

Change

Size

Change

Frame Rate

Control

Preview

data

Capture

data

TAPI MSP

Network Send

Sink Filter

TAPI MSP

Video Capture Source Filter

Compressed Video Pin

RTP Packetization Descriptor

 Pin

IH245EncoderCommand

IProgressiveRefinement

INetworkStats

IBitrateControl

ICPUControl

IAMVideoProcAmp

IAMCameraControl

IAMVideoControl

IH245VideoCapability

TAPI MSP

Video Renderer

Sink Filter

Preview Pin

IRTPPDControl

TAPI MSP

Video Encoder Filter

Capture Pin

IAMVideoProcAmp

IAMCameraControl

IAMVideoControl

IFrameRateControl

ICPUControl

IFrameRateControl

ICPUControl

TAPI MSP

Video Capture

Filter

TAPI MSP Network Send Filter

TAPI MSP Video Renderer Filter

TAPI MSP

QCAP

Code

+

Functions

32 bit

DCAP32.DLL

16 bit

Video capture hardware

Thunks

16-bit VfW capture driver

DCAP16.DLL

ICPUControl

IRTPPDControl

Optional RTP Packetization Descriptor Pin

Optional Compressed Still-Image Pin

IProgressiveRefinement

INetworkStats

IBitrateControl

ICPUControl

TAPI MSP

Video Capture

Filter

DCAP32.DLL

TAPI MSP Network Send Filter

TAPI MSP Video Renderer Filter

TAPI MSP

QCAP

Code

+

Functions

User mode

Kernel mode

Video capture hardware

Still-Image Pin

Compressed

still-image data

Size

Change

IRTPPDControl

Optional RTP Packetization Descriptor Pin

Optional Compressed Still-Image Pin

IProgressiveRefinement

INetworkStats

IBitrateControl

ICPUControl

Packetization

descriptor data

H.26x

Encoding

Format

Change

IAMVideoProcAmp

IAMCameraControl

IAMVideoControl

IH245VideoCapability

IH245EncoderCommand

IProgressiveRefinement

INetworkStats

IBitrateControl

ICPUControl

RTP Packetization Descriptor

 Pin

Compressed Video Pin

TAPI MSP

Video Capture Source Filter

TAPI MSP

Network Send

Sink Filter

Capture

still-image data

IRTPPDControl

Size

Change

Format

Change

Compressed Video Pin

TAPI MSP

Video Capture Source Filter

TAPI MSP

Network Send

Sink Filter

Packetization

descriptor data

Compressed

still-image data

H.26x

Encoding

Size

Change

Format

Change

Still-image

data

Size

Change

Format

Change

Microsoft Corporation Company Confidential

2/28/99 Draft - Microsoft Corporation Company Confidential 3:48 PM

