Microsoft® TAPI® Video Decoder Filter
Streams and Interfaces
Design Specification – Draft

Author: Philippe Ferriere, Michael VanBuskirk
Revision 0.4.134, 26 June, 1999
This documentation is an early release of the final product documentation. It is meant to accompany software that is still in development. Some of the information in this documentation may be inaccurate or may not be an accurate representation of the functionality of the final retail product. Microsoft assumes no responsibility for any damages that might occur either directly or indirectly from these inaccuracies.
41.
Introduction

1.1
Intended audience
4
1.2
Conventions
5
1.3
Document organization
5
2.
Definition of terms
5
3.
TAPI incoming video architecture
9
3.1
TAPI 3.0 overview
9
3.2
Call and media controls
10
3.2.1
TAPI 3.0 COM object
11
3.2.2
TAPI server
11
3.2.3
Call control functions
11
3.2.4
Media control functions
11
3.3
Incoming video filter graph
11
4.
Video decoder filter streams
12
4.1
Video decoder filter RTP packetized input stream
13
4.2
Video decoder filter video output stream
13
5.
Video decoder filter stream formats
13
5.1
Media type for RTP-packetized H.26x compressed video and still-image input streams
14
5.2
Video info header structure for RTP-packetized H.263 video streams
15
5.3
Video info header structure for RTP-packetized H.261 video streams
16
5.4
Bitmap info header structure for RTP-packetized H.263 video streams
16
5.5
Bitmap info header structure for RTP-packetized H.261 video streams
20
5.6
RTP-packetized data format
21
6.
H.245 command outgoing interface
21
6.1
IVideoChannelControl interface
22
6.2
VideoFastUpdatePicture method
22
6.3
VideoFastUpdateGOB method
23
6.4
VideoFastUpdateMB method
23
6.5
videoSendSyncEveryGOB and videoSendSyncEveryGOBCancel commands
24
6.6
VideoNotDecodedMBs method
25
7.
Uncompressed video output pin TAPI interfaces
25
7.1
IH245DecoderCommand interface
26
7.1.1
videoFreezePicture method
26
7.1.2
Other picture freeze and release requests
26
7.2
ICPUControl interface
26
7.2.1
SetMaxProcessingTime method
27
7.2.2
GetMaxProcessingTime method
27
7.2.3
SetMaxCPULoad method
28
7.2.4
GetMaxCPULoad method
28
7.3
IFrameRateControl interface
29
7.3.1
SetMaxFrameRate method
29
7.3.2
GetMaxFrameRate method
30
8.
Uncompressed still-image output pin TAPI interfaces
30
8.1
IH245DecoderCommand interface
30
8.2
ICPUControl interface
31
9.
RTP-packetized compressed video input pin TAPI interfaces
31
9.1
IBitrateControl interface
31
9.1.1
SetMaxBitrate method
31
9.1.2
GetMaxBitrate method
32
9.2
IFrameRateControl interface
32
10.
Video decoder filter application interfaces
33
10.1
IAMVideoProcAmp interface
33
10.1.1
VideoProcAmpProperty enumerated data type
33
10.1.2
VideoProcAmpFlags enumerated data type
34
10.1.3
GetRange method
35
10.1.4
Set method
36
10.1.5
Get method
36
10.2
IAMCameraControl interface
37
10.2.1
CameraControlProperty enumerated data type
37
10.2.2
CameraControlFlags enumerated data type
38
10.2.3
GetRange method
39
10.2.4
Set method
39
10.2.5
Get method
40
10.3
IAMVideoControl interface
41
10.3.1
VideoControlFlags enumerated data type
41
10.3.2
GetCaps method
41
10.3.3
SetMode method
42
10.3.4
GetMode method
43
11.
Video decoder filter H.245 video capabilities
43
11.1
Standard Codec addition or replacement
44
11.2
Non-standard codec support
44
11.2.1
Interpretation facilities provided by the installed codec filter
45
11.2.2
Capability resolution/channel open mechanism
45
11.3
IH245VideoCapability interface
46
11.3.1
NegotiatedVideoLimit enumerated data type
47
11.3.2
VideoResourceBounds structure
47
11.3.3
H245VideoCapabilityMap structure
48
11.3.4
H245VideoCapabilityTable structure
48
11.3.5
GetH245VersionID method
49
11.3.6
GetFormatTable method
49
11.3.7
ReleaseFormatTable method
50
11.3.8
IntersectFormats method
50
11.3.9
GetLocalFormat method
51
11.3.10
GetNegotiatedLimitProperty method
52
11.3.11
ReleaseNegotiatedCapability method
52
11.3.12
SetIDBase method
53
11.3.13
FindIDByRange method
53
12.
References
54
12.1
TAPI 3.1 Specifications
54
12.2
DirectShow SDK articles and documentation
54
12.3
ITU communications standards
54
12.4
IETF Request for comments
54

1. Introduction

H.26x video decoders differ from traditional Microsoft® Windows® desktop video codecs:

· They operate over unreliable communication channels using RTP/UDP/IP (H.323)

· They usually have many modes of operation (H.263 options)

· They may need to handle or generate call control specific (H.245) commands

· They may implement different decoding algorithms in order to adapt their CPU usage

Like over desktop video decoders, they need to operate in real-time. In order to support all of the above features in the Microsoft® TAPI®
 environment, this document describes video decoder implementation requirements. The TAPI incoming video stack relies on video decoders to expose RTP-packetized compressed video and still-image input pins, and uncompressed video output pins using the DirectShow model. The video decoder shall present its input pins to the network source filter and be able to reassemble and decompress raw RTP packets, to deliver uncompressed video frames to the downstream render filter(s).

We define a new H.245 command interface to communicate picture freeze requests to the compressed video output pin of a video decoder filter. We also define an H.245 command outgoing interface to allow the video input pin of a video decoder to issue H.245 commands such as requests for I-frame, group of blocks, or macro-block updates due to packet loss.

We describe extended bitmap info headers for H.261 and H.263 video streams to retrieve from the compressed video input pin a list of optional mode of compressions supported by the decoder.

Video decoders may also expose interfaces to allow users to control video quality settings such as brightness, contrast, hue, saturation, gamma and sharpness, provided that the video decoder is capable of applying the necessary post-processing operators. They may also expose an interface to simulate camera control functionality such as pan, tilt and zoom.

Video decoders shall be able to control their decompressed output pin to reach target frame rate values provided dynamically by other streaming TAPI components. Those frame rates may be lower or higher than the frame rate at which video frames are coming from the network. The video decoder shall be able to handle those upsampling or downsampling operations while streaming, without stopping the streams. Video decoders should also try and control their CPU usage to decode a video frame within bounds (decoding time, and CPU load) provided by other monitoring TAPI components.

Finally, video decoders shall implement a new H.245 capability interface. This interface provides the TAPI TSP/MSP call control components with information needed to resolve capabilities, and in the case of non-standard codecs, with facilities to interpret non-standard capability data.

1.1 Intended audience

The reader should have a good understanding of the DirectShow model and its operation, as well as ITU-T standards H.245, H.261 and H.263.

1.2 Conventions

In this document the following conventions are used:

· "Shall" indicates a mandatory requirement,

· "Should" indicates a suggested but optional course of action,

· "May" indicates an optional course of action rather than a recommendation that something take place.

References to Sections, Paragraphs, Annexes, and Appendices refer to those items within this specification unless another document is explicitly listed.

1.3 Document organization

Section 2 of this document defines the terms used in this video decoder filter specification.

Section 3 provides background information on the TAPI MSP and its graph building operation.

Section 4 discusses the streams used and produced by the video decoder filter.

Section 5 describes the format structures used to describe the streams handled by the video decoder filter.

Section 6 introduces an H.245 command outgoing interface and the mechanism used to allow the RTP-packetized input pin of the decoder filter to use this interface.

Sections 7 and 8 detail the H.245 command incoming interface (section 7.1), as wells as CPU control (section 7.2), and frame rate control (section 7.3) interfaces exposed by the uncompressed output pins of the video decoder filter.

Section 9 presents the interfaces exposed by the RTP-packetized compressed video input pin of the video decoder filter to retrieve information on the bitrate (section 9.1) and frame rate (section 9.2) of the incoming video data.

Section 10 presents the interfaces exposed by the video decoder filter to set video quality settings (section 10.1) and simulated camera control capabilities (sections 10.2 and 10.3).

Section 11 describes the H.245 video capability interface exposed by the video decoder filter to enumerate, translate and compare video formats.

2. Definition of terms

Codec: Coder/Decoder. A filter for data that manipulates it in some form, usually by compressing or decompressing the data stream.

Component Object Model (COM): The OLE object-oriented programming model that defines how objects interact within a single process or between processes. In COM, clients have access to an object through interfaces implemented on the object. See also Interface.

COM Object: An object that conforms to the OLE Component Object Model (COM). A COM object is an instance of an object definition, which specifies the object's data and one or more implementations of interfaces on the object. Clients interact with a COM object only through its interfaces. See also Component Object Model and Interface.

Decoder Filter: A specialized type of transform filter. Decoder filters (decompressors) accept compressed data, use a decompression algorithm to transform the data, and pass the uncompressed data downstream.

DirectShow: Microsoft® DirectShow™ (formerly called Microsoft® ActiveMovie™) is a media-streaming architecture for the Microsoft® Windows® platform that enables the high-quality capture and playback of multimedia streams.

Downstream Filter: The next filter in line to receive data from an upstream filter. An upstream filter sends data from its output pin to the connected input pin of the downstream filter.

Encoder Filter: A specialized type of transform filter. Encoder filters (compressors) accept data, use a compression scheme to transform the data, and pass the compressed data downstream.

Filter: A key component in the DirectShow architecture, a filter is a COM object that supports DirectShow interfaces or base classes. It might operate on streams of data in a variety of ways, such as reading, copying, modifying, or writing the data to a file. Sources, transform filters, and renderers are all particular types of filters. A filter contains pins that it uses to connect to other filters.

Filter Graph: A collection of filters. Typically, a filter graph contains filters that are connected to perform a particular operation, such as playing back a media file, or capturing video from a VCR to the hard disk.

Format Type: A GUID value that indicates what a format block contains. DirectShow defines a number of major types, for example, the video type. These major types have a format block, such as VIDEOINFOHEADER, that describes the media data. The format block for a particular media type is specified by a GUID in the AM_MEDIA_TYPE structure. This GUID is called the format type. If the format block contains VIDEOINFOHEADER, the format type GUID will be FORMAT_VideoInfo.

GOB: Group-Of-Blocks. In H.263, a GOB consists of a row of k*16 lines with k=1 for sub-QCIF, QCIF and CIF, k=2 for 4CIF and k=4 for 16CIF; thus there are 6GOBs for sub-QCIF, 9 for QCIF, and 18 for CIF, 4CIF, and 16CIF. Data for each GOB consists of a GOB header (which may be empty) followed by data for each of the macroblocks (MBs) contained in a GOB.

GUID: A globally unique identifier used to uniquely identify objects, such as interfaces and plug-in distributors. Class identifiers (CLSIDs) and interface identifiers (IIDs) are GUIDs.

H.245: ITU Recommendation H.245. This Recommendation specifies syntax and semantics of terminal information messages as well as procedures to use them for in-band negotiation at the start of or during communication. The messages cover receiving and transmitting capabilities as well as mode preference from the receiving end, logical channel signaling, and Control & Indication. Acknowledged signaling procedures are specified to ensure reliable audiovisual and data communication.

H.261: ITU Recommendation H.261. This Recommendation describes the video coding and decoding methods for the moving picture component of audiovisual services at the rates of px64 kbit/s, where p is in the range 1 to 30.

H.263: ITU Recommendation H.263. This Recommendation specifies a coded representation that can be used for compressing the moving picture component of audio-visual services at low bit rates. The basic configuration of the video source coding algorithm is based on Recommendation H.261 and is a hybrid of inter-picture prediction to utilize temporal redundancy and transform coding of the remaining signal to reduce spatial redundancy. The source coder can operate on five standardized video source formats. The decoder has motion compensation capability, allowing optional incorporation of this technique in the coder. Half pixel precision is used for the motion compensation, as opposed to Recommendation H.261 where full pixel precision and a loopfilter are used. Variable length coding is used for the symbols to be transmitted. In addition to the basic video source coding algorithm, negotiable coding options are included for improved compression performance and the support of additional capabilities. Additional supplemental information may also be included in the bitstream for enhanced display capability and for external usage.

In-Process Server: A server implemented as a DLL that runs in the process space of the client. See also Out-of-process server, Local server, and Remote server.

Input Pin: A pin that accepts data into the filter.

Interface: A group of semantically related functions that provide access to a COM object. Each OLE interface defines a contract that allows objects to interact according to the Component Object Model (COM). See also Component Object Model and COM object.

ITU: International Telecommunication Union.

Keyframe: A frame of video data that contains all the data necessary to construct that frame. In contrast, delta frames contain data relating to changes from the last keyframe and do not contain enough information by themselves to construct a complete frame.

Major Type: A GUID value that describes the overall class of media data for a data stream. Typical values are MEDIATYPE_Video, MEDIATYPE_Audio, MEDIATYPE_Text, and MEDIATYPE_Midi.

MB: Macroblock. In H.263, like in MPEG1-2, it consists of a 16x16 block of Y, and corresponding 8x8 blocks of each of the two chrominance components.

Method: A predefined interface function.

Minor Type: See subtype (media type).

MSP: Media Service Provider. A component in TAPI that handles media streams.

Out-Of-Process Server: A server, implemented as an .EXE application, which runs outside the process of its client, either on the same machine or a remote machine. See also Local server and Remote server.

Output Pin: A pin that provides data to other filters.

Payload Data: The data transported by RTP in a packet for example compressed video data.

Payload Header: For H.263 and H.261 RTP packets, the RTP fixed header is followed by the payload header, itself followed by the payload data.

Pin: A COM object created by the filter that represents a point of connection for a data stream on the filter. Pins provide interfaces to connect with other pins and transport data. Input pins accept data into the filter, and output pins provide data to other filters. An input pin typically exposes the IPin and IMemInputPin interfaces. An output pin typically exposes the IPin, IMediaSeeking, and IQualityControl interfaces. A source filter provides one output pin for each stream of data in the file. A typical transform filter, such as a compression/decompression (codec) filter, provides one input pin and one output pin.

Presentation Time: The stream time at which the packets of data that a filter receives should be presented downstream or rendered. When a filter graph runs, each filter is passed a start time according to the reference clock, and the packets of data that a filter receives will usually be time-stamped with the presentation time.

Renderer: A filter that renders media data to any location that accepts media input. Most often, data is rendered to a computer monitor, sound card, or printer. Renderer filters have only input pins.

Remote Server: A server application, implemented as an EXE, running on a different machine from the client application using it. See also In-process server, Local server, and Out-of-process server.

RTP: Real-Time Transport Protocol. RTP provides end-to-end network transport functions suitable for applications transmitting real-time data, such as audio, video or simulation data, over multicast or unicast network services.

Source Filter: A filter that takes data from some source such as the hard drive, network, or the Internet, and introduces it into the filter graph.

Stream: A stream is identical to a DirectShow pin. A stream can accept data from or supply data to the processor, such as a stream representing an H.263 input, or can simply route data through hardware, such as a stream representing an NTSC output jack on the back of an adapter.

Subtype (media type): A GUID value that describes the specific format of media data for a data stream. Typical values include MEDIASUBTYPE_MJPG, MEDIASUBTYPE_RGB8, MEDIASUBTYPE_RGB565, MEDIASUBTYPE_MPEGPacket, MEDIASUBTYPE_Avi, and MEDIASUBTYPE_WAVE.

TAPI: Telephony API. TAPI is a set of APIs that enable applications to make PSTN and IP phone calls.

Time Stamp: Time on a media sample indicating when it was recorded and when it should be scheduled for playback. Time stamps are measured in 100-nanosecond units (REFERENCE_TIME) and are normalized so that zero indicates when the graph is run.

Transform Filter: A filter that takes data, processes it, and then passes it along to the next filter in the filter graph.

Transform-Inplace Filter: A transform filter that can perform its operation in place (without copying data or altering the data's media type).

Transport: The mechanism that channels audio data, video data, or both from an external device to the computer and from the computer to the external device.

Upstream Filter: The filter that passes data from its output pin to the connected input pin of the next filter in the filter graph.

3. TAPI incoming video architecture

This section provides an overview of TAPI’s video receive, decoding and rendering data path under the Windows 98 and Windows NT 5.0 operating systems.

3.1 TAPI 3.0 overview

TAPI version 3.0 is a set of COM-based APIs providing convergence of both traditional telephony and IP (Internet Protocol) Telephony.

IP Telephony enables voice, data and video collaboration over existing LANs, WANs and the Internet. TAPI 3.0 implements IP Telephony on the Windows platforms by providing simple and generic methods for making connections between two or more machines.

TAPI 3.0 supports standards-based H.323 conferencing and IP Multicast conferencing, utilizing the Windows NT 5.0 Active Directory service to simplify deployment within an organization. Quality-of-service (QoS) support is included to improve conference quality and network manageability. Media stream access is provided through DirectShow filters.

TAPI 3.0 PSTN and IP functionality is provided by three main sections: call and media controls, media stream controls, and directory controls. The following diagram illustrates how these controls interact with the telephone and IP networks.

[image: image1.png]Call MediaStream Directory

Conol Conrol Conil
call ortra
Tapi 21
—
(C AP TAPI 3.0 (COM API) LDAP
& Telophony Media
Senice Stream <3
Provider Provider E;s:‘
Inferface Interface
Tap! Server s s Directory
DI 3 W2.23 |[Unimodem| [1P WG
Unimodern| Proxy 323 Multicast MSP MSP MSP
DirectShaw Streaming Fifler Graph
Aol
RTP Coder fedl e
rimodem|| NDIS50 Windows Sackes 2
Drver || _Miniport

o
é

Modem ATHISDN NC

NC

3.2 Call and media controls

Call and media controls are a simple and generic set of methods for making calls between two or more machines. In the context of TAPI 3.0, the word call refers not just to voice transmission over the public switched telephone network (PSTN) but to any medium capable of transferring content.

TAPI 3.0 provides access to the media being transmitted through the use of DirectShow.

TAPI 3.0 abstracts both call and media functionality to allow different, and seemingly incompatible, communication protocols to expose a common interface to applications. Because TAPI 3.0 is based on the Component Object Model (COM), applications may be written in any language. Some interface methods may not be available to scripting languages such as VBScript.

TAPI 3.0 call and media controls involve four primary sets of code: the TAPI 3.0 COM objects, the TAPI Server, Telephony Service Providers (TSPs), and Media Service Providers (MSPs).

3.2.1 TAPI 3.0 COM object

For background information on TAPI 3.0 COM objects, see the article titled Telephony Application Programming Interface, in the Platform SDK Documentation.

3.2.2 TAPI server

TAPI 3.0 is implemented as an in-process server and uses TAPISRV.EXE to perform telephony operations, thus making TAPI 3.0 applications compatible with all TAPI 2.1 service providers. The TAPI Server process (TAPISRV.EXE) abstracts TSPI (Telephony Service Provider Interface) from TAPI 3.0 and TAPI 2.1 and maintains the internal state of TAPI.

Additional information concerning the TAPI Server and TSPI can be found in the article titled Telephony Application Programming Interface, in the Platform SDK Documentation.

3.2.3 Call control functions

Call-control functions are provided by a TSP. The TAPI 2.1 client/server relationship with remote service providers is supported. Telephony Service Providers are responsible for translating the protocol-independent call model of TAPI into protocol-specific call setup and teardown, on a service-by-service basis. TAPI 3.0 has backward compatibility with TAPI 2.1 TSPs. Two new IP Telephony Service Providers (and their associated Media Service Providers) ship by default with TAPI 3.0: the H.323 TSP and the IP Multicast Conferencing TSP.

Additional information concerning Telephony Service Providers can be found in the article titled Telephony Application Programming Interface, in the Platform SDK Documentation.

3.2.4 Media control functions

Media control functions are provided by an MSP that implements the DirectShow interfaces for a particular provider. Media Service Providers are required for any telephony service that makes use of DirectShow media streaming.

3.3 Incoming video filter graph

The following illustration shows what DirectShow filters the MSP typically connects in a filter graph to provide the incoming video functionality, and the interfaces the MSP Video Decoder Filter and its output pin expose to the MSP in order to provide the control functionality described in the next sections:

The H.245 command outgoing interface exposed by the TAPI MSP Channel Controller module, and the mechanisms used to allow the RTP-packetized compressed input pins to use it are detailed in section 6. The uncompressed video and still-image output pin interfaces are described in sections 7 and 8. The RTP-packetized compressed video input pin interfaces are discussed in section 9. The video decoder filter interfaces are explained in section 10. The H.245 video capability interface is presented in section 11.

4. Video decoder filter streams

Fundamentally, a video decoder filter designed to be used by the TAPI MSP, provides one type of output streams, and takes in one kind of input stream. An input stream contains RTP-packetized compressed video or still-image data. An output stream generates uncompressed video data or uncompressed still-image data.

4.1 Video decoder filter RTP packetized input stream

The data gathered from the output pin of the network sink filter is typically composed of multiple RTP packets (H.323). The video decoder filter shall reassemble those RTP packets and extract the relevant video data. If packets are missing (non-continuous RTP sequence number), the video codec is free to use any error recovering technique, or issue the appropriate update request, via an H.245 command, to compensate for the loss. The RTP-packetized compressed video input pin of the video decoder filter can be used to receive either video data or high-resolution still images using H.245’s progressive refinement mode.

Optionally, the video decoder may expose a dedicated input pin used to collect RTP-packetized still-image data, in order to render high-resolution snapshots in a separate video window.

The RTP-packetized compressed video and still-image input streams are almost identical in terms of data formats and stream characteristics. Both provide RTP packetized compressed digital image data.

4.2 Video decoder filter video output stream

The video decoder exposes a video output pin to be connected to a render sink filter. This output pin shall provide video data in uncompressed form, such as RGB8 or RGB16. It may also generate data in a DirectDraw friendly YUV packed format such as YUY2 or UYVY.

The video output pin can be used to render video or progressive still-image data. Optionally, the video decoder may expose a dedicated still-image output pin. This pin will be connected to an other instance of the video render filter, allowing snapshots to be displayed in a separate window.

The uncompressed video and still-image output streams are identical in terms of data formats and stream characteristics. Both provide uncompressed digital image data that can be efficiently rendered.

5. Video decoder filter stream formats

Stream types are described in DirectShow using the AM_MEDIA_TYPE structure. This structure includes GUID fields for majortype, subtype and formattype as well as fields specifying other sample features. It is defined as follows:

typedef struct _MediaType

{

 GUID majortype;

 GUID subtype;

 BOOL bFixedSizeSamples;

 BOOL bTemporalCompression;

 ULONG lSampleSize;

 GUID formattype;

 IUnknown *pUnk;

 ULONG cbFormat;

 /* [size_is] */ BYTE __RPC_FAR *pbFormat;

} AM_MEDIA_TYPE;

The following describes the AM_MEDIA_TYPE members.

majortype

Specifies the major type of the stream.

subtype

Specifies the subtype of the stream.

bFixedSizeSamples

Specifies that all the samples are the same size if set to TRUE.

bTemporalCompression

Specifies that each sample is a synchronization point (keyframe) if set to FALSE.

lSampleSize

Specifies the maximum size of the samples in bytes.

formattype

Specifies the format type of the stream.

pUnk

Specifies a pointer to the IUnknown interface.

cbFormat

Specifies the size of the format section of the media type.

pbFormat

Specifies a pointer to the format section of the media type.

5.1 Media type for RTP-packetized H.26x compressed video and still-image input streams

For RTP-packetized H.26x compressed video and still-image streams, the majortype type is MEDIATYPE_Video, and the formattype is set to FORMAT_VideoInfo. The subtype, along with the Format block, is used to convey details of the particular video data type.

The low-order four bytes of the subtype shall match the FourCC values used in the BITMAPINFOHEADER.biCompression field of the VIDEOINFOHEADER structure pointed to by the pbFormat field. For example, the following GUID identifies the FourCC (R263) for the RTP-packetized H.263 video format:

33363252-0000-0010-8000-00AA00389B71

 52 = 'R'

 32 = '2'

 36 = '6'

33 = '3'

Here’s a complete list of ITU formats currently supported by TAPI and their associated subtype:

Video Format
FourCC
GUID

ITU H.263 version 1
R263
33363252-0000-0010-8000-00AA00389B71

ITU H.263 version 2
S263
33363253-0000-0010-8000-00AA00389B71

ITU H.261
R261
31363252-0000-0010-8000-00AA00389B71

For all RTP-packetized H.26x compressed video streams, the bFixedSizeSamples and bTemporalCompression fields shall respectively be set to FALSE and TRUE.

5.2 Video info header structure for RTP-packetized H.263 video streams

TAPI defines the VIDEOINFOHEADER_H263 structure to specify details of the video stream. The pbFormat field of the AM_MEDIA_TYPE structure shall point to a structure of the VIDEOINFOHEADER_H263 type, instead of a regular VIDEOINFOHEADER structure, when describing RTP-packetized H.263 video streams.

Note that it is similar to the VIDEOINFOHEADER structure:

typedef struct tagVIDEOINFOHEADER_H263 {

 RECT rcSource;

 RECT rcTarget;

 DWORD dwBitRate;

 DWORD dwBitErrorRate;

 REFERENCE_TIME AvgTimePerFrame;

 BITMAPINFOHEADER_H263 bmiHeader;

} VIDEOINFOHEADER_H263, *PVIDEOINFOHEADER_H263;

where

rcSource

Specifies a RECT structure that defines the source video window.

rcTarget

Specifies a RECT structure that defines the destination video window.

dwBitRate

Specifies a DWORD value that indicates the video stream's approximate data rate, in bits per second.

dwBitErrorRate

Specifies a DWORD value that indicates the video stream's data error rate, in bit errors per second.

AvgTimePerFrame

Specifies a REFERENCE TIME value that indicates the video frame's average display time, in 100-nanosecond units.

bmiHeader

Specifies a BITMAPINFOHEADER_H263 structure that contains detailed format information for the RTP-packetized H.263 video data.

5.3 Video info header structure for RTP-packetized H.261 video streams

TAPI also defines the VIDEOINFOHEADER_H261 structure to specify details of an RTP-packetized H.261 video stream. The pbFormat field of the AM_MEDIA_TYPE structure shall point to a structure of the VIDEOINFOHEADER_H261 type, instead of a regular VIDEOINFOHEADER structure, when describing RTP-packetized H.261 video streams.

Note that it is similar to the VIDEOINFOHEADER structure:

typedef struct tagVIDEOINFOHEADER_H261 {

 RECT rcSource;

 RECT rcTarget;

 DWORD dwBitRate;

 DWORD dwBitErrorRate;

 REFERENCE_TIME AvgTimePerFrame;

 BITMAPINFOHEADER_H261 bmiHeader;

} VIDEOINFOHEADER_H261, *PVIDEOINFOHEADER_H261;

where

rcSource

Specifies a RECT structure that defines the source video window.

rcTarget

Specifies a RECT structure that defines the destination video window.

dwBitRate

Specifies a DWORD value that indicates the video stream's approximate data rate, in bits per second.

dwBitErrorRate

Specifies a DWORD value that indicates the video stream's data error rate, in bit errors per second.

AvgTimePerFrame

Specifies a REFERENCE TIME value that indicates the video frame's average display time, in 100-nanosecond units.

bmiHeader

Specifies a BITMAPINFOHEADER_H261 structure that contains detailed format information for the RTP-packetized H.261 video data.

5.4 Bitmap info header structure for RTP-packetized H.263 video streams

The H.263 specification allows for many compression options. The video decoder filter is responsible to chose what H.263 options to advertise by setting the H.263 specific fields of the extended bitmap info header defined below:

typedef struct tagBITMAPINFOHEADER_H263 {

 // Generic bitmap info header fields

 BITMAPINFOHEADER bmi;

 // H.263 specific fields

 DWORD dwMaxBitrate;

 DWORD dwBppMaxKb;

 DWORD dwHRD_B;

 // Options

 DWORD fUnrestrictedVector:1;

 DWORD fArithmeticCoding:1;

 DWORD fAdvancedPrediction:1;

 DWORD fPBFrames:1;

 DWORD fErrorCompensation:1;

 DWORD fAdvancedIntraCoding:1;

 DWORD fDeblockingFilter:1;

 DWORD fImprovedPBFrames:1;

 DWORD fUnlimitedMotionVectors:1;

 DWORD fFullPictureFreeze:1;

 DWORD fPartialPictureFreezeAndRelease:1;

 DWORD fResizingPartPicFreezeAndRelease:1;

 DWORD fFullPictureSnapshot:1;

 DWORD fPartialPictureSnapshot:1;

 DWORD fVideoSegmentTagging:1;

 DWORD fProgressiveRefinement:1;

 DWORD fDynamicPictureResizingByFour:1;

 DWORD fDynamicPictureResizingSixteenthPel:1;

 DWORD fDynamicWarpingHalfPel:1;

 DWORD fDynamicWarpingSixteenthPel:1;

 DWORD fIndependentSegmentDecoding:1;

 DWORD fSlicesInOrder_NonRect:1;

 DWORD fSlicesInOrder_Rect:1;

 DWORD fSlicesNoOrder_NonRect:1;

 DWORD fSlicesNoOrder_Rect:1;

 DWORD fAlternateInterVLC:1;

 DWORD fModifiedQuantization:1;

 DWORD fReducedResolutionUpdate:1;

 DWORD fReserved:4;

 // Reserved

 DWORD dwReserved[4];

} BITMAPINFOHEADER_H263, *PBITMAPINFOHEADER_H263;

The BITMAPINFOHEADER is the well known GDI bitmap info header structure. It contains information on the video format such as actual image dimensions and the pixel depth. The following list describes the H.263 specific members of BITMAPINFOHEADER_H263:

dwMaxBitrate

Specifies the maximum bit rate in units of 100 bits/s at which the decoder can receive video. This value is valid between 1 and 192400.

dwBppMaxKb

Specifies the maximum number of bits for one coded picture that the decoder can receive and decode correctly, and is measured in units of 1024 bits. This value is valid between 0 and 65535.

dwHRD_B

Specifies the Hypothetical Reference Decoder parameter B as described in Annex B of H.263. This value is valid between 0 and 524287.

fUnrestrictedVector

Specifies that the decoder can receive video data using the unrestricted motion vectors mode as defined in Annex D of H.263.

fArithmeticCoding

Specifies that the decoder can receive video data using the syntax based arithmetic coding mode as defined in Annex E of H.263.

fAdvancedPrediction

Specifies that the decoder can receive video data using the advanced prediction mode as defined in Annex F of H.263.

fPBFrames

Specifies that the decoder can receive video data using the PB-frames mode as defined in Annex G of H.263.

fErrorCompensation

Specifies that the decoder can identify MBs received with transmission errors, treat them as not coded, and send appropriate videoNotDecodedMBs indications.

fAdvancedIntraCoding

Specifies that the decoder can receive video data using the advanced INTRA coding mode as defined in Annex I of H.263.

fDeblockingFilter

Specifies that the decoder can receive video data using the deblocking filter mode as defined in Annex J of H.263.

fImprovedPBFrames

Specifies that the decoder can receive video data using the improved PB-frames mode as defined in Annex M of H.263.

fUnlimitedMotionVectors

Specifies that the decoder can receive video data using the unrestricted motion vector range when unrestricted motion vector mode as defined in Annex D of H.263 is also indicated.

fFullPictureFreeze

Specifies that the decoder can receive Full Picture Freeze commands as described in Annex L of H.263.

fPartialPictureFreezeAndRelease

Specifies that the decoder can receive Full Picture Freeze and Release commands as described in Annex L of H.263.

fResizingPartPicFreezeAndRelease

Specifies that the decoder can receive the Resizing Partial Picture Freeze and Release commands as described in Annex L of H.263.

fFullPictureSnapshot

Specifies that the decoder can receive Full Picture snapshots of the video content as described in Annex L of H.263.

fPartialPictureSnapshot

Specifies that the decoder can receive Partial Picture Snapshots of the video content as described in Annex L of H.263.

fVideoSegmentTagging

Specifies that the decoder can receive Video Segment tagging for the video content as described in Annex L of H.263.

fProgressiveRefinement

Specifies that the decoder can receive Progressive Refinement tagging as described in Annex L of H.263. In addition, when true, the encoder shall respond to the progressive refinement miscellaneous commands doOneProgression, doContinuousProgressions, doOneIndependentProgression, doContinuousIndependentProgressions, progressiveRefinementAbortOne, and progressiveRefinementAbortContinuous. In addition, the encoder shall insert the Progressive Refinement Segment Start Tags and the Progressive Refinement Segment End Tags as defined in the Supplemental Enhancement Information Specification (Annex L) of Recommendation H.263. Note, Progressive Refinement tagging can be sent by an encoder and received by a decoder even when not commanded in a miscellaneous command.

fDynamicPictureResizingByFour

Specifies that the decoder supports the picture resizing-by-four (with clipping) submode of the implicit Reference Picture Resampling Mode (Annex P) of H.263.

fDynamicPictureResizingSixteenthPel

Specifies that the decoder supports resizing a reference picture to any width and height using the implicit Reference Picture Resampling mode (Annex P) of H.263 (with clipping). If DynamicPictureResizingSixteenthPel is true then DynamicPictureResizingByFour shall be true

fDynamicWarpingHalfPel

Specifies that the decoder supports the arbitrary picture warping operation within the Reference Picture Resampling mode (Annex P) of H.263 (with any fill mode) using half-pixel accuracy warping.

fDynamicWarpingSixteenthPel

Specifies that the decoder supports the arbitrary picture warping operation within the Reference Picture Resampling mode (Annex P) of H.263 (with any fill mode) using either half-pixel or sixteenth pixel accuracy warping.

fIndependentSegmentDecoding

Specifies that the decoder supports the Independent Segment Decoding Mode (H.263 Annex R) of H.263.

fSlicesInOrder_NonRect

Specifies that the decoder supports the submode of Slice Structured Mode (H.263 Annex K) where slices are transmitted in order and contain macroblocks in scanning order of the picture.

fSlicesInOrder_Rect

Specifies that the decoder supports the submode of Slice Structured Mode (H.263 Annex K) where slices are transmitted in order and the slice occupies a rectangular region of the picture.

fSlicesNoOrder_NonRect

Specifies that the decoder supports the submode of Slice Structured Mode (H.263 Annex K) where slices contain macroblocks in scanning order of the picture and need not be transmitted in order.

fSlicesNoOrder_Rect

Specifies that the decoder supports the submode of Slice Structured Mode (H.263 Annex K) where slices occupy a rectangular region of the picture and need not be transmitted in order.

fAlternateInterVLC

Specifies that the decoder can receive video data using the alternate inter VLC mode as defined in Annex S of H.263.

fModifiedQuantization

Specifies that the decoder can receive video data using the modified quantization mode as defined in Annex T of H.263.

fReducedResolutionUpdate

Specifies that the decoder can receive video data using the reduced resolution update mode as defined in Annex Q of H.263.

fReserved

Reserved. Shall be set to NULL.

dwReserved[4]

Reserved. Shall all be set to NULL.

When the TAPI MSP, or the network upstream filter requests from the RTP-packetized compressed video input pin a list of supported formats, the input pin shall set the H.263 specific fields that it is capable of decoding to TRUE (1). This does not mean that the video decoder filter will necessarily receive data using that H.263 optional mode.

5.5 Bitmap info header structure for RTP-packetized H.261 video streams

The input pin of the video decoder filter shall use the following H.261 video format structure when asked to enumerate its supported input types, to indicate what maximum video bitrate the decoder can receive, and if it is capable of decoding still images as defined in Annex D of H.261:

typedef struct tagBITMAPINFOHEADER_H261 {

 // Generic bitmap info header fields

 BITMAPINFOHEADER bmi;

 // H.261 specific fields

 DWORD dwMaxBitrate;

 BOOL fStillImageTransmission;

 // Reserved

 DWORD dwReserved[4];

} BITMAPINFOHEADER_H261, *PBITMAPINFOHEADER_H261;

The BITMAPINFOHEADER is the well-known GDI bitmap info header structure. It contains information on the video stream such as actual image dimensions and the pixel depth. The following list describes the H.261 specific members of BITMAPINFOHEADER_H261:

dwMaxBitrate

Specifies the maximum bit rate in units of 100 bits/s at which the decoder can receive video. This value is only valid between 1 and 19200.

fStillImageTransmission

Specifies that the decoder can receive still images as defined in Annex D of H.261.

dwReserved[4]

Reserved. Shall all be set to NULL.

When the TAPI MSP, or the network upstream filter requests from the RTP-packetized compressed video input pin a list of supported formats, the fStillImageTransmission field shall be set to TRUE if the pin is capable of decoding still images as described in Annex D of H.261. This does not mean that the video decoder filter will necessarily receive data using that optional mode. The dwMaxBitrate field shall be set to the maximum bitrate in units of 100 bits/s at which the RTP-packetized compressed video input pin can receive video data.

5.6 RTP-packetized data format

The TAPI MSP network source filter delivers raw RTP packets to the decoder filter. The input pin of the decoder filter is responsible for re-assembling RTP packets and extract the meaningful video or still-image data they contain. The input pin may chose to copy the content of the incoming packets into some of its own internal buffers and immediately return the packet to the upstream filter, until it gets an RTP packet with the end marker bit set, which signals the end of a frame. At that point, the decoder filter can decompress the entire video frame and deliver it on its output pin. It may also decide to lock the intermediary packets instead of copying them. In this case, the input pin shall release all the locked RTP packets after it has received the RTP packet with the end marker bit set. The decoder filter should not wait for the last RTP fragment of a video frame before starting decoding the video data that has already been received in the previous RTP packets.

If the decoder supports layered encoding, it shall re-assemble packets from the different streams on one unique input pin. There is no need to expose an RTP-packetized compressed video input pin for each of the compressed layers. The input pin shall look at the SSRC field of the header of the RTP packet and the content of the video data to identify packets that belong to different encoding layers.

6. H.245 command outgoing interface

The TAPI MSP Channel Controller exposes the IVideoChannelControl outgoing interface to the RTP-packetized input pin of the video decoder filter. This pin may call upon this interface to send H.245 commands such as requests for I-frame, group of blocks, or macro-block updates to the remote sending endpoint.

The flow control and temporal/spatial trade-off commands, as well as request mode messages are sent to the remote endpoint by the TAPI MSP, following a request from the application. The video decoder filter is not involved in the generation of those commands.

The TAPI MSP calls IPin::QueryInterface on the RTP-packetized input pin to get an interface pointer to the IConnectionPointContainer interface. It then uses this interface to find a connection point object for the IVideoChannelControl interface. If the RTP-packetized input pin supports this outgoing interface, it needs to return a pointer to the IConnectionPoint interface. Finally, the TAPI MSP calls IConnectionPoint::Advise to pass a pointer to the IVideoChannelControl interface to the input pin. The RTP-packetized input pin may then start using this outgoing interface to send H.245 commands to the remote sending endpoint.

6.1 IVideoChannelControl interface

H.245 commands exist for various purposes. Fast update requests are generally issued when source switching occurs in multipoint applications, or packet loss was detected.

In order to issue H.245 commands and indications, the TAPI MSP Channel Controller component provides the RTP-packetized compressed video input pin of the decoder filter with a pointer to an IVideoChannelControl interface containing, among others, the following relevant methods:

VideoFastUpdadePicture

Used to command the remote encoder to enter the fast-update mode at its earliest opportunity.

VideoFastUpdateGOB

Used to command the remote encoder to perform a fast update of one or more GOBs.

VideoFastUpdateMB

Used to command the remote encoder to perform a fast update of one or more MBs.

VideoSendSyncEveryGOB

Used to command the remote encoder to use sync for every GOB as defined in H.263.

VideoSendSyncEveryGOBCancel

Used to command the remote encoder to decide the frequency of GOB syncs.

VideoNotDecodedMBs

Used to indicate to the remote encoder that a set of MBs has been received with errors and that any MB in the specified set has been treated as not coded.

6.2 VideoFastUpdatePicture method

The videoFastUpdatePicture H.245 command is used to specify to the remote encoder to enter the fast-update mode at its earliest opportunity. The VideoFastUpdatePicture method is declared as follows:

HRESULT VideoFastUpdatePicture()

This method returns an HRESULT value that depends on the implementation of the interface. HRESULT can include one of the following standard constants, or other values not listed:

HRESULT
Meaning

E_FAIL
Failure

E_NOTIMPL
Method is not supported

NOERROR
No error

This command shall be used with all video compression algorithms as a generic way to generate a keyframe (I-frame).

6.3 VideoFastUpdateGOB method

The videoFastUpdateGOB H.245 command is used to specify to the remote encoder to perform a fast update of one or more GOBs. The VideoFastUpdateGOB method is declared as follows:

HRESULT VideoFastUpdateGOB([IN]DWORD dwFirstGOB, [IN]DWORD dwNumberOfGOBs)

where

dwFirstGOB

Specifies the number of the first GOB to be updated. This value is only valid between 0 and 17.

dwNumberOfGOBs

Specifies the number of GOBs to be updated. This value is only valid between 1 and 18.

This method returns an HRESULT value that depends on the implementation of the interface. HRESULT can include one of the following standard constants, or other values not listed:

HRESULT
Meaning

E_FAIL
Failure

E_INVALIDARG
Invalid argument

E_NOTIMPL
Method is not supported

NOERROR
No error

This command shall only be used with video compression algorithms that define GOBs such as H.261 and H.263.

6.4 VideoFastUpdateMB method

The videoFastUpdateMB H.245 command is used to specify to the remote encoder to perform a fast update of one or more MBs. The VideoFastUpdateMB method is declared as follows:

HRESULT VideoFastUpdateMB([IN]DWORD dwFirstGOB, [IN]DWORD dwFirstMB, [IN]DWORD dwNumberOfMBs)

where

dwFirstGOB

Specifies the number of the first GOB to be updated and is only relative to H.263. This value is only valid between 0 and 255.

dwFirstMB

Specifies the number of the first MB to be updated and is only relative to H.261. This value is only valid between 1 and 8192.

dwNumberOfMBs

Specifies the number of MBs to be updated. This value is only valid between 1 and 8192.

This method returns an HRESULT value that depends on the implementation of the interface. HRESULT can include one of the following standard constants, or other values not listed:

HRESULT
Meaning

E_FAIL
Failure

E_INVALIDARG
Invalid argument

E_NOTIMPL
Method is not supported

NOERROR
No error

This command shall only be used with video compression algorithms that define MBs such as H.261 and H.263. The remote encoder may respond to this command with a GOB update which includes the MBs requested.

6.5 videoSendSyncEveryGOB and videoSendSyncEveryGOBCancel commands

The videoSendSyncEveryGOB H.245 command is used to specify to the remote encoder to use sync for every GOB as defined in H.263. Reciprocally, the videoSendSyncEveryGOBCancel command is used to allow the remote encoder to decide the frequency of GOB syncs. To issue these commands, we define the VideoSendSyncEveryGOB method on the IVideoChannelControl interface as follows:

HRESULT VideoSendSyncEveryGOB([IN]BOOL fEnable)

where

fEnable

If set to TRUE, specifies that the remote encoder should use sync for every GOB; if set to FALSE, specifies that the remote encoder should decide the frequency of GOB syncs on its own.

This method returns an HRESULT value that depends on the implementation of the interface. HRESULT can include one of the following standard constants, or other values not listed:

HRESULT
Meaning

E_FAIL
Failure

E_NOTIMPL
Method is not supported

NOERROR
No error

This command shall only be used with video encoded according to H.263.

6.6 VideoNotDecodedMBs method

The videoNotDecodedMBs H.245 indication is used to indicate to the remote encoder that a set of MBs has been received with errors and that any MB in the specified set has been treated as not coded. To generate this indication, we define the VideoNotDecodedMBs method on the IVideoChannelControl interface as follows:

HRESULT VideoNotDecodedMBs([IN]DWORD dwFirstMB, [IN]DWORD dwNumberOfMBs, [IN]DWORD dwTemporalReference)

where

dwFirstMB

Specifies the number of the first MB treated as not coded. This value is only valid between 1 and 8192.

dwNumberOfMBs

Specifies the number of MBs treated as not coded. This value is only valid between 1 and 8192.

dwTemporalReference

Specifies the temporal reference of the picture containing not decoded MBs. This value is only valid between 0 and 255.

This method returns an HRESULT value that depends on the implementation of the interface. HRESULT can include one of the following standard constants, or other values not listed:

HRESULT
Meaning

E_FAIL
Failure

E_INVALIDARG
Invalid argument

E_NOTIMPL
Method is not supported

NOERROR
No error

This remote encoder may use this information to compensate transmission errors, as illustrated in Appendix II of H.263.

7. Uncompressed video output pin TAPI interfaces

The TAPI MSP exposes a few interfaces supported by the uncompressed video output pin directly to the TAPI TSP call control component or the TAPI MSP Quality Controller. The call control component uses the IH245DecoderCommand interface to communicate H.245 commands to the uncompressed video output pin. The Quality Controller uses the ICPUControl interface to initialize and adjust the maximum decoding time per frame and CPU load not be exceeded by the decoder’s decompression algorithm. It uses the IFrameRateControl interface to initialize and regulate the rate at which uncompressed video frames should be generated by the video output pin. This frame rate may be lower or higher than the frame rate at which video frames are coming from the network. The video decoder shall be able to handle those upsampling or downsampling operations while streaming, without stopping the streams.

The TAPI MSP calls QueryInterface on the IPin interface exposed by the video output pin to get pointers to the IH245DecoderCommand, ICPUControl and IFrameRateControl interfaces.

7.1 IH245DecoderCommand interface

In order to handle H.245 commands, the uncompressed video or still-image output pin provides the TAPI call control component with a pointer to an IH245DecoderCommand interface containing the following method:

videoFreezePicture

Used to command the output pin to complete updating the current video frame and subsequently display the frozen picture until receipt of the appropriate freeze-picture release control signal.

7.1.1 videoFreezePicture method

This H.245 command is used to specify to the output pin to complete updating the current video frame and subsequently display the frozen picture until receipt of the appropriate freeze-picture release control signal. The videoFreezePicture method is declared as follows:

HRESULT videoFreezePicture()

This method returns an HRESULT value that depends on the implementation of the interface. HRESULT can include one of the following standard constants, or other values not listed:

HRESULT
Meaning

E_FAIL
Failure

E_NOTIMPL
Method is not supported

NOERROR
No error

7.1.2 Other picture freeze and release requests

The H.263 version 2 specification defined Supplemental Enhancement Information that may be included in the bitstream to signal enhanced display capability or to provide information for external usage (Annex L). This supplemental information can be used to signal a full-picture or partial-picture freeze or freeze-release request with or without resizing.

The Supplemental Enhancement Information is sent in-band using the PSUPP field of the picture layer of H.263. Therefore, there is no other method defined on the IH245DecoderCommand interface for partial-picture freeze or freeze-release request with or without resizing.

The decoder is always free to simply discard any PSUPP information bits that appear in the bitstream, if it does not support any of the requests.

7.2 ICPUControl interface

We also define the ICPUControl interface that video output pins are required to provide in order to receive bounds on the decoding time (latency) and CPU load that should not be exceeded during the decompression process. The methods on this interface are called at the beginning of a call to initialize the maximum CPU load and frame decoding time, and then occasionally by the TAPI MSP Quality Controller during the entire call, whenever an adjustment is deemed necessary. The initial and limit values for the maximum CPU load and frame decoding time are based on user-defined settings provided by the application.

The ICPUControl interface contains the following methods:

SetMaxProcessingTime

Used to specify to the uncompressed video output pin the maximum decoding time per frame, in 100-nanosecond units.

GetMaxProcessingTime

Used to retrieve the maximum decoding time per frame the uncompressed video output pin is currently setup for, in 100-nanosecond units.

SetMaxCPULoad

Used to specify to the uncompressed video output pin the maximum decoding algorithm CPU load.

GetMaxCPULoad

Used to retrieve the maximum decoding algorithm CPU load the uncompressed video output pin is currently setup for.

7.2.1 SetMaxProcessingTime method

This CPU control method is used to specify to the uncompressed video output pin the maximum decoding time per frame. The SetMaxProcessingTime method is declared as follows:

HRESULT SetMaxProcessingTime([IN]REFERENCE_TIME MaxProcessingTime)

where

MaxProcessingTime

Specifies the maximum decoding time per frame, in 100-nanosecond units.

This method returns an HRESULT value that depends on the implementation of the interface. HRESULT can include one of the following standard constants, or other values not listed:

HRESULT
Meaning

E_FAIL
Failure

E_INVALIDARG
Invalid argument

E_NOTIMPL
Method is not supported

NOERROR
No error

7.2.2 GetMaxProcessingTime method

This CPU control method is used to retrieve the maximum decoding time per frame the uncompressed video output pin is currently setup for. The GetMaxProcessingTime method is declared as follows:

HRESULT GetMaxProcessingTime([OUT]REFERENCE_TIME *pMaxProcessingTime)

where

pMaxProcessingTime

Used to retrieve the maximum decoding time per frame the uncompressed video output pin is currently setup for, in 100-nanosecond units.

This method returns an HRESULT value that depends on the implementation of the interface. HRESULT can include one of the following standard constants, or other values not listed:

HRESULT
Meaning

E_FAIL
Failure

E_POINTER
Null pointer argument

E_NOTIMPL
Method is not supported

NOERROR
No error

7.2.3 SetMaxCPULoad method

This CPU control method is used to specify to the uncompressed video output pin the maximum decompression algorithm CPU load. The SetMaxCPULoad method is declared as follows:

HRESULT SetMaxCPULoad([IN]DWORD dwMaxCPULoad)

where

dwMaxCPULoad

Specifies the maximum decoding algorithm CPU load, in percentage units.

This method returns an HRESULT value that depends on the implementation of the interface. HRESULT can include one of the following standard constants, or other values not listed:

HRESULT
Meaning

E_FAIL
Failure

E_INVALIDARG
Invalid argument

E_NOTIMPL
Method is not supported

NOERROR
No error

7.2.4 GetMaxCPULoad method

This CPU control method is used to retrieve the maximum decompression algorithm CPU load the uncompressed video output pin is currently setup for. The GetMaxCPULoad method is declared as follows:

HRESULT GetMaxCPULoad([OUT]DWORD *pdwMaxCPULoad)

where

pdwMaxCPULoad

Used to retrieve the maximum decoding algorithm CPU load the uncompressed video output pin is currently setup for, in percentage units.

This method returns an HRESULT value that depends on the implementation of the interface. HRESULT can include one of the following standard constants, or other values not listed:

HRESULT
Meaning

E_FAIL
Failure

E_POINTER
Null pointer argument

E_NOTIMPL
Method is not supported

NOERROR
No error

7.3 IFrameRateControl interface

The IFrameRateControl interface specifies a target frame rate to the uncompressed video output pin of the decoder filter. This interface is provided for applications that would like to render the uncompressed video frames at a different playback rate than the incoming rate at which they are received from the network. The TAPI MSP Quality Controller may also call upon the methods of this interface based on its monitoring of the current CPU usage.

The IFrameRateControl interface contains the following methods:

SetMaxFrameRate

Used to specify to the uncompressed video output pin the video frame's average display time.

GetMaxFrameRate

Used to retrieve the video frame's average display time uncompressed video output pin are currently setup for.

7.3.1 SetMaxFrameRate method

This frame rate control method is used to specify to the un compressed video output pin the video frame’s average display time. The SetMaxFrameRate method is declared as follows:

HRESULT SetMaxFrameRate([IN] REFERENCE_TIME AvgTimePerFrame)

where

AvgTimePerFrame

Specifies a REFERENCE_TIME value that indicates the video frame's average display time, in 100-nanosecond units.

This method returns an HRESULT value that depends on the implementation of the interface. HRESULT can include one of the following standard constants, or other values not listed:

HRESULT
Meaning

E_FAIL
Failure

E_INVALIDARG
Invalid argument

E_NOTIMPL
Method is not supported

NOERROR
No error

Whenever this method is called, the video decoder output pin shall keep decompressing the incoming video data at its native rate, but generate uncompressed images at a lower or higher frame rate.

7.3.2 GetMaxFrameRate method

This method is used to retrieve the video frame's average display time the uncompressed video output pin is currently setup for. The GetMaxFrameRate method is declared as follows:

HRESULT GetMaxFrameRate([OUT] REFERENCE_TIME *pAvgTimePerFrame)

where

pAvgTimePerFrame

Used to receive a REFERENCE_TIME value that indicates the video frame's average display time, in 100-nanosecond units.

This method returns an HRESULT value that depends on the implementation of the interface. HRESULT can include one of the following standard constants, or other values not listed:

HRESULT
Meaning

E_FAIL
Failure

E_POINTER
Null pointer argument

E_NOTIMPL
Method is not supported

NOERROR
No error

8. Uncompressed still-image output pin TAPI interfaces

The TAPI MSP exposes two interfaces supported by the uncompressed still-image output pin directly to the TAPI TSP call control component or the TAPI MSP Quality Controller. The call control component uses the IH245DecoderCommand interface to communicate H.245 commands to the uncompressed still-image output pin. The Quality Controller uses the ICPUControl interface to initialize and adjust the maximum decoding time per frame and CPU load not be exceeded by the decoder’s decompression algorithm.

The TAPI MSP calls QueryInterface on the IPin interface exposed by the still-image output pin to get pointers to the IH245DecoderCommand, and ICPUControl interfaces.

8.1 IH245DecoderCommand interface

The call control component uses the IH245DecoderCommand interface to communicate H.245 commands to the uncompressed still-image output pin.

See section 7.1 for more information on the IH245DecoderCommand interface.

8.2 ICPUControl interface

The uncompressed still-image output pin is required to implement the ICPUControl interface. The methods on this interface are called at the beginning of a call to initialize the maximum CPU load and frame decoding time, and then periodically by the TAPI MSP Quality Controller during the entire call. The initial and limit values for the maximum CPU load and frame decoding time are based on user-defined settings provided by the application.

See section 7.2 for more information on the ICPUControl interface.

9. RTP-packetized compressed video input pin TAPI interfaces

The TAPI MSP exposes two interfaces supported by the compressed video input pin directly to the TAPI MSP Quality Controller. The Quality Controller uses the IBitrateControl and IFrameRateControl interfaces to retrieve information on the bitrate and frame rate of the incoming video data.

The TAPI MSP calls QueryInterface on the IPin interface exposed by the video input pin to get pointers to the IBitrateControl, and IFrameRateControl interfaces.

9.1 IBitrateControl interface

The TAPI MSP Quality Controller uses the IBitrateControl interface to get information on the effective bitrate of the incoming video data.

The IBitrateControl interface contains the following methods:

SetMaxBitrate

Not used with the RTP-packetized compressed video input pin.

GetMaxBitrate

Used to retrieve the effective bitrate of the incoming video data, free of any network header overhead.

The Quality Controller will never make a call to the IBitrateControl::SetMaxBitrate method on the RTP-packetized compressed video input pin.

9.1.1 SetMaxBitrate method

The SetMaxBitrate method is declared as follows:

HRESULT SetMaxBitrate([IN] DWORD dwMaxBitrate, [IN] DWORD dwLayerId)

where

dwMaxBitrate

Specifies the new upper limit in bandwidth transmission in bits/s.

dwLayerId

Specifies the ID of the encoding layer the new upper limit in bandwidth transmission applies to. For standard video encoders, this field is always set to 0. In the case of multi-layered encoders, this field shall be set to 0 for the base layer, 1 for the first enhancement layer, 2 for the next enhancement layer, etc.

The input pin of the video decoder filter shall return E_NOTIMPL on this method.

9.1.2 GetMaxBitrate method

This method is used to retrieve the upper limit in bandwidth reception the RTP-packetized compressed video input pin is currently observing. The GetMaxBitrate method is declared as follows:

HRESULT GetMaxBitrate([OUT] DWORD *pdwMaxBitrate, [IN] DWORD dwLayerId)

where

pdwMaxBitrate

Used to receive the RTP-packetized compressed video input pin upper limit in bandwidth reception, free of any network header overhead, in bits/s.

dwLayerId

Specifies the ID of the encoding layer the upper limit in bandwidth reception applies to. For standard video encoders, this field is always set to 0. In the case of multi-layered encoders, this field shall be set to 0 for the base layer, 1 for the first enhancement layer, 2 for the next enhancement layer, etc..

This method returns an HRESULT value that depends on the implementation of the interface. HRESULT can include one of the following standard constants, or other values not listed:

HRESULT
Meaning

E_FAIL
Failure

E_POINTER
Null pointer argument

E_NOTIMPL
Method is not supported

NOERROR
No error

9.2 IFrameRateControl interface

The RTP-packetized compressed input pin is required to implement the IFrameRateControl interface. The TAPI MSP will never call the IFrameRateControl::SetMaxFrameRate method on the RTP-packetized compressed video input pin. The input pin of the video decoder filter shall return E_NOTIMPL on this method.

On the other hand, the RTP-packetized compressed input pin shall implement the IFrameRateControl::GetMaxFrameRate method, and return the rate at which compressed video frames are received from the network.

See section 7.3 for more information on the IFrameRateControl interface.

10. Video decoder filter application interfaces

The TAPI MSP exposes a few DirectShow interfaces supported by the video decoder filter to the client application. Typically, these applications will indirectly use those interfaces to modify video quality settings, or provide simulated camera control capabilities if the video decoder filter supports such features. Those interfaces are the IAMVideoProcAmp, IAMCameraControl and IAMVideoControl interfaces.

Note that the application will not get a direct pointer to those interfaces. Instead, the methods on those interfaces will be used through containment.

All the interfaces listed below shall be implemented by the video decoder itself, not its output pins. The TAPI MSP will call QueryInterface on the IBaseFilter interface exposed by the video encoder filter to get pointers to the DirectShow interfaces mentioned in this section.

10.1 IAMVideoProcAmp interface

The IAMVideoProcAmp interface contains methods for controlling video quality such as brightness, contrast, hue, saturation, gamma, and sharpness. It defines a uniform range for these settings regardless of whether the adjustment is made in the analog or digital domain.

The IAMVideoProcAmp interface contains the following methods:

GetRange

Used to retrieve minimum, maximum, and default values of a video quality setting.

Set

Used to set the value of a video quality setting.

Get

Used to retrieve the value of a video quality setting.

The IAMVideoProcAmp interface uses the VideoProcAmpProperty enumerated data type to identify specific quality settings, and the VideoProcAmpFlags enumerated data type to qualify if the quality setting can be set manually and/or automatically.

10.1.1 VideoProcAmpProperty enumerated data type

This enumerated data type is defined as follows:

typedef enum tagVideoProcAmpProperty

{

 VideoProcAmp_Brightness,

 VideoProcAmp_Contrast,

 VideoProcAmp_Hue,

 VideoProcAmp_Saturation,

 VideoProcAmp_Sharpness,

 VideoProcAmp_Gamma,

 VideoProcAmp_ColorEnable,

 VideoProcAmp_WhiteBalance,

 VideoProcAmp_BacklightCompensation

} VideoProcAmpProperty;

where:

VideoProcAmp_Brightness

Specifies the brightness setting in IRE units * 100. The range for Value is -10000 to 10000; the default value is 750 (7.5 IRE)

VideoProcAmp_Contrast

Specifies the contrast or luma gain setting in gain factor * 100. The Value range is from zero to 10000, and the default is 100 (1x). Note that a particular video decoder filter may only implement a subset of this range.

VideoProcAmp_Hue

Specifies the hue setting in degrees * 100. Value range is from -18000 to 18000 (-180 to +180 degrees), and the default is zero. Note that a particular video decoder filter may only implement a subset of this range.

VideoProcAmp_Saturation

Specifies the saturation or chroma gain setting in gain * 100. Value ranges from zero to 10000, and the default is 100 (1x). Note that a particular video decoder filter may only implement a subset of this range.

VideoProcAmp_Sharpness

Specifies the sharpness setting in arbitrary units. Value ranges from zero to 100, and the default is 50. Note that a particular video decoder filter may only implement a subset of this range.

VideoProcAmp_Gamma

Specifies the gamma setting in gamma * 100. Value ranges from 1 to 500, and the default is 100 (gamma = 1). Note that a particular video decoder filter may only implement a subset of this range.

VideoProcAmp_ColorEnable

Specifies the color enable setting as a Boolean value. Value ranges from zero to 1, and the default is 1.

VideoProcAmp_WhiteBalance

Specifies the white balance setting expressed as a color temperature in degrees Kelvin. The range and default values for this setting are video decoder filter dependent.

VideoProcAmp_BacklightCompensation

Specifies the backlight compensation setting which is a Boolean. Zero indicates backlight compensation is disabled, and 1 indicates backlight compensation is enabled.

10.1.2 VideoProcAmpFlags enumerated data type

This enumerated data type is defined as follows:

typedef enum tagVideoProcAmpFlags

{

 VideoProcAmp_Flags_Manual = 0x0000,

 VideoProcAmp_Flags_Auto = 0x0001

} VideoProcAmpFlags;

where:

VideoProcAmp_Flags_Manual

Specifies that the quality setting can be modified manually.

VideoProcAmp_Flags_Auto

Specifies that the quality setting can be modified automatically.

10.1.3 GetRange method

This method is used to retrieve the minimum, maximum, and default values for specific video quality settings. The GetRange method is declared as follows:

HRESULT GetRange([IN]long Property, [OUT]long *pMin, [OUT]long *pMax, [OUT]long *pSteppingDelta, [OUT]long *pDefault, [OUT]long *pCapsFlags)

where

Property

Used to specify the video quality setting to determine the range of. Use a member of the VideoProcAmpProperty enumerated type.

pMin

Used to retrieve the minimum value of the video quality setting range.

pMax

Used to retrieve the maximum value of the video quality setting range.

pSteppingDelta

Used to retrieve the stepping delta of the video quality setting range.

pDefault

Used to retrieve the default value of the video quality setting range.

pCapsFlags

Used to retrieve the capabilities of the video quality setting. Pointer to a member of the VideoProcAmpFlags enumerated type.

This method returns an HRESULT value that depends on the implementation of the interface. HRESULT can include one of the following standard constants, or other values not listed:

HRESULT
Meaning

E_FAIL
Failure

E_POINTER
Null pointer argument

E_INVALIDARG
Invalid argument

E_NOTIMPL
Method is not supported

NOERROR
No error

10.1.4 Set method

This method is used to set the value of a specific video quality setting. The Set method is declared as follows:

HRESULT Set([IN]long Property, [IN]long lValue, [IN]long Flags)

where

Property

Used to specify the video quality setting to set the value of. Use a member of the VideoProcAmpProperty enumerated type.

lValue

Used to specify the new value of the video quality setting.

Flags

A member of the VideoProcAmpFlags enumerated type.

This method returns an HRESULT value that depends on the implementation of the interface. HRESULT can include one of the following standard constants, or other values not listed:

HRESULT
Meaning

E_FAIL
Failure

E_INVALIDARG
Invalid argument

E_NOTIMPL
Method is not supported

NOERROR
No error

10.1.5 Get method

This method is used to get the current value of a specific video quality setting. The Get method is declared as follows:

HRESULT Get([IN]long Property, [OUT]long *lValue, [OUT]long *Flags)

where

Property

Used to specify the video quality setting to get the value of. Use a member of the VideoProcAmpProperty enumerated type.

lValue

Used to retrieve the current value of the video quality setting.

Flags

Pointer to a member of the VideoProcAmpFlags enumerated type.

This method returns an HRESULT value that depends on the implementation of the interface. HRESULT can include one of the following standard constants, or other values not listed:

HRESULT
Meaning

E_FAIL
Failure

E_POINTER
Null pointer argument

E_INVALIDARG
Invalid argument

E_NOTIMPL
Method is not supported

NOERROR
No error

10.2 IAMCameraControl interface

The IAMCameraControl interface contains methods to adjust or inquire about simulated camera control settings. The controls are a subset of the proposed ITU T.RDC standard at http://www.itu.ch.

The IAMCameraControl interface contains the following methods:

GetRange

Used to retrieve minimum, maximum, and default values of a simulated camera control setting.

Set

Used to set the value of a simulated camera control setting.

Get

Used to retrieve the value of a simulated camera control setting.

The IAMCameraControl interface uses the CameraControlProperty enumerated data type to describe specific simulated camera control settings, and the CameraControlFlags enumerated data type to qualify if the simulated camera control setting can be set manually and/or automatically.

10.2.1 CameraControlProperty enumerated data type

This enumerated data type is defined as follows:

typedef enum tagCameraControlProperty

{

 CameraControl_Pan,

 CameraControl_Tilt,

 CameraControl_Roll,

 CameraControl_Zoom,

 CameraControl_Exposure,

 CameraControl_Iris,

 CameraControl_Focus

} CameraControlProperty;

where:

CameraControl_Pan

Specifies the simulated camera pan setting in degrees. Values range from -180 to +180, and the default is zero. Positive values are clockwise from the origin (the simulated camera rotates clockwise when viewed from above), and negative values are counterclockwise from the origin. Note that a particular video decoder filter may only implement a subset of this range.

CameraControl_Tilt

Specifies the simulated camera tilt setting in degrees. Values range from -180 to +180, and the default is zero. Positive values point the imaging plane up, and negative values point the imaging plane down. Note that a particular video decoder filter may only implement a subset of this range.

CameraControl_Roll

Specifies the simulated roll setting in degrees. Values range from -180 to +180, and the default is zero. Positive values cause a clockwise rotation of the simulated camera along the image viewing axis, and negative values cause a counterclockwise rotation of the simulated camera. Note that a particular video decoder filter may only implement a subset of this range.

CameraControl_Zoom

Specifies the simulated zoom setting in millimeter units. Values range from 10 to 600, and the default is video decoder filter specific.

CameraControl_Exposure

Specifies the simulated exposure setting in seconds using the following formula. For values less than zero, the exposure time is 1/2n seconds. For positive values and zero, the exposure time is 2n seconds. Note that a particular video decoder filter may only implement a subset of this range.

CameraControl_Iris

Specifies the simulated iris setting expressed as the fstop * 10.

CameraControl_Focus

Specifies the simulated camera focus setting as the distance to the optimally focused target in millimeters. The range and default values are video decoder filter specific. Note that a particular filter may only implement a subset of this range.

10.2.2 CameraControlFlags enumerated data type

This enumerated data type is defined as follows:

typedef enum tagCameraControlFlags

{

 CameraControl_Flags_Manual = 0x0000,

 CameraControl_Flags_Auto = 0x0001

} CameraControlFlags;

where:

CameraControl_Flags_Manual

Specifies that the simulated camera control setting can be modified manually.

CameraControl_Flags_Auto

Specifies that the simulated camera control setting can be modified automatically.

10.2.3 GetRange method

This method is used to retrieve the minimum, maximum, and default values for specific simulated camera control settings. The GetRange method is declared as follows:

HRESULT GetRange([IN]long Property, [OUT]long *pMin, [OUT]long *pMax, [OUT]long *pSteppingDelta, [OUT]long *pDefault, [OUT]long *pCapsFlags)

where

Property

Used to specify the simulated camera control setting to determine the range of. Use a member of the CameraControlProperty enumerated type.

pMin

Used to retrieve the minimum value of the simulated camera control setting range.

pMax

Used to retrieve the maximum value of the simulated camera control setting range.

pSteppingDelta

Used to retrieve the stepping delta of the simulated camera control setting range.

pDefault

Used to retrieve the default value of the simulated camera control setting range.

pCapsFlags

Used to retrieve the capabilities of the simulated camera control setting. Pointer to a member of the CameraControlFlags enumerated type.

This method returns an HRESULT value that depends on the implementation of the interface. HRESULT can include one of the following standard constants, or other values not listed:

HRESULT
Meaning

E_FAIL
Failure

E_POINTER
Null pointer argument

E_INVALIDARG
Invalid argument

E_NOTIMPL
Method is not supported

NOERROR
No error

10.2.4 Set method

This method is used to set the value of a specific simulated camera control setting. The Set method is declared as follows:

HRESULT Set([IN]long Property, [IN]long lValue, [IN]long Flags)

where

Property

Used to specify the simulated camera control setting to set the value of. Use a member of the CameraControlProperty enumerated type.

lValue

Used to specify the new value of the simulated camera control setting.

Flags

A member of the CameraControlFlags enumerated type.

This method returns an HRESULT value that depends on the implementation of the interface. HRESULT can include one of the following standard constants, or other values not listed:

HRESULT
Meaning

E_FAIL
Failure

E_INVALIDARG
Invalid argument

E_NOTIMPL
Method is not supported

NOERROR
No error

10.2.5 Get method

This method is used to get the current value of a specific simulated camera control setting. The Get method is declared as follows:

HRESULT Get([IN]long Property, [OUT]long *lValue, [OUT]long *Flags)

where

Property

Used to specify the simulated camera control setting to get the value of. Use a member of the CameraControlProperty enumerated type.

lValue

Used to retrieve the current value of the simulated camera control setting.

Flags

Pointer to a member of the CameraControlFlags enumerated type.

This method returns an HRESULT value that depends on the implementation of the interface. HRESULT can include one of the following standard constants, or other values not listed:

HRESULT
Meaning

E_FAIL
Failure

E_POINTER
Null pointer argument

E_INVALIDARG
Invalid argument

E_NOTIMPL
Method is not supported

NOERROR
No error

10.3 IAMVideoControl interface

The IAMVideoControl interface contains methods to flip a picture horizontally and/or vertically. Methods on this interface that are not related to the flip operations will not be exposed, nor used by TAPI.

The following list identifies the only methods of IAMVideoControl interface exposed by TAPI:

GetCaps

Used to retrieve the capabilities of the video decoder filter regarding flipping pictures.

SetMode

Used to flip a picture horizontally or vertically.

GetMode

Used to retrieve the current flip state.

The IAMVideoControl interface uses the VideoControlFlags enumerated data type to describe flip modes.

10.3.1 VideoControlFlags enumerated data type

This enumerated data type is defined as follows:

typedef enum tagVideoControlFlags

{

 VideoControlFlag_FlipHorizontal = 0x0001,

 VideoControlFlag_FlipVertical = 0x0002,

 VideoControlFlag_ExternalTriggerEnable = 0x0004,

 VideoControlFlag_Trigger = 0x0008

} VideoControlFlags;

where only the two first values are used:

VideoControlFlag_FlipHorizontal

Specifies that the picture is flipped horizontally.

VideoControlFlag_FlipVertical

Specifies that the picture is flipped vertically.

10.3.2 GetCaps method

This method is used to retrieve the capabilities of the video decoder filter regarding flipping pictures. The GetCaps method is declared as follows:

HRESULT GetCaps([IN]IPin *pPin, [OUT]long *pCapsFlags)

where

pPin

Used to specify the compressed video output pin to query capabilities from.

pCapsFlags

Used to retrieve a value representing a combination of the flags from the VideoControlFlags enumeration.

This method returns an HRESULT value that depends on the implementation of the interface. HRESULT can include one of the following standard constants, or other values not listed:

HRESULT
Meaning

E_FAIL
Failure

E_POINTER
Null pointer argument

E_INVALIDARG
Invalid argument

E_NOTIMPL
Method is not supported

NOERROR
No error

10.3.3 SetMode method

This method is used to flip a picture horizontally of vertically. The SetMode method is declared as follows:

HRESULT SetMode([IN]IPin *pPin, [IN]long Mode)

where

pPin

Used to specify the pin to set the flip mode on.

Mode

Used to specify a combination of the flags from the VideoControlFlags enumeration.

This method returns an HRESULT value that depends on the implementation of the interface. HRESULT can include one of the following standard constants, or other values not listed:

HRESULT
Meaning

E_FAIL
Failure

E_POINTER
Null pointer argument

E_INVALIDARG
Invalid argument

E_NOTIMPL
Method is not supported

NOERROR
No error

10.3.4 GetMode method

This method is used to retrieve the capabilities of the video decoder filter regarding flipping pictures. The GetCaps method is declared as follows:

HRESULT GetCaps([IN]IPin *pPin, [OUT]long *Mode)

where

pPin

Used to specify the pin to get the flip mode of.

Mode

Pointer to a value representing a combination of the flags from the VideoControlFlags enumeration.

This method returns an HRESULT value that depends on the implementation of the interface. HRESULT can include one of the following standard constants, or other values not listed:

HRESULT
Meaning

E_FAIL
Failure

E_POINTER
Null pointer argument

E_INVALIDARG
Invalid argument

E_NOTIMPL
Method is not supported

NOERROR
No error

11. Video decoder filter H.245 video capabilities

The TAPI 3.1 MSP Capability module is responsible for coordinating capability advertisement and resolution with respect to the limits configured in the TAPI 3.1 MSP Quality Controller. Installable encoder and decoder filters are required to implement a new IH245VideoCapability interface provide the TAPI 3.1 MSP Capability module with a table of estimated steady-state resource requirements as related to each format that the codec supports.

While run-time resource requirements fluctuate within a continuum, the steady-state resource requirements are meant to indicate relative resource requirements under near-ideal conditions and no network loss. At minimum, the resource requirements should include the typical maximum bitrate and CPU utilization (in % of the host CPU) for each supported format. The steady-state resource requirement information is used only by the TAPI 3.1 MSP Capability module to ensure that negotiated formats always fall within the maximum configured resource budget. Given the steady-state resource requirements of all filters and the resource limits configured in the TAPI 3.1 MSP Quality Controller, the TAPI 3.1 MSP Capability module is able to build the local simultaneous capability descriptors and to disable advertisement and selection of formats which exceed or approach the configured resource limits. Once streaming is active, fluctuations in actual bitrate and CPU load are then managed by the TAPI 3.1 MSP Quality Controller.

11.1 Standard Codec addition or replacement

When a standard codec is installed, the TAPI 3.1 MSP Capability module will use the IH245VideoCapability interface to obtain the capability information of the installed filter and add the supported transmit and receive capabilities in H.245/AM_MEDIA_TYPE form to internal transmit and receive capability lists in priority order. The TAPI 3.1 MSP Capability module also keeps track of the origin of the added capability so that it can find the appropriate filter instance at capability resolution and channel-open time. The MSP Capability module ignores duplicate H.245 capabilities in either list, so that if a replacement codec is installed and is at a higher priority than the original codec, the replacement codec will always be chosen over the original one.

The capability resolution code in the MSP Capability module is capable of advertising, understanding, comparing, and finding matches in local and remote capability lists provided that the capability is defined in the supported version of H.245. The only difference introduced by the installation of a replacement codec is as follows. When the Capability module finds a remote capability match via its existing priority search algorithm, it must check the chosen capability in its internal list for an association with a specific filter. This module differentiates between filters implementing the same standard algorithm by referencing their unique registered DirectShow GUID. Once a format is chosen and a channel is opened, the MSP channel control code passes the AM_MEDIA_TYPE structure to the MSP streaming components.

Mode changes and openLogicalChannel requests are handled similarly by capability resolution code in the MSP Capability module. Given the channel parameters in H.245 form, it is capable of understanding, comparing, and finding a local capability that is compatible with the channel parameters in the mode change or openLogicalChannel request. Filter configuration is identical to the transmit case.

11.2 Non-standard codec support

Installation, negotiation, and selection of non-standard codecs places additional requirements on TAPI and the implementation of the codec filter. As when a standard codec is installed, the TAPI 3.1 MSP Capability module will obtain the capability information of the installed filter using the IH245VideoCapability interface. Recall that the format of the capability data for non-standard formats includes a sized byte array instead of an initialized H.245 structure. The capability module stores the sized byte array of each capability in its internal lists. When capabilities are advertised, the sized byte array is encapsulated in an extensible structure, which is in turn encapsulated in an H.245 non-standard capability structure. The extensible structure mentioned in the previous sentence is a tagged and sized structure. The structure is defined by Microsoft and is not exposed. The purpose of the structure is to allow support of multiple non-standard capability negotiation mechanisms within Microsoft products without breaking interoperability. (There is only one H.221 non-standard identifier assigned to Microsoft Corp). There are already defined tags for NetMeeting's non-standard audio and video capability "capsules". A new tag will be defined that identifies the contents as "the TAPI 3.1 non-standard codec scheme". This will allow shipped versions of NetMeeting to ignore new non-standard capabilities that it may receive.

When non-standard capabilities are involved, The TAPI 3.1 MSP Capability module recognizes the presence of non-standard capabilities and delegates the interpretation of their contents according to the H.221 non-standard identifier and the contents of the encapsulation structure. As always, the prioritized search for a matching capability favors the order of the local transmit capability list. The target of the search is based on the current "top" of the local transmit capability list. If the current search target is a non-standard capability, the TAPI 3.1 MSP capability module searches the received capability list for a non-standard capability that has a matching H.221 non-standard identifier. Whenever a matching H.221 non-standard identifier (Microsoft) is found, the TAPI 3.1 MSP capability module reads the encapsulated tag to see if the non-standard capability scheme identified by that tag is supported on the platform. If the tag indicates that the nonstandard data is formatted according to "the TAPI 3.1 non-standard codec scheme", the MSP Capability module uses the facilities of the installed codec filter modules to interpret non-standard capability data. Recall that the transmit capability list contains references to the installed filter module that is supplying the capability, so this is the only filter module that needs to attempt interpretation of the candidate remote capability. This scheme avoids unnecessary attempts to interpret or recognize non-standard capability data.

11.2.1 Interpretation facilities provided by the installed codec filter

The interpretation methods of the IH245VideoCapability interface provide the following general facilities:

Input
Output

Facility #1
(Sized byte array), (Sized byte array) A local/remote pair of non-standard capabilities
(Boolean) compare succeeded

(HANDLE) negotiated format identifier

(Sized byte array) non-standard logical channel parameters for the remote system

(AM_MEDIA_TYPE) filter configuration structure

Facility #2
(Sized byte array) non-standard logical channel parameters from remote system
(Boolean) local format found

(HANDLE) negotiated format identifier

(AM_MEDIA_TYPE) filter configuration structure

Facility #3
(HANDLE) negotiated format identifier
Negotiated generic parameters useful for input to Quality Controller (max bitrate, frame rate, min/max frames/packet, etc)

The installed codec filter is required to include basic negotiable parameters e.g. max frames per packet in its private representation of logical channel parameters, and to compute the intersection of local and remote parameters when facility #1 or #2 succeeds. The results of this intersection are stored internally and a unique handle is created ("negotiated format identifier" in the table above) to reference the intersection data.

11.2.2 Capability resolution/channel open mechanism

If and when Facility #1 of IH245VideoCapability returns TRUE indicating that the compare succeeded, the TAPI 3.1 MSP Capability module of the sender forwards the negotiated format identifier, the filter configuration structure, and the non-standard logical channel parameters to the TAPI 3.1 MSP Channel control module. The Channel control module encapsulates and transfers the non-standard logical channel parameters to the remote system via openLogicalChannel. When the remote system receives the openLogicalChannel request, the TAPI 3.1 MSP Channel control module of the receiver forwards the channel parameters to the TAPI 3.1 MSP Capability module. The TAPI 3.1 MSP Capability module uses facility #2 of the installed codec filter to obtain the filter configuration structure and format identifier and returns the capability data to the TAPI 3.1 MSP Channel control module. The TAPI 3.1 MSP Channel control module may then configure the receive (decoding) filter and acknowledge the openLogicalChannel. The TAPI 3.1 MSP Channel control module may also obtain negotiated parameters e.g. maximum bitrate at this time and forward the result to the Quality Controller.

When the TAPI 3.1 MSP Channel control module of the sender receives the openLogicalChannel ack, it may then configure the send (encoding) filter and Quality Controller similarly. The mechanisms for handling of mode changes at the sender are conceptually the same as those handling openLogicalChannel requests at the receiver.

11.3 IH245VideoCapability interface

The IH245VideoCapability interface contains methods to enumerate, translate, and compare video formats.

The IH245VideoCapability interface contains the following methods:

GetH245VersionID

Used to retrieve a version identifier that indicates the version of H.245 that was in effect when the filter module was compiled.

GetFormatTable

Used to retrieve a table of supported formats as related to estimated system resources. This table may be dynamically allocated by the filter.

ReleaseFormatTable

Used to release the format table allocated by GetFormatTable.

IntersectFormats

Used to compare a local capability and remote capability and produce filter configuration structures and parameters that are compatible with both.

GetLocalFormat

Used to retrieve local format parameters that are compatible with a specific remote capability and parameters.

GetNegotiatedLimitProperty

Used to retrieve the value of a negotiated limiting parameter.

ReleaseNegotiatedCapability

Used to release resources that were allocated by IntersectFormats or GetLocalFormat.

SetIDBase

Used to control the range of sequential numbers that uniquely identify individual capabilities

FindIDByRange

Used to find a specific capability that corresponds to a formatted AM_MEDIA_TYPE structure.

The IH245VideoCapability interface uses the NegotiatedVideoLimit enumerated data type to describe negotiated video limiting parameters. Only generic properties which are useful to the TAPI MSP Quality Controller module are defined.

11.3.1 NegotiatedVideoLimit enumerated data type

This enumerated data type is defined as follows:

typedef enum tagNegotiatedVideoLimit

{

 NegotiatedVideo_MaxFrameRate,

 NegotiatedVideo_MaxBitRate,

 NegotiatedVideo_MaxBitsPerPicture,

} NegotiatedVideoLimit;

where:

NegotiatedVideo_MaxFrameRate

Specifies the smaller of the maximum continuous video frame rate that the receiver is capable of receiving or the transmitter is capable of transmitting.

NegotiatedVideo_MaxBitRate

Specifies smaller of the maximum average video bit rate that the receiver is capable of receiving or the transmitter is capable of transmitting.

NegotiatedVideo_MaxBitsPerPicture

Specifies the maximum number of bits that may be contained in a single video frame. If there is no negotiated maximum, this shall be zero.

11.3.2 VideoResourceBounds structure

TAPI defines the VideoResourceBounds structure to specify the estimated maximum continuous resource requirements of a video encoding or decoding filter at a specific frame rate:

typedef enum tag_VideoResourceBounds

{

 int iPicturesPerSecond;

 DWORD dwBitsPerPicture;

 WORD wCPUUtilization;

} VideoResourceBounds;

where:

iPicturesPerSecond

Specifies an INTEGER value that indicates the video frame rate, in frames per second, for which the resource bounds are being specified. Frame rates of less than 1 frame per second are indicated by a negative value in units of seconds per frame.

dwBitsPerPicture

Specifies a DWORD value that indicates the approximate average number of bits per video frame at an average frame rate of iPicturesPerSecond.

wCPUUtilization

Specifies a WORD value that indicates the approximate average CPU utilization, in percent, of the encoder or decoder at the average frame rate of iPicturesPerSecond.

11.3.3 H245VideoCapabilityMap structure

TAPI defines the H245VideoCapabilityMap structure to specify the relationship between supported formats and estimated maximum system resources for the supported format:

typedef enum tag_H245VideoCapabilityMap

{

 AM_MEDIA_TYPE *pAMMediaType;

 H245VideoCapability h245VideoCapability;

 GUID filterGuid;

 DWORD dwUniqueID;

 UINT uNumRatesSupported;

 VideoResourceBounds *pResourceBoundArray;

} H245VideoCapabilityMap;

where:

pAMMediaType

Specifies a pointer to an AM_MEDIA_TYPE structure that describes the format of the video stream.

h245VideoCapability

Specifies the H.245 video format, including all parameters and options. This structure is H.245 version specific: its definition depends on the version of H.245 that was in effect at the time the filter was developed. This structure may indicate format parameters for more than one standard video size at a time if the resource requirements are similar for all sizes.

filterGuid

Specifies a GUID value that uniquely identifies the video decoder filter.

dwUniqueID

Specifies a DWORD value that uniquely identifies the capability of the video decoder filter.

uNumRatesSupported

This indicates the number of elements referenced by pResourceBoundArray and specifies the number of integral frame rates that are supported for the format options specified in pAMMediaType and h245VideoCapability.

pResourceBoundArray

Specifies an array of VideoResourceBounds structures that indicate the approximate resource bounds of each supported integral frame rate.

11.3.4 H245VideoCapabilityTable structure

TAPI defines the H245VideoCapabilityTable structure to specify the set of formats that are supported by the filter:

typedef enum tag_H245VideoCapabilityTable

{

 UINT uMappedCapabilities;

 H245VideoCapabilityMap *pCapabilityArray;

} H245VideoCapabilityTable;

where:

uMappedCapabilities

Specifies the number of H245VideoCapabilityMap structures in pCapabilityArray.

pCapabilityArray

Specifies a pointer to an array of H245VideoCapabilityMap structures.

11.3.5 GetH245VersionID method

This method returns a DWORD value that identifies the platform version that the filter was designed for. The platform version is defined as TAPI_H245_VERSION_ID. The GetH245VersionID method is declared as:

DWORD GetH245VersionID()

11.3.6 GetFormatTable method

This method is used to obtain H245VideoCapabilityMap structures for all formats and format options that the filter supports. In general, the content of the capability information that the TAPI 3.1 MSP Capability module obtains via the GetFormatTable method is a two dimensional table that relates every supported transmit and/or receive format to steady-state resource requirements of that format. In the case of standard codecs, the "format" information consists of an initialized H.245 data structure and an initialized AM_MEDIA_TYPE structure. The definition of this structure would be provided by Microsoft as part of a development kit. In the case of non-standard codecs, the H.245 structure would be replaced with a sized array of bytes. The contents of the nonstandard byte array are defined by the implementation of a complimentary pair of encoder and decoder filters.

The GetFormatTable method is declared as follows:

HRESULT GetFormatTable([IN]IPin *pPin, [OUT]H245VideoCapabilityTable *pTable)

where

pPin

Used to specify the output pin of the capture filter that will be providing input for encoder filters or the input pin of the filter receiving output from decoder filters. The filter shall enumerate the list of formats supported by this pin to build its own video capability table.

pTable

Pointer to an H245VideoCapabilityTable structure.

This method returns an HRESULT value that depends on the implementation of the interface. HRESULT can include one of the following standard constants, or other values not listed:

HRESULT
Meaning

E_FAIL
Failure

E_POINTER
Null pointer argument

E_INVALIDARG
Invalid argument

E_NOTIMPL
Method is not supported

NOERROR
No error

11.3.7 ReleaseFormatTable method

This method is used to release memory allocated by the GetFormatTable method. The ReleaseFormatTable method is declared as follows:

HRESULT ReleaseFormatTable([IN]H245VideoCapabilityTable *pTable)

where

pTable

Pointer to an H245VideoCapabilityTable structure.

This method returns an HRESULT value that depends on the implementation of the interface. HRESULT can include one of the following standard constants, or other values not listed:

HRESULT
Meaning

E_FAIL
Failure

E_POINTER
Null pointer argument

E_INVALIDARG
Invalid argument

E_NOTIMPL
Method is not supported

NOERROR
No error

11.3.8 IntersectFormats method

This method is used to compare and intersect one local capability and one remote capability and to obtain filter configuration parameters. The IntersectFormats method is declared as follows:

HRESULT IntersectFormats([IN]H245VideoCapability *pLocalCapability, [IN]H245VideoCapability *pRemoteCapability, [OUT]HANDLE *phIntersectionCookie, [OUT]H245VideoCapability *pIntersectedCapability)

where

pLocalCapability

Specifies the H.245 video format, including all parameters and options defined by H.245, of a local video capability.

pRemoteCapability

Specifies the H.245 video format, including all parameters and options defined by H.245, of a remote video capability.

phIntersectionCookie

Identifies the dynamic instance of intersected capabilities. When a filter creates the intersection, it may allocate memory for the intersected capability parameters. The intersection cookie identifies this allocation. This is used to release internal allocations and also as an argument to the GetNegotiatedLimitProperty method.

pIntersectedCapability

Specifies the H.245 video format, of the resolved common local and remote capability options and limits.

This method returns an HRESULT value that depends on the implementation of the interface. HRESULT can include one of the following standard constants, or other values not listed:

HRESULT
Meaning

E_INCOMPATIBLECAPS
Failure

E_FAIL
Failure

E_POINTER
Null pointer argument

E_INVALIDARG
Invalid argument

E_NOTIMPL
Method is not supported

NOERROR
No error

11.3.9 GetLocalFormat method

This method is used to obtain local filter configuration parameters that are compatible with a remote capability. The GetLocalFormat method is declared as follows:

HRESULT GetLocalFormat([IN]H245VideoCapability *pRemoteCapability, [IN]HANDLE *phIntersectionCookie, [OUT]AM_MEDIA_TYPE **ppAMMediaType)

where

pRemoteCapability

Specifies the H.245 video format, including all parameters and options defined by H.245, of a remote video capability.

phIntersectionCookie

Identifies the dynamic instance of intersected capabilities. When a filter creates the intersection, it may allocate memory for the intersected capability parameters. The intersection cookie identifies this allocation. This is used to release internal allocations and also as an argument to the GetNegotiatedLimitProperty method.

ppAMMediaType

Pointer to the address of an AM_MEDIA_TYPE structure to receive the local format.

This method returns an HRESULT value that depends on the implementation of the interface. HRESULT can include one of the following standard constants, or other values not listed:

HRESULT
Meaning

E_INCOMPATIBLECAPS
No local compatible capability exists

E_FAIL
Failure

E_POINTER
Null pointer argument

E_INVALIDARG
Invalid argument

E_NOTIMPL
Method is not supported

NOERROR
No error

11.3.10 GetNegotiatedLimitProperty method

This method is used to obtain negotiated limits that were determined by either the IntersectFormats or GetLocalFormat method. The GetNegotiatedLimitProperty method is declared as follows:

HRESULT GetNegotiatedLimitProperty([IN]HANDLE hIntersectionCookie, [IN]NegotiatedVideoLimit LimitProperty, [OUT]DWORD *pdwValue)

where

hIntersectionCookie

Identifies the dynamic instance of intersected capabilities.

LimitProperty

Identifies the limit property being retrieved.

pdwValue

Pointer to a DWORD value to receive the value of the specified limit property.

This method returns an HRESULT value that depends on the implementation of the interface. HRESULT can include one of the following standard constants, or other values not listed:

HRESULT
Meaning

E_FAIL
Failure

E_POINTER
Null pointer argument

E_INVALIDARG
Invalid argument

E_NOTIMPL
Method is not supported

NOERROR
No error

11.3.11 ReleaseNegotiatedCapability method

This method is used to release a filter's internal memory allocated by either the IntersectFormats or GetLocalFormat method. The ReleaseNegotiatedCapability method is declared as follows:

HRESULT ReleaseNegotiatedCapability([IN]HANDLE hIntersectionCookie)

where

hIntersectionCookie

Identifies the dynamic instance of intersected capabilities.

This method returns an HRESULT value that depends on the implementation of the interface. HRESULT can include one of the following standard constants, or other values not listed:

HRESULT
Meaning

E_FAIL
Failure

E_INVALIDARG
Invalid argument

E_NOTIMPL
Method is not supported

NOERROR
No error

11.3.12 SetIDBase method

This method is used to control the sequential numbering range used to uniquely identify a Filter’s capabilities. The SetIDBase method is declared as follows:

HRESULT SetIDBase([IN]DWORD dwIDBase)

where

dwIDBase

A DWORD value that indicates the beginning number in the sequence .

This method returns an HRESULT value that depends on the implementation of the interface. HRESULT can include one of the following standard constants, or other values not listed:

HRESULT
Meaning

E_FAIL
Failure

E_INVALIDARG
Invalid argument

E_NOTIMPL
Method is not supported

NOERROR
No error

11.3.13 FindIDByRange method

This method is used to obtain the unique format ID of a capability that corresponds to an AM_MEDIA_TYPE. The FindIDByRange method is declared as follows:

HRESULT FindIDByRange([IN]AM_MEDIA_TYPE *pAMMediaType,[OUT]DWORD *pdwID)

where

pAMMediaType

Pointer to an AM_MEDIA_TYPE structure that has been initialized indicate a specific format.

pdwID

Pointer to a DWORD output parameter that will contain the unique format ID.

This method returns an HRESULT value that depends on the implementation of the interface. HRESULT can include one of the following standard constants, or other values not listed:

HRESULT
Meaning

E_FAIL
Failure

E_INVALIDARG
Invalid argument

E_NOTIMPL
Method is not supported

NOERROR
No error

12. References

12.1 TAPI 3.1 Specifications

Microsoft® TAPI® Video Encoder Filter – Streams and Interfaces

[image: image2.wmf]"Microsoft TAPI

Video Encoder Filter.doc"

12.2 DirectShow SDK articles and documentation

Available from http://www.microsoft.com/directx/pavilion/dshow
12.3 ITU communications standards

Available from http://www.itu.int/itudoc/itu-t/rec/h
Recommendation H.245 v3 (09/97) – Control protocol for multimedia communication

Recommendation H.261 (03/93) – Video codec for audiovisual services at px64 kbit/s

Recommendation H.263 (03/96) – Video coding for low bit rate communication

Recommendation H.263 v2 (01/98) – Video coding for low bit rate communication

ITU home page: http://www.itu.int/home
12.4 IETF Request for comments

Available from ftp://ftp.isi.edu/in-notes
RFC 1889 – RTP: A Transport Protocol for real-time Applications

RFC 2032 – RTP Payload Format for H.261 video streams

RFC 2190 – RTP Payload Format for H.263 video streams

RFC 2429 – RTP Payload Format for the 1998 Version of ITU-T Rec. H.263 Video (H.263+)

Optional Compressed Still-Image Pin

Optional Uncompressed Still-Image Pin

Compressed Video Pin

TAPI MSP

Video Decoder Filter

IH245DecoderCommand

ICPUControl

IAMVideoProcAmp

IAMCameraControl

IAMVideoControl

IH245VideoCapability

IH245DecoderCommand

IFrameRateControl

ICPUControl

Uncompressed Video Pin

TAPI MSP

Network Source Filter

TAPI MSP

Video Renderer

Sink Filter

TAPI MSP

Video Renderer

Sink Filter

IVideoChannelControl

TAPI MSP Call Control Module

IConnectionPointContainer

IConnectionPoint

IConnectionPointContainer

IConnectionPoint

IFrameRateControl

IBitrateControl

� Unless stated otherwise all references to TAPI apply to version 3.1.

Microsoft Corporation Company Confidential

06/26/99 Draft - Microsoft Corporation Company Confidential 8:00 PM

_970744201.unknown

