PAGE
Revision 0.207 WDM Connection and Streaming Architecture

Microsoft RTP (Real-time Transport Protocol)
Functional Specification – Draft

Author: Andres Vega-Garcia
Revision 0.7.228, May 16, 2001
This documentation is an early release of the final product documentation. It is meant to accompany software that is still in development. Some of the information in this documentation may be inaccurate or may not be an accurate representation of the functionality of the final retail product. Microsoft assumes no responsibility for any damages that might occur either directly or indirectly from these inaccuracies.

11.
Introduction

11.1
Scenarios

22.
Proposed requirements list

22.1
RTP specific requirements

32.2
Demultiplexing requirements

32.3
Payload handling requirements

32.4
Participant handling requirements

42.5
Quality of service requirements

42.6
Cryptographic requirements

42.7
Statistics gathering requirements

43.
Interface IRtpSession

53.1
Initialization

53.1.1
Init

63.1.2
Deinit

63.2
Address and ports

73.2.1
GetPorts

73.2.2
SetPorts

83.2.3
GetAddress

83.2.4
SetAddress

93.2.5
SetScope

93.2.6
SetMcastLoopback

103.3
Miscellaneous

103.3.1
ModifySessionMask

153.4
Participants

153.4.1
EnumParticipants

153.4.2
GetParticipantState

163.4.3
GetMuteState

173.4.4
SetMuteState

173.4.5
GetNetEventState

183.4.6
SetNetMetricsState

193.4.7
GetNetworkInfo

203.5
SDES information

203.5.1
GetSdesInfo

203.5.2
SetSdesInfo

213.6
QOS

213.6.1
SetQosByName

233.6.2
SetQosAppId

233.6.3
SetQosState

243.6.4
ModifyQosList

253.7
Cryptography

253.7.1
SetEncryptionMode

263.7.2
SetEncryptionKey

274.
Interface IRtpDemux

274.1.1
AddPin

284.1.2
SetPinCount

294.1.3
SetPinMode

294.1.4
SetMappingState

314.1.5
FindPin

314.1.6
FindSSRC

325.
Interface IRtpMediaControl

325.1.1
SetFormatMapping

335.1.2
FlushFormatMappings

336.
Interface IRtpDtmf

336.1.1
SetDtmfParameters

336.1.2
SendDtmfEvent

347.
Interface IRtpRedundancy

347.1.1
SetRedParameters

358.
Events

359.
Error codes

3510.
References

3611.
Open issues

1. Introduction

The TAPI 3 streaming architecture consist of modular blocks named filters under the Direct Show terminology [ref]. In such architecture, multimedia data (e.g. audio, video) can be produced in a source filter, then be transformed in a transform filter, to be consumed in a render filter. That process is depicted in the next diagram.

In order to send this information over a network such as the Internet or a corporate network, we need Network Source and Render filters that implement the required protocols to enable sending and receiving data from such networks.

Most of such protocols are already a service from the operating system, e.g. TCP/IP, but others still need to be implemented in the application space. That is the case for the Real-time Transport Protocol (RTP) [ref] which has been adopted to carry real time data on top of UDP/IP.

The basic requirements for an RTP source and render filters are to implement the RTP protocol and to support the Direct Show model. But in addition to the basic requirements, there exist many others that will give the RTP filters a powerful richness and flexibility that will easy the task of building much more complex scenarios.

TOREDO

The rest of the document is organized in the following way:

Section 1.1 describes some scenarios for which special features are required in the RTP filters. Section 2 puts together a comprehensive list of requirements.

Section 3 presents the interface and generic method.

Sections Error! Reference source not found. thou Error! Reference source not found. give detailed information for each function’s category.

Section 10 contains the references.

1.1 Scenarios

The scenarios described below reflect the functionalities that in some way must be made available to an application. An application has the choice to use those functionalities to achieve a specific behavior. The implication of it is that some support needs to be provided all along the path between the application and the RTP filters.

· The application is capable of selecting to discard (mute) incoming data from specific participants or from specific sessions without rendering it.

· The application is capable of selecting not to send data to one or more of its destination addresses.

· An application is capable to show the user graphically, the state of each (remote) participant, e.g. currently sending data, silent, left the session, etc.

· Video follows audio. An application can decide to render a single video window which displays at any time the video for the current speaker, or can render it at full size/bit rate.

· The application provides a way for the user to feed the SDES information to be sent (some of the SDES items are set programmatically and can not be overridden, e.g. CNAME).

· The user can select who receives QoS.

· The user/application can decide the action to take when doing QoS reservation fails, e.g. if the connection fails altogether, the application pass to use best effort.

· The application can specify the encryption key to use for the session, which may be different for receiver and sender.

· The application can specify what portions of the RTP/RTCP packets are encrypted.

· For sessions where a “pass phrase” may be distributed by non TAPI means, the user should be able to feed in the pass phrase and specify the encryption algorithm to use for the secure session.

· For sessions where the address/port to use is distributed by non TAPI means, the user should be able to feed in the multicast address, port and TTL to be used in that session.

2. Proposed requirements list

This section presents the RTP network filters requirements. Those requirements are classified in 7 categories or families
:

· RTP specific

· Demultiplexing

· Payload handling

· Participant information

· Quality of service

· Cryptographic functions

· Statistics

2.1 RTP specific requirements

Standard based

RFC1889 compliant. Some specifications could be overridden, e.g. relax the even, odd, or the I, I+1 relationship between RTP and RTCP ports, not sending RTCP reports at all.

Packet scheduling

Packets sent from several sources can be put in different queues
and serviced by priority, at the same time, events may be generated when crossing low and high water marks.

Mute sessions

Individual sessions can be muted at any time. All data coming and/or going to that session is discarded.

Advanced muting

The initial state for all participants could be to start as muted. At any time, all new participants who join a conference could be also started as muted.

Participants have state

Each participant can be in one of the following states: TALKING, WAS_TALKING, SILENT, STALE, LEFT. The state would allow implementing video follows audio where we could watch only video from the one speaking. This also would allow identifying who is sending at any time and would allow disabling annoying or unwanted senders.

Event handling

All events can be enabled/disabled individually, e.g. RTP/RTCP events, QOS events, Demux events.

2.2 Demultiplexing requirements

Manual mapping

Participants can be mapped manually to specific output pins.

Automatic mapping

New participants are mapped to the first available output pin that matches some criteria. After mapped, the participant keeps that pin until explicitly changed.

Automatic then manual

A new participant is mapped to the first free output pin that matches some criteria. Once a participant has a pin, it holds it until explicitly unmapped, or until the participant becomes silent (this includes an expired participant or one who left the session), at that time, the pin goes back to its initial state to accept a new participant.

2.3 Payload handling requirements

Playout delay handling

Computes the de-jitter buffer required.

Handles packetization descriptors

Understands packetization descriptors that tell RTP how to split data into smaller packets.

Inter session synchronization

Data streams from different sessions can be synchronized against a master session. Used for lips-sync.

2.4 Participant handling requirements

Unified/scalable participants handling

Ability to handle efficiently a large number of participants and do associations
across sessions, e.g. find out that user X in an audio session is the same as user Y in a video session.

SDES handling

SDES fields can be enabled individually for sender and receiver.

Mute participants

Individual participants can be muted at any time. All data coming from that participant can be discarded.

2.5 Quality of service requirements

All 3 reservation styles in RSVP

Support for Fixed Filter (FF), Wildcard filter (WF) and Shared Explicit (SE).

Asynchronous notifications

Some QOS related events are generated asynchronously and passed up as events.

On the fly flow spec update

The reservation for receivers, or the sending flow spec can be modified at any time.

On the fly modification of filters for shared explicit

The set of filters (participants) that share a reservation can be modified dynamically.

Ask for permission to send

Asking for permission to send can be configured, and when asking, the behavior can be to wait or not for receivers before starting to send.

Asynchronous reservation

Setting QOS (SIO_SET_QOS) can be done asynchronously.

Flow spec specification

Provide interfaces to fine-tune the flow spec
to use.

2.6 Cryptographic requirements

Independent keys

Each sender and receiver can have different keys.

Built upon CryptoAPI

Using CAPI allows taking advantage of the richness of algorithms supported by CAPI.

Accepts pass phrase

Capable of producing a key from text (pass phrase)

2.7 Statistics gathering requirements

Statistics

Gathering statistics
on bytes/packets sent/received, probably
also frames per second based on timestamp.

Bandwidth usage detection

Computes the average bandwidth used (sender or receiver)

Interface's bandwidth detection

Estimation of interface’s bandwidth based on sending latency.

3. Interface IRtpSession

This is the main interface to control an RTP session, it consist of 7 categories:

· Initialization

· Address and ports

· Miscellaneous

· Participants

· SDES information

· QOS

· Cryptography

3.1 Initialization

There is only one initialization method, no other method can be used before this one is called (the exception is GetSdesInfo() and some IRtpDemux methods).

3.1.1 Init

Initializes an RTP session, either for a source or render RTP filter.

HRESULT Init(

 [IN OUT] HANDLE *phCookie,

 [IN] DWORD dwFlags

);

Parameters use:

	phCookie
	Allows the same RTP session to be shared by a source and a render filter. The first call (e.g. a source filter) will have the cookie initialized to NULL; the next call (e.g. the corresponding render filter) will use the previously returned cookie to lookup the same RTP session

	dwFlags
	Specify 1 or more flags to configure the RTP session

Valid flags:

	RTPINIT_ENABLE_QOS
	The session may be QOS enabled (create sockets that support QOS and ask for reservations)

	RTPINIT_PERSIST_SSRC
	Make the SSRC be persistent, i.e. it will not change after the session goes through a stop/start

	RTPINIT_PERSIST_SOCKETS
	Make the sockets be persistent, i.e. they will not be closed/created after the session goes through a stop/start. This guarantee the port to which the sockets were bound will remain in use by the same socket

	RTPINIT_CLASS_AUDIO
	Gives the session an identity as AUDIO class, some features such as thread priority and playout delay computation are dependent on the session’s class to be audio

	RTPINIT_CLASS_VIDEO
	Gives the session an identity as VIDEO class

	RTPINIT_MATCHRADDR
	Enable a filter to reject all packets not coming from the remote address

	RTPINIT_RADDRRESETDEMUX
	Enable resetting the demux (i.e. unmap all outputs) whenever a new remote address is set

Returned value:

	NOERROR
	Call succeeded

	RTPERR_POINTER
	Null pointer was passed when no NULL was expected

	RTPERR_INVALIDSTATE
	Null cookie passed for new session, but some pointers were already initialized

	RTPERR_INVALIDRTPADDR
	Internal structure (RTP address) found is invalid, because of a bad cookie passed

	RTPERR_REFCOUNT
	Unexpected ref count value

Remarks:

This method shouldn’t be called more than once, but if done, the cookie must be preserved, e.g. if the first time it was passed with a NULL value, which was updated to a non NULL value during the first Init, then the next time that same value returned on the first call must be used. In addition, any successive call to Init must use the same flags that were used the first time. The only way to call Init with different flags and new empty cookie, is after having had called Deinit().

3.1.2 Deinit

De-initializes an RTP session, so a new call to Init with a NULL cookie and possible different flags can and must be done before other functions can be used.

HRESULT Deinit(

);

Returned value:

	NOERROR
	Call succeeded

	RTPERR_INVALIDSTATE
	The RTP filter is still active, i.e. the DShow RTP filter is.

Remarks:

This method takes the filter to an state such that it behaves as if Init hadn’t been called at all.

3.2 Address and ports

This group of methods is used to set/get IP addresses and to configure other networking related parameters.

NOTE: All IP addresses and port numbers are exchanged in NETWORK order.

3.2.1 GetPorts

Retrieves one or more of the RTP or RTCP, local or remote ports.

HRESULT GetPorts(

 [OUT] WORD *pwRtpLocalPort,

 [OUT] WORD *pwRtpRemotePort,

 [OUT] WORD *pwRtcpLocalPort,

 [OUT] WORD *pwRtcpRemotePort

);

Parameters use:

	pwRtpLocalPort
	If this pointer is non NULL, copy the local RTP port

	pwRtpRemotePort
	If this pointer is non NULL, copy the remote RTP port

	pwRtcpLocalPort
	If this pointer is non NULL, copy the local RTCP port

	pwRtcpRemotePort
	If this pointer is non NULL, copy the remote RTCP port

Returned value:

	NOERROR
	Call succeeded

	RTPERR_POINTER
	Null pointers were passed when at least one non NULL pointer was expected

	RTPERR_INVALIDSTATE
	Init not done, or local ports had not been specified yet or can not be assigned because the local address hasn’t been selected yet, or internal pointer was found to be NULL when a non NULL was expected

	RTPERR_INVALIDRTPADDR
	Internal structure found is invalid

3.2.2 SetPorts

Sets one or more of the RTP or RTCP, local or remote ports.

HRESULT SetPorts(

 [IN] WORD wRtpLocalPort,

 [IN] WORD wRtpremotePort,

 [IN] WORD wRtcpLocalPort,

 [IN] WORD wRtcpRemotePort

);

Parameters use:

	wRtpLocalPort
	Local RTP port

	wRtpRemotePort
	Remote RTP port

	wRtcpLocalPort
	Local RTCP port

	wRtcpRemotePort
	Remote RTCP port

Returned value:

	NOERROR
	Call succeeded

	RTPERR_INVALIDSTATE
	Init not done or internal pointer was found to be NULL when a non NULL was expected or attempt to assign a local port when one is already assigned and is different

	RTPERR_INVALIDRTPADDR
	Internal structure found is invalid

Remarks:

Do nothing if passing -1, otherwise assign value (including 0).

3.2.3 GetAddress

Retrieves local or remote IP address.

HRESULT GetAddress(

 [OUT] WORD *pdwLocalAddr,

 [OUT] WORD *pdwRemoteAddr

);

Parameters use:

	pwRtpLocalAddr
	If this pointer is non NULL, copy the local RTP address

	pwRtpRemoteAddr
	If this pointer is non NULL, copy the remote RTP address

Returned value:

	NOERROR
	Call succeeded

	RTPERR_POINTER
	Null pointers were passed when at least one non NULL pointer was expected

	RTPERR_INVALIDSTATE
	Init not done or the address is not available yet or internal pointer was found to be NULL when non NULL was expected

	RTPERR_INVALIDRTPADDR
	Internal structure found is invalid

3.2.4 SetAddress

Sets local or remote IP address.

HRESULT SetAddress(

 [IN] DORD dwLocalAddr,

 [IN] DORD dwRemoteAddr

);

Parameters use:

	dwLocalAddr
	Local RTP address

	dwRemoteAddr
	Remote RTP address

Returned value:

	NOERROR
	Call succeeded

	RTPERR_INVALIDARG
	Both addresses are 0

	RTPERR_INVALIDSTATE
	Init not done or internal pointer was found to be NULL when non NULL was expected

	RTPERR_INVALIDRTPADDR
	Internal structure found is invalid

Remarks:

If local address passed is 0, assign an address based on the remote address.

3.2.5 SetScope

Sets the IP scope, i.e. TTL (Time To Live).

HRESULT SetScope(

 [IN] DWORD dwTTL

 [IN] DwORD dwFlags

);

Parameters use:

	dwTTL
	Time to live value

	dwFlags
	Some flags

Valid flags:

	RTPTTL_RTP
	Set scope to RTP

	RTPTTL_RTCP
	Set scope to RTCP

	RTPTTL_RTPRTCP
	Set scope to RTP and RTCP

Returned value:

	NOERROR
	Call succeeded

	RTPERR_INVALIDSTATE
	Init not done yet

Remarks:

The default scope is DEFAULT_UCAST_TTL (127) for unicast and DEFAULT_MCAST_TTL (4) for multicast.

3.2.6 SetMcastLoopback

Sets the IP multicast loop-back mode.

HRESULT SetMcastLoopback(

 [IN] int iMcastLoopbackMode,

 [IN] DWORD dwFlags

);

Parameters use:

	iMcastLoopbackMode
	Multicast mode

	dwFlags
	Some flags (not used, pass 0)

Valid flags:

	NONE
	Pass 0

Returned value:

	NOERROR
	Call succeeded

	RTPERR_INVALIDARG
	Invalid multicast mode

	RTPERR_INVALIDSTATE
	Init not done yet

Remarks:

The modes can be any of the following:

	RTPMCAST_LOOPBACKMODE_NONE
	Multicast loop-back disabled

	RTPMCAST_LOOPBACKMODE_PARTIAL
	Receive local packets except those sent by the same socket

	RTPMCAST_LOOPBACKMODE_FULL
	Receive all multicast packets including those sent by the same socket

3.3 Miscellaneous

3.3.1 ModifySessionMask

Modify or query one of the session’s masks.

HRESULT ModifySessionMask(

 [IN] DWORD dwKind,

 [IN] DWORD dwMask,

 [IN] DWORD dwValue,

 [IN OUT] DWORD *pdwModifiedMask

);

Parameters use:

	dwKind
	Specifies one of the different kinds of masks that can be queried/modified.

	dwMask
	Specifies the mask of bits to be set, or reset

	dwValue
	Non zero to set, 0 to reset the bits selected by dwMask

	pdwModifiedMask
	If non NULL, returns the resulting mask. Note that passing a dwMask=0, will not modify any bits and that way the current mask is just queried

Returned value:

	NOERROR
	Call succeeded

	RTPERR_CRITSECT
	Failed to acquire a critical section

	RTPERR_INVALIDARG
	Invalid mask kind

	RTPERR_INVALIDSTATE
	Init not done yet, or an internal pointer was found to be NULL when a non NULL was expected

	RTPERR_INVALIDRTPSESS
	An internal structure was found to be invalid

Remarks:

The kinds of masks that can be used (parameter dwKind) are:

RTPMASK_FEATURES_MASK

RTPMASK_RECV_EVENTS

RTPMASK_SEND_EVENTS

RTPMASK_PINFOR_EVENTS

RTPMASK_PINFOS_EVENTS

RTPMASK_QOSRECV_EVENTS

RTPMASK_QOSSEND_EVENTS

RTPMASK_SDESRECV_EVENTS

RTPMASK_SDESSEND_EVENTS

RTPMASK_SDES_LOCMASK

RTPMASK_SDES_REMMASK

And the specific masks and the events (if applicable) that they enable, are listed below for each kind of mask:

RTPMASK_FEATURES_MASK:

Bit masks used to select what RTP features that will be in use:

RTPFEAT_GENTIMESTAMP

RTPFEAT_PASSHEADER

RTPFEAT_BADESTIMATION

RTPMASK_RECV_EVENTS, RTPMASK_SEND_EVENTS:

Bit masks used to select what RTP events will be fired to a receiver (e.g. RTP source filter), the default is to fire no events. And/or a sender (e.g. an RTP render filter), the default is to fire no events:

RTPRTP_MASK_RR_RECEIVED RTPRTP_EVENT_RR_RECEIVED

RTPRTP_MASK_SR_RECEIVED RTPRTP_EVENT_SR_RECEIVED

RTPRTP_MASK_LOCAL_COLLISION RTPRTP_EVENT_LOCAL_COLLISION

RTPRTP_MASK_WS_RECV_ERROR RTPRTP_EVENT_WS_RECV_ERROR

RTPRTP_MASK_WS_SEND_ERROR RTPRTP_EVENT_WS_SEND_ERROR

RTPRTP_MASK_WS_NET_FAILURE RTPRTP_EVENT_WS_NET_FAILURE

RTPRTP_MASK_RECV_LOSSRATE RTPRTP_EVENT_RECV_LOSSRATE

RTPRTP_MASK_SEND_LOSSRATE RTPRTP_EVENT_SEND_LOSSRATE

RTPRTP_MASK_SEND_BANDESTIMATION RTPRTP_EVENT_SEND_BANDESTIMATION

RTPRTP_MASK_CRYPT_RECV_ERROR RTPRTP_EVENT_CRYPT_RECV_ERROR
RTPRTP_MASK_CRYPT_SEND_ERROR RTPRTP_EVENT_CRYPT_SEND_ERROR
RTPMASK_PINFOR_EVENTS, RTPMASK_PINFOS_EVENTS:

Bit masks used to enable firing the specific events to a receiver (e.g. RTP source filter), the default is to fire no events. And/or to a sender (e.g. an RTP render filter), the default is to fire no events:

RTPPARINFO_MASK_CREATED RTPPARINFO_EVENT_CREATED

RTPPARINFO_MASK_SILENT RTPPARINFO_EVENT_SILENT

RTPPARINFO_MASK_TALKING RTPPARINFO_EVENT_TALKING

RTPPARINFO_MASK_WAS_TALKING RTPPARINFO_EVENT_WAS_TALKING

RTPPARINFO_MASK_STALL RTPPARINFO_EVENT_STALL

RTPPARINFO_MASK_BYE RTPPARINFO_EVENT_BYE

RTPPARINFO_MASK_DEL RTPPARINFO_EVENT_DEL

RTPPARINFO_MASK_MAPPED RTPPARINFO_EVENT_MAPPED

RTPPARINFO_MASK_UNMAPPED RTPPARINFO_EVENT_UNMAPPED

RTPPARINFO_MASK_NETWORKCONDITION RTPPARINFO_EVENT_NETWORKCONDITION

RTPMASK_QOSRECV_EVENTS, RTPMASK_QOSSEND_EVENTS:

Bit masks used to enable firing QOS notification events for a receiver (e.g. RTP source filter), the default is to fire no events. And/or a sender (e.g. an RTP render filter), the default is to fire no events:

RTPQOS_MASK_NOQOS RTPQOS_EVENT_NOQOS

RTPQOS_MASK_RECEIVERS RTPQOS_EVENT_RECEIVERS

RTPQOS_MASK_SENDERS RTPQOS_EVENT_SENDERS

RTPQOS_MASK_NO_SENDERS RTPQOS_EVENT_NO_SENDERS

RTPQOS_MASK_NO_RECEIVERS RTPQOS_EVENT_NO_RECEIVERS

RTPQOS_MASK_REQUEST_CONFIRMED RTPQOS_EVENT_REQUEST_CONFIRMED

RTPQOS_MASK_ADMISSION_FAILURE RTPQOS_EVENT_ADMISSION_FAILURE

RTPQOS_MASK_POLICY_FAILURE RTPQOS_EVENT_POLICY_FAILURE

RTPQOS_MASK_BAD_STYLE RTPQOS_EVENT_BAD_STYLE

RTPQOS_MASK_BAD_OBJECT RTPQOS_EVENT_BAD_OBJECT

RTPQOS_MASK_TRAFFIC_CTRL_ERROR RTPQOS_EVENT_TRAFFIC_CTRL_ERROR

RTPQOS_MASK_GENERIC_ERROR RTPQOS_EVENT_GENERIC_ERROR

RTPQOS_MASK_ESERVICETYPE RTPQOS_EVENT_ESERVICETYPE

RTPQOS_MASK_EFLOWSPEC RTPQOS_EVENT_EFLOWSPEC

RTPQOS_MASK_EPROVSPECBUF RTPQOS_EVENT_EPROVSPECBUF

RTPQOS_MASK_EFILTERSTYLE RTPQOS_EVENT_EFILTERSTYLE

RTPQOS_MASK_EFILTERTYPE RTPQOS_EVENT_EFILTERTYPE

RTPQOS_MASK_EFILTERCOUNT RTPQOS_EVENT_EFILTERCOUNT

RTPQOS_MASK_EOBJLENGTH RTPQOS_EVENT_EOBJLENGTH

RTPQOS_MASK_EFLOWCOUNT RTPQOS_EVENT_EFLOWCOUNT

RTPQOS_MASK_EUNKOWNPSOBJ RTPQOS_EVENT_EUNKOWNPSOBJ

RTPQOS_MASK_EPOLICYOBJ RTPQOS_EVENT_EPOLICYOBJ

RTPQOS_MASK_EFLOWDESC RTPQOS_EVENT_EFLOWDESC

RTPQOS_MASK_EPSFLOWSPEC RTPQOS_EVENT_EPSFLOWSPEC

RTPQOS_MASK_EPSFILTERSPEC RTPQOS_EVENT_EPSFILTERSPEC

RTPQOS_MASK_ESDMODEOBJ RTPQOS_EVENT_ESDMODEOBJ

RTPQOS_MASK_ESHAPERATEOBJ RTPQOS_EVENT_ESHAPERATEOBJ

RTPQOS_MASK_RESERVED_PETYPE RTPQOS_EVENT_RESERVED_PETYPE

RTPQOS_MASK_NOT_ALLOWEDTOSEND RTPQOS_EVENT_NOT_ALLOWEDTOSEND

RTPQOS_MASK_ALLOWEDTOSEND RTPQOS_EVENT_ALLOWEDTOSEND

RTPMASK_SDESRECV_EVENTS, RTPMASK_SDESSEND_EVENTS:
Bit masks used to enable firing events upon the arrival of SDES items. The events can be fired to a receiver (e.g. an RTP source filter), the default is to fire no events. And/or to a sender (e.g. RTP render filter), the default is to fire no events. In order to fire these events, the SDES item must also be enabled to be accepted and stored using the RTPMASK_SDES_REMMASK mask:

RTPSDES_MASK_CNAME RTPSDES_EVENT_CNAME

RTPSDES_MASK_NAME RTPSDES_EVENT_NAME

RTPSDES_MASK_EMAIL RTPSDES_EVENT_EMAIL

RTPSDES_MASK_PHONE RTPSDES_EVENT_PHONE

RTPSDES_MASK_LOC RTPSDES_EVENT_LOC

RTPSDES_MASK_TOOL RTPSDES_EVENT_TOOL

RTPSDES_MASK_NOTE RTPSDES_EVENT_NOTE

RTPSDES_MASK_PRIV RTPSDES_EVENT_PRIV

RTPSDES_MASK_BYE RTPSDES_EVENT_BYE

RTPSDES_MASK_ANY RTPSDES_EVENT_ANY

RTPMASK_SDES_LOCMASK:

Bit masks used to select the SDES items to send (provided they have a default value or one has been set) in RTCP reports; the default is to send all the SDES items available.

RTPSDES_LOCMASK_CNAME

RTPSDES_LOCMASK_NAME

RTPSDES_LOCMASK_EMAIL

RTPSDES_LOCMASK_PHONE

RTPSDES_LOCMASK_LOC

RTPSDES_LOCMASK_TOOL

RTPSDES_LOCMASK_NOTE

RTPSDES_LOCMASK_PRIV

RTPMASK_SDES_REMMASK

Bit masks used to select the SDES items to accept and store when they are received from the remote participants in their RTCP reports, the default is to accept and store all the SDES items received:

RTPSDES_REMMASK_CNAME

RTPSDES_REMMASK_NAME

RTPSDES_REMMASK_EMAIL

RTPSDES_REMMASK_PHONE

RTPSDES_REMMASK_LOC

RTPSDES_REMMASK_TOOL

RTPSDES_REMMASK_NOTE

RTPSDES_REMMASK_PRIV

3.4 Participants

NOTE: All the SSRCs are exchanged in NETWORK order and where appropriate, SSRC can be set to –1 to indicate that the first SSRC found is to be used.

3.4.1 EnumParticipants

Enumerates the participants (SSRCs).

HRESULT EnumParticipants(

 [OUT] DWORD *pdwSSRC,

 [IN OUT] DWORD *pdwNumber

);

Parameters use:

	pdwSSRC
	Array of DWORDs where to copy the SSRCs

	pdwNumber
	Contains the maximum entries to copy, and returns the actual number of SSRCs copied

Returned value:

	NOERROR
	Call succeeded

	RTPERR_POINTER
	Both pointers are NULL when at least pdwNumber was expected to be non NULL

	RTPERR_CRITSECT
	Failed to acquire a critical section

	RTPERR_NOTINIT
	Init not done yet

	RTPERR_INVALIDSTATE
	An internal pointer was found to be NULL when a non NULL was expected

	RTPERR_INVALIDRTPADDR
	Internal structure found is invalid

Remarks:

If pdwSSRC is NULL, but pdwNumber is not, return in pdwNumber the current number of SSRCs.

3.4.2 GetParticipantState

Obtain participant’s state.

HRESULT GetParticipantState(

 [IN] DWORD dwSSRC,

 [OUT] int *piState

);

Parameters use:

	dwSSRC
	Participant’s SSRC whose state is to be retrieved

	piState
	Current participant’s state

Returned value:

	NOERROR
	Call succeeded

	RTPERR_INVALIDARG
	SSRC not specified

	RTPERR_POINTER
	NULL pointer

	RTPERR_CRITSECT
	Failed to obtain a critical section

	RTPERR_NOTINIT
	Init not done yet

	RTPERR_INVALIDSTATE
	An internal pointer was found to be NULL when a non NULL was expected

	RTPERR_INVALIDRTPADDR
	Internal structure found is invalid

Remarks:

The state can be any of the following:

RTPPARINFO_SILENT

RTPPARINFO_TALKING

RTPPARINFO_WAS_TALKING

RTPPARINFO_STALL (Haven’t receive RTP nor RTCP packets for some time)

3.4.3 GetMuteState

Obtain participant’s mute state.

HRESULT GetMuteState(

 [IN] DWORD dwSSRC,

 [OUT] BOOL *pbMuted

);

Parameters use:

	dwSSRC
	Participant’s SSRC whose state is to be retrieved

	pbMuted
	Mute state (1=muted, 0=not muted)

Returned value:

	NOERROR
	Call succeeded

	RTPERR_INVALIDARG
	SSRC not specified

	RTPERR_POINTER
	NULL pointer

	RTPERR_CRITSECT
	Failed to obtain a critical section

	RTPERR_NOTINIT
	Init not done yet

	RTPERR_INVALIDSTATE
	An internal pointer was found to be NULL when a non NULL was expected

	RTPERR_INVALIDRTPADDR
	Internal structure found is invalid

3.4.4 SetMuteState

Set the participant’s mute state.

HRESULT SetMuteState(

 [IN] DWORD dwSSRC,

 [IN] BOOL bMuted

);

Parameters use:

	dwSSRC
	Participant’s SSRC whose state is to be retrieved

	bMuted
	Mute state (non zero=muted, 0=not muted)

Returned value:

	NOERROR
	Call succeeded

	RTPERR_INVALIDARG
	SSRC not specified

	RTPERR_CRITSECT
	Failed to obtain a critical section

	RTPERR_NOTINIT
	Init not done yet

	RTPERR_INVALIDSTATE
	An internal pointer was found to be NULL when a non NULL was expected

	RTPERR_INVALIDRTPADDR
	Internal structure found is invalid

3.4.5 GetNetEventState

Obtain participant’s generation of network quality metrics state.

HRESULT GetNetMetricsState(

 [IN] DWORD dwSSRC,

 [OUT] BOOL *pbState

);

Parameters use:

	dwSSRC
	Participant’s SSRC whose state is to be retrieved

	pbState
	Network metrics generation state (non zero=being generated, 0=not being generated)

Returned value:

	NOERROR
	Call succeeded

	RTPERR_INVALIDARG
	SSRC not specified

	RTPERR_CRITSECT
	Failed to obtain a critical section

	RTPERR_NOTINIT
	Init not done yet

	RTPERR_INVALIDSTATE
	An internal pointer was found to be NULL when a non NULL was expected

	RTPERR_INVALIDRTPADDR
	Internal structure found is invalid

3.4.6 SetNetMetricsState

Sets the participant’s generation of network quality metrics state.

HRESULT SetNetMetricsState(

 [IN] DWORD dwSSRC,

 [IN] BOOL bState

);

Parameters use:

	dwSSRC
	Participant’s SSRC whose state is to be set, 0 = enable metrics computation for any and all the SSRCs, -1= select the first SSRC

	bState
	Network metrics generation state (non zero=generate metrics, 0=do not generate metrics)

Returned value:

	NOERROR
	Call succeeded

	RTPERR_INVALIDARG
	SSRC not specified

	RTPERR_CRITSECT
	Failed to obtain a critical section

	RTPERR_NOTINIT
	Init not done yet

	RTPERR_INVALIDSTATE
	An internal pointer was found to be NULL when a non NULL was expected

	RTPERR_INVALIDRTPADDR
	Internal structure found is invalid

Remarks:

When the network metrics are being generated, the event RTPPARINFO_EVENT_NETWORKCONDITION will be generated if enabled. When the vent is generated, P1 will contain the participant’s SSRC that is reporting the given network conditions (each participant may perceive different network conditions) and P2 will contain encoded the network quality metrics. You can use the following macros to decode each parameter as follows:

DWORD dwGlobalMetric = RTPNET_GET_dwGLOBALMETRIC(P2);/* 0–100 */

double dAvgRTT = RTPNET_GET_dRTT(P2); /* seconds */

double dAvgJitter = RTPNET_GET_dJITTER(P2); /* seconds */

double dLossRate = RTPNET_GET_dLOSSRATE(P2); /* Percentage */

3.4.7 GetNetworkInfo

Sets the participant’s generation of network quality metrics state.

HRESULT GetNetworkInfo(

 [IN] DWORD dwSSRC,

 [OUT] RtpNetInfo_t *pRtpNetInfo

);

Parameters use:

	dwSSRC
	Participant’s SSRC whose state is to be set

	pRtpNetInfo
	Pointer to the structure to fill up with the network quality metrics as seen by this participant

Returned value:

	NOERROR
	Call succeeded

	RTPERR_INVALIDARG
	SSRC not specified

	RTPERR_CRITSECT
	Failed to obtain a critical section

	RTPERR_NOTINIT
	Init not done yet

	RTPERR_INVALIDSTATE
	An internal pointer was found to be NULL when a non NULL was expected

	RTPERR_INVALIDRTPADDR
	Internal structure found is invalid

Remarks:

The structure contains information for average RTT, jitter and loss rate as well as a 0-100 metric of how good that parameter is and an overall network quality also in a 0-100 scale. See file msrtp.h for details about the structure and the indexes to use to obtain each parameter, e.g. NETQ_RTT_IDX for average RTT and how good is the RTT.

Note that the average of the network parameters are available no matter the event for them is enabled or not, but the 0-100 metric and the global metric are only computed and hence available when the network metrics computation is enabled (using function SetNetMetricsState), and is made available in the event’s parameter 2, if the event RTPPARINFO_EVENT_NETWORKCONDITION is enabled.

3.5 SDES information

3.5.1 GetSdesInfo

Get SDES (Source Description) information.

HRESULT GetSdesInfo(

 [IN] DWORD dwSdesItem,

 [OUT] WCHAR *psSdesData,

 [IN OUT] DWORD *pdwSdesDataLen,

 [IN] DWORD dwSSRC

);

Parameters use:

	dwSdesItem
	SDES item to be retrieved

	psSdesData
	Where to place the data retrieved

	pdwSdesDataLen
	Buffer length in UNICODE chars

	dwSSRC
	Participant’s SSRC

Returned value:

	NOERROR
	Call succeeded

	RTPERR_POINTER
	NULL pointer passed when a non NULL was expected

	RTPERR_INVALIDARG
	Invalid SDES item

	RTPERR_INVALIDSTATE
	Init not done yet or an internal pointer was found to be NULL when a non NULL was expected

	RTPERR_INVALIDRTPADDR
	Internal structure found is invalid

	RTPERR_NOTFOUND
	The SSRC was not found

Remarks:

Get a local SDES item if dwSSRC=0, otherwise gets the SDES item from the participant whose SSRC was specified.

pdwSdesDataLen contains the initial size in UNICODE chars and returns the actual UNICODE chars copied (including the NULL terminating char). If the SDES item is not available, dwSdesDataLen is set to 0 and the call succeeds.

3.5.2 SetSdesInfo

Set the local SDES (Source Description) information.

HRESULT SetSdesInfo(

 [IN] DWORD dwSdesItem,

 [IN] WCHAR *psSdesData

);

Parameters use:

	dwSdesItem
	SDES item to be set

	psSdesData
	NULL terminated UNICODE string to be set as the SDES item, it must not be bigger than 255 bytes once converted to UTF-8

Returned value:

	NOERROR
	Call succeeded

	RTPERR_POINTER
	NULL pointer passed when a non NULL was expected

	RTPERR_INVALIDARG
	Invalid SDES item or conversion to UTF-8 failed (possibly because the converted string was bigger than 255 bytes)

	RTPERR_INVALIDSTATE
	Init not done yet or an internal pointer was found to be NULL when a non NULL was expected

	RTPERR_INVALIDRTPADDR
	Internal structure found is invalid

3.6 QOS

3.6.1 SetQosByName

Set the QOS name (i.e. the name to derive the QOS flow specification) to be used.

HRESULT SetQosByName(

 [IN] WCHAR *psQosName,

 [IN] DWORD dwResvStyle,

 [IN] DWORD dwMaxParticipants,

 [IN] DWORD dwQosSendMode,

 [IN] DWORD dwFrameSize

);

Parameters use:

	psQosName
	NULL terminates string with the QOS template’s name to use

	dwResvStyle
	Reservation style

	dwMaxParticipants
	Maximum number of participants, usually 1 for unicast, but usually bigger than 1 for multicast

	dwQosSendMode
	Send mode (senders only), modifies the sender’s behavior when not allowed to send

	dwFrameSize
	Frame size in milliseconds, passing 0 makes this parameter be ignored

Returned value:

	NOERROR
	Call succeeded

	RTPERR_POINTER
	NULL pointer passed when a non NULL was expected

	RTPERR_INVALIDARG
	QOS name passed, or reservation style, or send mode is invalid

	RTPERR_INVALIDSTATE
	Init not done yet or an internal pointer was found to be NULL when a non NULL was expected or the session is not QOS enabled

	RTPERR_INVALIDRTPADDR
	Internal structure found is invalid

Remarks:

The QOS name can be any of:

RTPQOSNAME_G711

RTPQOSNAME_G723_1

RTPQOSNAME_GSM6_10

RTPQOSNAME_DVI4_8

RTPQOSNAME_DVI4_16

RTPQOSNAME_SIREN

RTPQOSNAME_G722_1

RTPQOSNAME_MSAUDIO

RTPQOSNAME_H263QCIF

RTPQOSNAME_H263CIF

RTPQOSNAME_H261QCIF

RTPQOSNAME_H261CIF
The reservation style can be any of:

RTPQOS_STYLE_DEFAULT - Use default style, i.e. FF for unicast, WF for multicast.

RTPQOS_STYLE_WF - Wildcard-Filter (default in multicast).

RTPQOS_STYLE_F - FFixed-Filter (default in unicast).

RTPQOS_STYLE_SE - Shared-Explicit (for multicast, typically for video).

The send mode can be any of:

RTPQOSSENDMODE_UNRESTRICTED - Don't ask for permission to send.

RTPQOSSENDMODE_REDUCED_RATE - Ask permission to send, if denied, keep sending at a reduced rate.

RTPQOSSENDMODE_DONT_SEND - Ask permission to send, if denied, DON'T SEND at all.

RTPQOSSENDMODE_ASK_BUT_SEND - Ask permission to send, send at normal rate no matter what, the application is supposed to stop passing data to RTP or to pass the very minimum (this is the mode that should be used) .

3.6.2 SetQosAppId

Sets the QOS application ID.

HRESULT SetQosAppId(

 [IN] WCHAR *psAppName,

 [IN] WCHAR *psAppGUID,

 [IN] WCHAR *psPolicyLocator

);

Parameters use:

	psAppName
	If the application name is specified, replaces the default name with the new UNICODE string. The default is the binary image name

	psAppGUID
	If the application GUID is specified, replaces the default with the new UNICODE string. The default is www.microsoft.com

	psPolicyLocator
	If policy locator is specified, append a comma and this whole string to the default policy locator, if not, use only the default which would contain the codec type and name if available.

Returned value:

	NOERROR
	Call succeeded

	RTPERR_POINTER
	NULL pointer passed when a non NULL was expected

	RTPERR_INVALIDARG
	Invalid SDES item

	RTPERR_INVALIDSTATE
	Init not done yet or an internal pointer was found to be NULL when a non NULL was expected

	RTPERR_INVALIDRTPADDR
	Internal structure found is invalid

	RTPERR_MEMORY
	Failed to allocate storage to the string(s)

	RTPERR_SIZE
	The string passed is bigger than allowed

Remarks:

Any parameter can be NULL but at least one of them MUST be not NULL.

The QOS policy locator built (either using defaults or new settings) will look similar to this:

GUID=www.microsoft.com,APP=rtcclnt.exe,SAPP=MICROSOFT REAL-TIME COMMUNICATIONS,VER=1.0,

SAPP=AUDIO,SAPP=DVI4_16
And the application name will look similar to this:

rtcclnt.exe

3.6.3 SetQosState

Enable or disable the participant from sharing the QOS reservation.

HRESULT SetQosState(

 [IN] DWORD dwSSRC,

 [IN] BOOL bEnable

);

Parameters use:

	dwSSRC
	Participant’s SSRC whose reservation state (i.e. if he receives or not Shared Explicit (SE) reservation) is to be modified

	bEnable
	If non-zero, add (if not in it yet) this participant to the SE list of participants who shared the reservation. If zero, remove this participant (if already in it) from the SE list

Returned value:

	NOERROR
	Call succeeded

	RTPERR_NOQOS
	The receiver was not initialized as QOS enabled or QOS initialization failed

	RTPERR_INVALIDSTATE
	Init not done yet or an internal pointer was found to be NULL when a non NULL was expected or the reservation style is not RTPQOS_STYLE_SE

	RTPERR_INVALIDRTPADDR
	Internal structure found is invalid

Remarks:

This is used only for receivers, for senders always return NOERROR.

3.6.4 ModifyQosList

Enable or disable participants from sharing the QOS reservation.

HRESULT ModifyQosList(

 [IN] DWORD *pdwSSRC,

 [IN OUT]DWORD *pdwNumber,

 DWORD dwOperation

);

Parameters use:

	pdwSSRC
	Array or participant’s SSRCs for which the QOS state is going to be modified

	pdwNumber
	Number of SSRCs passed in the array, on output, will return the number of SSRCs whose state changed, or was possible to change

	dwOperation
	RTPQOS_ADD_SSRC to add the participants to the SE list, RTPQOS_DEL_SSRC to remove from the participants from the SE list. RTPQOS_FLUSH can be used to empty the list before performing the ADD operation

Returned value:

	NOERROR
	Call succeeded

	RTPERR_POINTER
	NULL pointer passed when a non NULL was expected

	RTPERR_NOQOS
	The receiver was not initialized as QOS enabled or QOS initialization failed

	RTPERR_QOS
	None of the participants could be added/deleted from the SE list

	RTPERR_INVALIDSTATE
	Init not done yet or an internal pointer was found to be NULL when a non NULL was expected or the reservation style is not RTPQOS_STYLE_SE

	RTPERR_INVALIDRTPADDR
	Internal structure found is invalid

Remarks:

This is used only for receivers, for senders always return NOERROR.

3.7 Cryptography

3.7.1 SetEncryptionMode

Selects the encryption (and/or decryption) mode.

HRESULT SetEncryptionMode(

 [IN] int iMode,

 [IN] DWORD dwFlags

);

Parameters use:

	iMode
	The encryption mode to be used

	dwFlags
	Some flags

Valid flags:

	RTPCRYPT_SAMEKEY
	If more than one channel is going to be encrypted (i.e. RTP receive, RTP send, RTCP), use the same key for all of them. If this flag is not specified when setting the mode, each channel will use a separate key

Returned value:

	NOERROR
	Call succeeded

	RTPERR_INVALIDARG
	Either the mode or flags are invalid

	RTPERR_NOTINIT
	Init not done yet

	RTPERR_INVALIDSTATE
	An internal pointer was found to be NULL when a non NULL was expected or the mode/flags are already set and are different from what is specified in the parameters passed or the underlying RTP session is already running

	RTPERR_INVALIDRTPADDR
	Internal structure found is invalid

Remarks:

The encryption mode
, once set, cannot be changed. Multiple calls to this function must specify the same mode. If mode and flags are 0, the default mode will be RTPCRYPTMODE_ALL with the flag RTPCRYPT_SAMEKEY set.

The encryption mode can be any of:

RTPCRYPTMODE_PAYLOAD - Encrypt/Decrypt RTP payload only.

RTPCRYPTMODE_RTP - Encrypt/Decrypt RTP packets only.

RTPCRYPTMODE_ALL- Encrypt/Decrypt RTP and RTCP packets.

3.7.2 SetEncryptionKey

Set 1 or more encryption (and/or decryption) parameters
.

HRESULT SetEncryptionKey(

 [IN] WCHAR *psPassPhrase,

 [IN] WCHAR *psHashAlg,

 [IN] WCHAR *psDataAlg,

 [IN] BOOL bRtcp

);

Parameters use:

	psPassPhrase
	If not NULL, specifies the pass phrase to use to derive a key used for encryption and/or decryption

	psHashAlg
	If not NULL, specifies the hashing algorithm to use

	psDataAlg
	If not NULL, specifies the data encryption/decryption algorithm to use

	bRtcp
	If non-zero, specifies that the parameters are to be applied to RTCP, if zero, they are for RTP. This parameter is meaningless if the flag RTPCRYPT_SAMEKEY was used when selecting the encryption mode

Returned value:

	NOERROR
	Call succeeded

	RTPERR_POINTER
	NULL pointers passed when a at least one non NULL was expected

	RTPERR_INVALIDARG
	At least one of the arguments is incorrect. It could be an empty pass phrase, a pass phrase bigger than RTPCRYPT_PASSPHRASEBUFFSIZE (256), or a non recognized algorithm (see remarks)

	RTPERR_NOTINIT
	Init not done yet

	RTPERR_INVALIDSTATE
	An internal pointer was found to be NULL when a non NULL was expected or the underlying RTP session is already running

	RTPERR_INVALIDRTPADDR
	Internal structure found is invalid

	RTPERR_RTPERR_CRYPTO
	Any of the Crypto API functions failed with the current parameters

Remarks:

The cryptographic objects are not created when this function is called but when the session starts, so for example, if the hashing algorithm specified is recognized and the call succeeds, that is not a guarantee that hashing will be possible using that algorithm. When the session starts, creation o the cryptographic objects will fail if that algorithm is not supported or is invalid for the purpose at hand.

RTPCRYPT_PASSPHRASEBUFFSIZE is the buffer size in bytes to hold the pass phrase after it was converted from UNICODE to UTF-8.

4. Interface IRtpDemux

4.1.1 AddPin

Add 1 more pin.

HRESULT AddPin(

 [IN] int iOutMode,

 [OUT] int *piPos

);

Parameters use:

	iOutMode
	The pin mode

	piPos
	Returns the position of the newly created pin

Returned value:

	NOERROR
	Call succeeded

	RTPERR_MEMORY
	Could not allocate memory for the pin

	RTPERR_INVALIDARG
	Invalid mode

	RTPERR_INVALIDSTATE
	An internal pointer was found to be NULL when a non NULL was expected

	RTPERR_INVALIDRTPSESS
	Internal structure found is invalid

Remarks:

The mode can be any of:

RTPDMXMODE_MANUAL - Manual mapping.

RTPDMXMODE_AUTO - Automatically map and unmap.

RTPDMXMODE_AUTO_MANUAL - Automatically map, manual unmap.

Adding pins should be done, as is the case for any other method in this document, after Init() is called, yet, there exist the possibility to add pins before calling Init(), see the remarks for SetMappingState for additional information about the possible danger.

4.1.2 SetPinCount

Add pins to reach the specified number of pins.

HRESULT SetPinCount(

 [IN] int iCount,

 [IN] int iOutMode

);

Parameters use:

	iCount
	Number of pins to have

	iOutMode
	The pin mode

Returned value:

	NOERROR
	Call succeeded

	RTPERR_MEMORY
	Could not allocate memory for the pin

	RTPERR_INVALIDARG
	Invalid mode

	RTPERR_INVALIDSTATE
	An internal pointer was found to be NULL when a non NULL was expected

	RTPERR_INVALIDRTPSESS
	Internal structure found is invalid

Remarks:

This function adds the pins needed to reach the specified number of pins, if the specified number is smaller than the current number of pins, no pins will be added nor deleted.

The mode can be any of:

RTPDMXMODE_MANUAL - Manual mapping.

RTPDMXMODE_AUTO - Automatically map and unmap.

RTPDMXMODE_AUTO_MANUAL - Automatically map, manual unmap.

Adding pins should be done, as is the case for any other method in this document, after Init() is called, yet, there exist the possibility to add pins before calling Init(), see the remarks for SetMappingState for additional information about the possible danger.

4.1.3 SetPinMode

Modify the output pin’s mode.

HRESULT SetPinMode(

 [IN] int iPos,

 [IN] IPin *pIPin,

 [IN] int iOutMode

);

Parameters use:

	iPos
	Position of pin whose output mode is to be changed, iPos has precedence over IPIn

	pIPin
	Pin whose output mode is to be changed, iPos has precedence over IPIn

	iOutMode
	The output mode

Returned value:

	NOERROR
	Call succeeded

	RTPERR_POINTER
	NULL pointers passed when a non NULL was expected

	RTPERR_INVALIDARG
	Invalid mode or a pin in iPos position doesn’t exist

	RTPERR_INVALIDSTATE
	Init not done yet or an internal pointer was found to be NULL when a non NULL was expected or the pin doesn’t have its RTP counterpart (an output)

	RTPERR_INVALIDRTPSESS
	Internal structure found is invalid

	RTPERR_NOTFOUND
	IPin not found

Remarks:

The mode can be any of:

RTPDMXMODE_MANUAL - Manual mapping.

RTPDMXMODE_AUTO - Automatically map and unmap.

RTPDMXMODE_AUTO_MANUAL - Automatically map, manual unmap.

The non-specified position is –1, the non-specified IPin is NULL.

4.1.4 SetMappingState

Sets the mapping state to mapped or unmapped.

HRESULT SetMappingState(

 [IN] int iPos,

 [IN] IPin *pIPin,

 [IN] DWORD dwSSRC,

 [IN] BOOL bMapped

);

Parameters use:

	iPos
	Position of pin to map/unmap, iPos has precedence over IPIn

	pIPin
	Pin to map/unmap, iPos has precedence over IPIn

	dwSSRC
	Participant’s SSRC to map/unmap

	bMapped
	If zero, unmap, otherwise map

Returned value:

	NOERROR
	Call succeeded

	RTPERR_POINTER
	NULL pointers passed when a non NULL was expected

	RTPERR_CRITSECT
	Failed to acquire a critical section

	RTPERR_INVALIDARG
	The iPos position doesn’t exist

	RTPERR_INVALIDSTATE
	Init not done yet or an internal pointer was found to be NULL when a non NULL was expected or the pin doesn’t have an RTP output (the RTP counterpart to a DShow pin) or the SSRC is not mapped when trying to unmap

	RTPERR_INVALIDRTPADDR
	Internal structure found is invalid

	RTPERR_NOTFOUND
	IPin not found or SSRC not found

Remarks:

When mapping, both, the pin and the SSRC must be free, i.e. unmapped.

When unmapping, you can specify only SSRC or one of position or pin, but is you specify both (i.e. SSRC and any of position or pin), they must match (i.e. the SSRC must already been mapped to that pin).

The non-specified position is –1, the non-specified IPin is NULL.

There is a scenario that may lead to inconsistency between the real mapping and the mapping view in DShow.

This may happen if pins are added before Init() is called, and one or more of the RTP outputs (the DShow pin’s counterpart in RTP stack) fail to be created, so the number of DShow pins is bigger that the number of RTP outputs.

When the above happens, mapping by pin may fail with error RTPERR_INVALIDSTATE if the pin hasn’t an RTP output. Mapping by position will select that position in the RTP outputs, and this position may not be the same its DShow pin has.

4.1.5 FindPin

Finds the pin this participant is mapped to.

HRESULT FindPin(

 [IN] DWORD dwSSRC,

 [OUT] int *piPos,

 [OUT] IPin **ppIPin

);

Parameters use:

	dwSSRC
	Participant’s SSRC to find

	piPos
	Position of pin the SSRC is mapped to

	ppIPin
	Pin the SSRC is mapped to

Returned value:

	NOERROR
	Call succeeded

	RTPERR_POINTER
	NULL pointers passed when at least one non NULL was expected

	RTPERR_INVALIDARG
	The iPos position doesn’t exist

	RTPERR_INVALIDSTATE
	Init not done yet or an internal pointer was found to be NULL when a non NULL was expected

	RTPERR_INVALIDRTPADDR
	Internal structure found is invalid

	RTPERR_NOTFOUND
	SSRC not found

Remarks:

You can specify only one of piPin or ppIPin. If the SSRC is not mapped, the iPos value is set to –1 and the IPin pointer is set to NULL.

4.1.6 FindSSRC

Finds the SSRC mapped to a pin.

HRESULT FindSSRC(

 [IN] int iPos,

 [IN] IPin *pIPin,

 [OUT] DWORD *pdwSSRC

);

Parameters use:

	iPos
	Pin position, has precedence over Pin

	pIPin
	Pin

	pdwSSRC
	SSRC from participant mapped to the specified pin

Returned value:

	NOERROR
	Call succeeded

	RTPERR_POINTER
	NULL pointers passed when a non NULL was expected

	RTPERR_INVALIDARG
	The iPos position doesn’t exist

	RTPERR_INVALIDSTATE
	Init not done yet or an internal pointer was found to be NULL when a non NULL was expected or the DShow pin doesn’t have an RTP output

	RTPERR_INVALIDRTPADDR
	Internal structure found is invalid

	RTPERR_NOTFOUND
	SSRC not found

Remarks:

If the pin is not mapped, the SSRC is set to 0.

The non-specified position is –1, the non-specified IPin is NULL.

5. Interface IRtpMediaControl

5.1.1 SetFormatMapping

Set the mapping between a payload type, a media type and a sampling frequency.

HRESULT SetFormatMapping(

 [IN] DWORD dwRTPPayLoadType,

 [IN] DWORD dwFrequency,

 [IN] AM_MEDIA_TYPE *pMediaType

);

Parameters use:

	dwRTPPayLoadType
	RTP payload type

	dwFrequency
	Sampling frequency

	pMediaType
	Media type

Returned value:

	NOERROR
	Call succeeded

	RTPERR_POINTER
	NULL pointers passed when a non NULL was expected

	RTPERR_MEMORY
	Failed to allocate memory to store the media type

	RTPERR_RESOURCES
	There are no more available entries to add a new mapping

Remarks:

The maximum number of entries is specified by MAX_MEDIATYPE_MAPPINGS (10).

5.1.2 FlushFormatMappings

Empty the format mappings table.

HRESULT FlushFormatMappings (

);

Returned value:

	NOERROR
	Call succeeded

Remarks:

This function always succeeds and leaves the format mappings table empty.

6. Interface IRtpDtmf

6.1.1 SetDtmfParameters

Configures the DTMF parameters.

HRESULT SetDtmfParameters(

 [IN] DWORD dwPT_Dtmf

);

Parameters use:

	dwPT_Dtmf
	DTMF payload type

Returned value:

	NOERROR
	Call succeeded

	RTPERR_INVALIDARG
	The payload type is invalid

	RTPERR_INVALIDSTATE
	Init not done yet

Remarks:

It is suggested that a payload type from the range of dynamic payload types be used, as of RFC1890, that is the range 96 to 127.

6.1.2 SendDtmfEvent

Sends DTMF event.

HRESULT SendDtmfEvent(

 [IN] DWORD dwEvent,

 [IN] DWORD dwVolume,

 [IN] DWORD dwDuration,

 [IN] BOOL bEnd

);

Parameters use:

	dwEvent
	DTMF event to send

	dwVolume
	Event’s volume (0 to –63 dBm0 without the sign)

	dwDuration
	Event’s duration in milliseconds

	bEnd
	Indicates if this is the end of the evnt

Returned value:

	NOERROR
	Call succeeded

	RTPERR_INVALIDARG
	Any of the input parameters is invalid

	RTPERR_INVALIDSTATE
	Init not done yet or the DTMF payload type hasn’t been specified yet

	RTPERR_ENCRYPT
	The packet encryption failed

	RTPERR_WS2SEND
	The packet was not successfully sent

Remarks:

Directs an RTP render filter to send a packet formatted according to rfc2833 containing the specified event, specified volume level, duration in milliseconds, and the END flag.

The RTP render filter will convert the duration in milliseconds to the timestamp units based on its current sampling frequency, or 8000 Hz if none has been specified.

The events are defined in RFC2823, and include:

Event encoding
(decimal)

0—9

0--9

*

10

#

11

A—D

12--15

Flash

16

7. Interface IRtpRedundancy

7.1.1 SetRedParameters

Configures the redundancy parameters for receiver or sender.

HRESULT SetRedParameters(

 [IN] DWORD dwPT_Red,

 [IN] DWORD dwInitialRedDistance,

 [IN] DWORD dwMaxRedDistance

);

Parameters use:

	dwPT_Red
	Payload type for redundant packets

	dwInitialRedDistance
	Initial redundancy distance

	dwMaxRedDistance
	Maximum redundancy distance

Returned value:

	NOERROR
	Call succeeded

	RTPERR_NOTINIT
	Init hasn’t been called yet

	RTPERR_INVALIDARG
	The payload type is invalid

	RTPERR_INVALIDSTATE
	Redundancy only valid for AUDIO class of stream

Remarks:

Parameters dwInitialRedDistance and dwMaxRedDistance are meaningful only for a sender. All the parameters can receive a –1 and defaults will be assigned to them, yet, in order to enable redundancy, this method must be called, even with –1 in all the parameters. The RFC2198 describes the RTP header format for redundant audio.

8. Events

Events are fired only if they are enabled, and each event can be enabled individually, no events is the default behavior.
8.1 Participants expiration
Whenever a participant stops sending RTP and RTCP packets or the receiver is just not receiving them, the event RTPPARINFO_EVENT_STALL will be issued after 5 times the RTCP interval report. Then, if no packets are yet received from the same participant after 10 times the current RTCP interval report, then the event RTPPARINFO_EVENT_DEL will be posted.

Note that the timers are based on the current RTCP interval report. That interval scales with the amount of participants and is always random around a reference value. In unicast, that interval goes around 4.1 instead of the expected 5 due to an RTP compensation (see latest RTP draft), that makes roughly a 20.5 and 41 seconds interval since last RTP or RTCP packet was received for the events STALL and DEL to be fired respectively.
9. Error codes

<To be done>

10. References

RFC 1889 - RTP: A Transport Protocol for Real-Time Applications

H. Schulzrinne, S. Casner, R. Frederick, V. Jacobson

RFC 1890 - RTP Profile for Audio and Video Conferences with Minimal Control

H. Schulzrinne

RFC 2833 - RTP Payload for DTMF Digits, Telephony Tones and Telephony Signals

H. Schulzrinne, S. Petrack

RFC2198 - RTP Payload for Redundant Audio Data

C. Perkins, I. Kouvelas, O. Hodson, V. Hardman, M. Handley, J.C. Bolot, A. Vega-Garcia, S. Fosse-Parisis

11. Open issues

None.

Transform filter

Render filter

Source filter

� The current implementation may or may not provide all of the requirements listed here. See the actual methods implemented for detailed information.

� Note that one or more “modes” are associated with the cryptographic algorithms, e.g. DES in CBC or ECB mode, the mode here is an RTP specific and independent mode, and they should not be confused.

� The pass phrase is currently taken without any parsing, but note that RFC1890 states that the pass phrase MAY be preceded by a specification of the encryption algorithm (e.g.: DES-CBC/pass-phrase) which currently is not supported.

�PAGE \# "'Page: '#'�'" �Page: 3���The support from the QOS packet scheduler could be used if available and otherwise use a sneding thread to work as a packet scheduler on a per link basis.

�PAGE \# "'Page: '#'�'" �Page: 4���At the very least, this is required to synchronize streams.

�PAGE \# "'Page: '#'�'" �Page: 4���The encoder/decoder will have to provide the mechanism to create a receiving and/or sending flow spec based on its current settings, that can be as simple as copying some fixed values, e.g. G.711 will not have different flow spec depending on current settings because is a fix rate codec, though, some parameters like max bucket size could be fine tuned.

�PAGE \# "'Page: '#'�'" �Page: 4���Probably wise to put all statistics in shared memory and build a monitoring tool.

�PAGE \# "'Page: '#'�'" �Page: 4���Being able to keep track of memory usage may be also a useful feature.

5/16/2001 Microsoft Corporation Company Confidential 12:08 PM

