Review of NetMeeting Requirements
Audio and Video Streaming
Functional Specification – Draft

Author: Philippe Ferriere, Mu Han, Andres Vega-Garcia
Revision 0.1.24, 13 October, 1998
This documentation is an early release of the final product documentation. It is meant to accompany software that is still in development. Some of the information in this documentation may be inaccurate or may not be an accurate representation of the functionality of the final retail product. Microsoft assumes no responsibility for any damages that might occur either directly or indirectly from these inaccuracies.
31.
Introduction

2.
Document organization
4
3.
Video requirements
4
3.1
Legacy VFW and new WDM capture device support
4
3.1.1
Analysis
4
3.1.2
Time estimates
5
3.2
Source dialogs for VfW devices, expose WDM driver interfaces
5
3.2.1
Analysis
5
3.2.2
Time estimates
6
3.3
On-the-fly video frame size changes (QCIF, CIF, SQCIF)
6
3.3.1
Analysis
6
3.3.2
External dependencies
7
3.3.3
Time estimates
7
3.4
Multiple capture device selection dialog
7
3.4.1
Analysis
7
3.4.2
Time estimates
7
3.5
Simple image size stretch (x2, x3, and x4)
8
3.5.1
Analysis
8
3.5.2
Time estimates
8
3.6
Video preview while not in a call
8
3.6.1
Analysis
8
3.6.2
Time estimates
8
3.7
Signaling for remote pausing
8
3.7.1
Analysis
9
3.7.2
Time estimates
9
3.8
Video codec selection
9
3.8.1
Analysis
9
3.8.2
Time estimates
9
3.9
Interface methods to control frame rate, bitrates, and video quality
10
3.9.1
Analysis
10
3.9.2
Time estimates
11
3.10
Other advanced video features that may be exposed through TAPI
11
3.10.1
Analysis
11
3.10.2
Time estimates
12
4.
Audio requirements
12
4.1
Audio device selection
12
4.1.1
Analysis
12
4.1.2
External dependencies
12
4.1.3
Time estimates
13
4.2
Support for system policies on audio devices
13
4.2.1
Analysis
13
4.2.2
Time estimates
13
4.3
Duplex control (full or half)
13
4.3.1
Analysis
13
4.3.2
External dependencies
14
4.3.3
Time estimates
14
4.4
Recording volume controls and AGC
14
4.4.1
Analysis
14
4.4.2
Time estimates
15
4.5
Silence threshold controls, including "automatic and adaptive" silence detection
15
4.5.1
Analysis
15
4.5.2
Time estimates
15
4.6
AutoMix microphone feature
15
4.6.1
Analysis
16
4.6.2
Time estimates
16
4.7
Polling or notifications for signal level (for visual VU meter), device status, and stream status
16
4.7.1
Analysis
16
4.7.2
Time estimates
16
4.8
Ability to pause audio streams
17
4.8.1
Analysis
17
4.8.2
Time estimates
17
4.9
Audio codec selection
18
4.9.1
Analysis
18
4.9.2
Time estimates
18
4.10
Acoustic echo cancellation
18
4.10.1
Analysis
18
4.10.2
External dependencies
19
4.10.3
Time estimates
19
5.
References
19

1. Introduction

NetMeeting’s requirements relate to video and audio streaming, as well as H.245 call control. They do not address related issues such as T.120, MCU, gateway or gatekeeper support.

We address each of the audio and video areas independently. The call control requirements have been merged with the appropriate audio and video requirements. We describe the list of interfaces that need to be supported by the TAPI 3.1 COM objects to meet each of the requirements, without going into the details of each of those interfaces. This list of interfaces is used to understand how the TAPI 3.1 stream objects need to be modified. Based on this analysis, generate estimates on the amount of work needed to fully characterize those interfaces, and add support for these interfaces in the TAPI 3.1 framework architecture.

Current estimates for architectural and implementation work are summarized in the following table (details appear in each of the sections of this document). Two milestones are defined. M1 describes work that will be done by the TAPI 3.1 team in our first deliverable, M2 relates to features that will only appear in a later deliverable:

NetMeeting

Requirement
M

1
M

2
Days

Legacy VfW and new WDM capture device support
(
(
24

Source dialogs for VfW devices, expose WDM driver interfaces
(
(
9

On-the-fly video frame size changes (QCIF, CIF, SQCIF)
(
(
10

Multiple capture device selection dialog
(
(
0

Simple image size stretch (x2, x3, and x4)
(
(
0

Video preview while not in a call
(
(
6

Signaling for remote pausing
(
(
4

Video codec selection
(
(
8

Interface methods to control frame rate, bitrates and video quality
(
(
98

Hardware Acceleration of capture
(
(
20

High-Resolution snapshots

(
20

179
199

Audio device selection
(
(
18

Support for system policies on audio devices
(
(
0

Duplex control (full or half)
(
(
18

Recording volume controls and AGC
(
(
7

Silence threshold controls, including “automatic\adpative” silence detection
(
(
6

AutoMix microphone feature
(
(
7

Polling or notifications for signal level, device status, and stream status
(
(
5

AutoMix microphone feature
(
(
7

Ability to pause audio streams
(
(
19

Audio codec selection
(
(
8

Acoustic echo cancellation

(
6

95
101

Total
274
300

Note that most of the streaming work items have a dependency on DShow 7.0’s dynamic graph capabilities currently scheduled to ship in May 1999.

This list does not include any of the re-writing of the call control stacks as planned by Don and Mike. It is possible for us to meet all of the above NetMeeting requirements without any of those changes.

2. Document organization

Section 3 of this document describes the list of interfaces that need to be implemented by video terminal and stream objects in order to answer NetMeeting’s video requirements.

Section 4 enumerates the list of interfaces that need to be implemented by audio terminal and stream objects in order to enable NetMeeting’s audio requirements.

3. Video requirements

This section deals with VfW and WDM video capture device selection and configuration, stream format configuration and codec selection, video render control, supporting video preview outside of a call, frame rate and bitrate control, H.245 signaling, and advanced consumer features. We provide detailed analysis of the modules, interfaces and techniques TAPI 3.1 uses to answer this requirement.

3.1 Legacy VFW and new WDM capture device support

This NetMeeting requirement is described
 as follows:

TAPI should provide video capture terminals corresponding to all VFW and WDM capture drivers. The ability to enumerate the available terminals appears to already exist.

3.1.1 Analysis

TAPI’s Address object exposes the ITTerminalSupport interface. Applications such as NetMeeting can use the EnumerateStaticTerminals method on this interface to get an IEnumTerminal device enumerating interface. This interface will enumerate the terminal objects, returning a pointer to their ITTerminal interface. The application is then responsible for calling get_MediaType on the ITTerminal interface to discriminate between audio and capture devices.

The quality and performance expectations behind this requirement imply that the TAPI team implements its own video capture source filter in order to provide:

· Optimized support for any VfW or WDM device, based on a knowledge base of their capabilities

· Size conversion operations from VfW to ITU-T size

· Format conversions (MJPEG to I420 for instance) when codecs do not support the capture device native type

The H.263 and H.261 NetMeeting and TAPI codec code bases need to be merged. The NetMeeting code base supports many more input formats, and processing operations such as cropping of image data. Both code bases contain bug fixes that need to be consolidated in the Video Encoder and Video Decoder filters.

3.1.2 Time estimates

The following table lists the work items required to answer NetMeeting’s requirement:

Component
Work Item
Time Estimate

Video Capture Source Filter
Architecture
2 days

Implementation
10 days

Video Encoder Filter
Architecture
1 day

Implementation
5 days

Video Decoder Filter
Architecture
1 day

Implementation
5 days

Total

24 days

3.2 Source dialogs for VfW devices, expose WDM driver interfaces

This NetMeeting requirement is described as follows:

Older VFW drivers provide their own "source" and "format" dialog boxes for the user to configure the hardware. An application will need a way to display such dialogs. For newer WDM drivers, exposing IAMVideoControl, IAMVideoProcAmp, IAMCameraControl, and IAMXBar interfaces will be sufficient. TAPI may elect to implement their own dialogs for these controls to be consistent with the activation of VFW dialogs.

3.2.1 Analysis

In order to support this requirement, we define new control interfaces on the Local Video Stream object. The Local Video Stream object, on top of the ITStream interface, will expose the ITCrossbar, ITVideoProcAmp, ITCameraControl, ITVideoControl and ITVfWCaptureDialogs interfaces. In the case of the H.323 and H.324 MSP, those interfaces directly map to the corresponding DirectShow interfaces implemented by either the Video Capture Source filter or the Video Encoder filter.

Those interfaces cannot be implemented on the Terminal object since they may be implemented by the Video Encoder Filter, when not implemented by the Video Capture Source Filter.

There is little work required in the specification of these interfaces: they will have the same methods, method parameters and return values than their DirectShow counterpart. Most of the work lies in adding support for these interfaces in the Local Video Stream object, and implement those interfaces on the Video Capture Source filter and Video Encoder filter.

3.2.2 Time estimates

The following table lists the work items required to answer NetMeeting’s requirement:

Component
Work Item
Time Estimate

Local Video Stream object
Architecture
1 day

Implementation
2 days

Video Capture Source Filter
Architecture
1 days

Implementation
2 days

Video Encoder Filter
Architecture
1 days

Implementation
2 days

Total

9 days

3.3 On-the-fly video frame size changes (QCIF, CIF, SQCIF)

This NetMeeting requirement is described as follows:

An application should be able to enumerate all the available formats and apply size changes to the active send stream.

3.3.1 Analysis

In order to support this requirement, we define a new stream configuration interface on the Local Video Send Substream and Local Video Preview Substream objects. The stream objects, on top of the ITSubStream interface, implement the ITFormatControl interface. In the case of the H.323 and H.324 MSP, those interfaces will be implemented using the DirectShow IAMStreamConfig interface on one or more output pins. In the case of the Local Video Send Substream object, this interface is implemented by calling IAMStreamConfig::SetFormat on the Video Capture pin of the Video Capture Source filter, and the Compressed Video Output pin of the Video Encoder filter. The Local Video Preview Substream object calls the IAMStreamConfig interface exposed by the Video Preview Pin of the Video Capture Source Filter.

Those interfaces cannot be implemented on the Terminal object since they may be implemented by the output pin of the Video Encoder filter, the preview and capture pins of the Video Capture Source filter. The Terminal object does not make any distinctions between preview and capture pins, nor has access to the Video Encoder filter compressed output pin.

There is little work required in the specification of this interface: it will have the same methods, method parameters and return values than its DirectShow counterpart (IAMStreamConfig). Most of the work lies in adding support for the ITFormatControl on the Substreams, call the appropriate IAMStreamConfig interfaces on the output pins of the Video Encoder filter and the Video Capture Source Filter. We still need to make sure that there isn’t any discrepancy between the formats applied on the capture device and the encoder filter. If the capture device does not expose a Preview pin, the Video Capture Source Filter will implement a teeing mechanism and resolve discrepancies between the formats set on the Preview pin and the Capture pin (different image sizes…).

We need to implement our own allocators to make the best usage of memory for the video buffers and still allow very fast switching between different image sizes.

3.3.2 External dependencies

In order for this scheme to work smoothly, we will require new version of DShow that supports dynamic format changes.

3.3.3 Time estimates

The following table lists the work items required to answer NetMeeting’s requirement:

Component
Work Item
Time Estimate

Interface and allocator
Architecture
1 day

Implementation
4 days

Video Capture Filter internal tee
Architecture
1 day

Implementation
4 days

Total

10 days

3.4 Multiple capture device selection dialog

This NetMeeting requirement is described as follows:

Already implemented via enumeration methods (ITTerminalSupport).

3.4.1 Analysis

As explained earlier, TAPI’s Address object exposes the ITTerminalSupport interface. Applications such as NetMeeting can use the EnumerateStaticTerminals method on this interface to get an IEnumTerminal device enumerating interface. This interface will enumerate the terminal objects, returning a pointer to their ITTerminal interface. The application needs to call get_MediaType on the ITTerminal interface to discriminate between audio and capture devices.

The application is also responsible for implementing the right UI dialog to expose the list of devices to the user.

3.4.2 Time estimates

There is no work planned in this area.

3.5 Simple image size stretch (x2, x3, and x4)

This NetMeeting requirement is described as follows:

The application should be able to enlarge video capture or receive windows to an integral multiple of the frame size that is actually being sent or received.

3.5.1 Analysis

The terminal object already implements the IBasicVideo interface. Applications can already use this DirectShow interface to control how the video data should be rendered. The methods on this interface allow for stretching video to an arbitrary size.

3.5.2 Time estimates

There is no work planned in this area.

3.6 Video preview while not in a call

This NetMeeting requirement is described as follows:

Currently, TAPI does not provide a way for an application to preview local video while not in a call.

3.6.1 Analysis

TAPI 3.1 exposes two new steam objects called a Stream and a Substream. The local video preview will be exposed as a Substream of the Local Video Stream object. The Local Video Preview Substream will implement ITFrameRateControl, ITCPUControl and ITFormatControl. We already have the means to add the right chain of filters in the filter graph to provide the Preview functionality (connect Preview output pin of the video encode filter to input pin of video render terminal).

3.6.2 Time estimates

The following table lists the work items required to answer NetMeeting’s requirement:

Component
Work Item
Time Estimate

Interface work
Architecture
2 days

Implementation
4 days

Total

6 days

3.7 Signaling for remote pausing

This NetMeeting requirement is described as follows:

If A pauses remote video, message (H.245) should be sent to B so that B can stop streaming. Likewise, when the stream becomes started again, the remote sender should start streaming again.

3.7.1 Analysis

The application can pause a stream locally by calling the ITStream::PauseStream or ITStream::StopStream method. The filters will stop passing samples but the channel stays open. The packets sent from the other party will get dropped.

By default, the stream object will issue an H.245 command to pause the remote endpoint.

3.7.2 Time estimates

The following table lists the work items required to answer NetMeeting’s requirement:

Component
Work Item
Time Estimate

Add H245 specific interface
Architecture
1 day

Implementation
3 days

Total

4 days

3.8 Video codec selection

This NetMeeting requirement is described as follows:

An application should have a way to enumerate over all the available codecs (e.g. H263 and H261). It should also be allowed to specify which is the preferred codec. Failure to use or negotiate the preferred codec should not cause an error. In this case, TAPI should pick a more appropriate codec.

3.8.1 Analysis

This is handled by enumerating supported formats on the stream object via the ITFormatControl interface. This interface also allows the application to query for and set a new format on the stream.

Most of the work lies in adding support for the ITFormatControl on the Local Video Send substream, call the appropriate IAMStreamConfig interfaces on the output pins of the Video Encoder filter and the Video Capture Source Filter. We still need to make sure that there isn’t any discrepancy between the formats applied on the capture device and the encoder filter.

3.8.2 Time estimates

The following table lists the work items required to answer NetMeeting’s requirement:

Component
Work Item
Time Estimate

ITFomatControl interface
Architecture
2 days

Implementation
6 days

Total

8 days

3.9 Interface methods to control frame rate, bitrates, and video quality

This NetMeeting requirement is described as follows:

Currently, TAPI is optimized for 16 kbits/sec video transmission. This results in poor quality on LAN settings. TAPI should expose methods such that the application can specify the following in regards to the type of video connections it wants to have:

· Set preview frame rate and send frame rate independently

· Set render frame rate independent of the receive frame rate

· Set maximum receive and send bitrates

· Provides support for "System policies" (codec, device, and QoS restrictions)

· Issue and collect Flow Control commands

· TAPI should provide a simple interface to set either quality parameter or latency parameter to control overall call quality

3.9.1 Analysis

In order to support this requirement the Local Video Send Substream and Local Video Preview Substream need to expose the ITFrameRateControl, ITBitrateControl and ITCPUControl interfaces. The Video Preview and Video Capture output pins of the Capture Source filter, as well as the Compressed Video output pin of the Video Encoder filter need to implement the IFrameRateControl, IBitrateControl and ICPUControl interfaces. Those interfaces will not be directly called by the application but will have to go through the QoS module first, in order to be checked. The QoS module will then call the control interfaces on the pins based on its current knowledge of CPU, network bandwidth availability and user preferences. The QoS module may call these interfaces if it determines that an adjustment in the filter parameters needs to be made, e.g. when a user preference is violated or to improve quality. An example is when the loss rate goes too high and the output bit rate needs to be decreased, or when the CPU usage is going above the upper limit and the frame rate has to be decreased or the time to encode a single frame has to be reduced.

The Remote Video Stream will also need to expose the ITFrameRateControl, ITBitrateControl and ITCPUControl interfaces. The ITBitrateControl will be implemented by the stream object by issuing an Flow Control H.245 command. The ITFrameRateControl and ITCPUControl interfaces will be implemented by the QoS module, that will in turn call IFrameRateControl and ICPUControl interface methods on the output pin of the Video Decoder filter, if needed.

The Local Video Send Substream and Remote Video substream will expose an ITQualityControl interface. This interface will allow the application to control the quality of the outgoing or incoming video stream. The Local Video Send Substream will implement this interface by calling IFrameRateControl on the Video Capture pin and\or IBitrateControl on the Compressed Video output pin.

The call control module needs to allow the streams to issue H.245 command, and be able to dispatch incoming call control commands to the streams.

We will not provide a mechanism for system policies. The application is responsible for doing this work. On the other hand, we will implement all the bitrate, frame rate, and CPU control interfaces to support those policies.

In order to provide a high-level of performances, and support our new filter and RTP packetization model we need to rewrite the RTP and Demux filters, remove the SPH and RPH filters and move those functionality into the RTP filters.

3.9.2 Time estimates

The following table lists the work items required to answer NetMeeting’s requirement:

Component
Work Item
Time Estimate

Control interfaces work
Architecture
3 days

Implementation
10 days

QoS module work
Architecture
4 days

Implementation
8 days

Support for H.245 commands and indications
Architecture
1 day

Implementation
2 days

All RTP work
Architecture
15 days

RTP\RTCP base
Implementation
20 days

GQoS support
Implementation
10 days

Security
Implementation
10 days

Demux
Implementation
5 days

SPH/RPH
Implementation
5 days

Dejitter
Implementation
5 days

Total

98 days

3.10 Other advanced video features that may be exposed through TAPI

This NetMeeting requirement is described as follows:

These are features that NetMeeting would like to have available in the future. The ability to query for support, enable, and disable these features should be considered as well:

· Hardware acceleration of capture in compressed format

· DirectDraw Blit and Stretch hardware acceleration for Local Video preview window

· Arbitrary size stretch

· Picture-In-Picture

· Multiple-monitor support

· High-resolution still snapshots

· The ability to query for support and trigger a request from the send or receive side

3.10.1 Analysis

Our Video Render terminal expose the IBasicVideo and IVideoWindow interfaces. Those interfaces can already be used by applications to provide arbitrary size stretch, picture-in-picture and automatic blit and stretch acceleration through DirectDraw.

Hardware acceleration or capture in compressed format requires modifications of the Capture source filter to understand H.261 and H.263 types. The MSP also needs to understand that it shouldn’t connect the Capture Source filter to a Video Encoder filter.

High-resolution still snapshots adding support for Progressive Refinement commands and add the proper code in the H.26x encoders. We need to also create a special pin on the Capture Source filter to generate hgh-resolution images

3.10.2 Time estimates

The following table lists the work items required to answer NetMeeting’s requirement:

Component
Work Item
Time Estimate

Hardware Acceleration of capture
Architecture
5 days

Implementation
15 days

High-resolution snaphots
Architecture
5 days

Implementation
15 days

Total

40 days

4. Audio requirements

This section deals with audio recording and playback device selection and configuration, stream configuration, H.245 signaling, codec selection, and advanced consumer features. We provide an overview of the modules, interfaces and techniques TAPI 3.1 uses to answer this requirement.

4.1 Audio device selection

This NetMeeting requirement is described as follows:

This has already been implemented. The application can simply enumerate all the available terminals for a given address object and provide the user with a list to choose from.

4.1.1 Analysis

In NT5, one piece of audio hardware might show up as three devices, wave, Direct Sound, and WDM. If the WDM device is available, it can be used with the kmixer proxy filter and provide the best performance. If WDM is not available, Direct Sound would be a good choice because it provides mixing with system sound. The only problem with Direct Sound is that it might be emulated on top of wave. In this case, using the wave directly might be better.

The terminal enumeration will be based on the hardware devices. The actual driver in use will be selected by the MSP automatically. There will also be extra interface where the app can make its own choice of driver if it really wants to do so.

4.1.2 External dependencies

How to determine the devices enumerated are using the same hardware. DShow devenum issue.

How to find out if the Direct Sound is emulated. DShow devenum issue.

4.1.3 Time estimates

The following table lists the work items required to answer NetMeeting’s requirement:

Component
Work Item
Time Estimate

A smart enumeration
Architecture
3 days

Implementation
5 days

Direct Sound support in MSP
Architecture
2 days

Implementation
3 days

WDM and Kmixer support in MSP
Architecture
2 Days

Implementation
3 Days

Total

18 days

4.2 Support for system policies on audio devices

This NetMeeting requirement is described as follows:

An OEM or ISS manager may want to configure a machine with a registry key or system policy editor to disallow certain terminals from being used. An example scenario would be to prevent the user from accidentally choosing a voice modem that also supports a WAVE device as the terminal to use in an audio call.

4.2.1 Analysis

This is an application issue, not a platform issue. TAPI will always return an exhaustive list of enabled audio devices installed on the machine. The application is responsible to decide it the device should be made available to the user.

4.2.2 Time estimates

There is no work planned in this area.

4.3 Duplex control (full or half)

This NetMeeting requirement is described as follows:

While most all devices support full duplex operations, some users prefer a half-duplex experience to eliminate problems with echo.

4.3.1 Analysis

The feature requires that whenever we are rendering sound, the capture needs to be paused. A straightforward solution is to send two events from the audio render filter. One event is RENDERING_START. The filter sends the event the render queue change from empty to not empty. The other is RENDERING_STOP when the render queue gets empty.

We also need to provide an interface to allow the application to query for support for Half or Full Duplex, query for the current mode, and set the duplex mode to Half or Full-Duplex.

In addition, the half-duplex may have 2 modes of operation, 1) the capture device is muted whenever there are incoming packets, and 2) the incoming packets are discarded whenever the user wants to be in send mode.

Discarding packets can be done in the network filters on each direction and 2 events are required from the source network filter, RTP_SSRC_ACTIVE and RTP_SSRC_IDLE, to signal when a participant is sending data (incoming packets) and when it stops doing so.

4.3.2 External dependencies

DShow needs to modify the audio render filter to fire the events. If they don’t do it, we could get the code and do this ourselves.

4.3.3 Time estimates

The following table lists the work items required to answer NetMeeting’s requirement:

Component
Work Item
Time Estimate

Using the new event in MSP
Architecture
1 day

Implementation
1 day

Add duplex control interface to the stream object
Architecture
1 day

Implementation
2 days

If we need to modify the renderer ourselves
Analysis
5 days

Implementation
1 day

Mute receiver and add events
Analysis
3 days

Implementation
4 days

Total

18 days

4.4 Recording volume controls and AGC

This NetMeeting requirement is described as follows:

Currently, NetMeeting performs volume control through the mixer APIs provided by MMSYSTEM.DLL (e.g. "mixerOpen"). Not only does NetMeeting provide volume and gain controls, but also un-mutes the Wave and Speaker volume controls as well as insures the microphone input is enabled.

4.4.1 Analysis

The Audio capture terminal will support the IAMAudioInputMix interface to control the recording volume. It will also support an interface so that the app can enumerate the input channels and configure them. The input channels will also support the IAMAudioInputMix interface.

AGC is one of the method in IAMAudioInputMix interface. If the hardware supports it, it will return success. We just need to verify that it is working.

If the hardware doesn’t support it, the application will be able to query for it on the stream object to get a software-only emulated AGC.

4.4.2 Time estimates

The following table lists the work items required to answer NetMeeting’s requirement:

Component
Work Item
Time Estimate

Enable the audio input interfaces
Architecture
2 days

Implementation
5 days

Total

7 days

4.5 Silence threshold controls, including "automatic and adaptive" silence detection

This NetMeeting requirement is described as follows:

TAPI should provide auto-silence detection by default and provide an interface method such that the application can specify it's own silence threshold.

4.5.1 Analysis

The stream object needs to provide a new interface to enable this. We also need to define an interface for these features that can be supported by an output pin. If the encoder supports all the functionality, it will support this interface and the stream object uses this interface. If the encoder doesn’t support it, a silence suppression filter will be inserted and it will deal with this functionality. If it is a hardware-accelerated capture+encoder, it is required to support this interface.

4.5.2 Time estimates

The following table lists the work items required to answer NetMeeting’s requirement:

Component
Work Item
Time Estimate

Add interface to the stream object
Architecture
1 days

Implementation
2 days

Add support to silence suppressor
Architecture
1 days

Implementation
2 days

Total

6 days

4.6 AutoMix microphone feature

This NetMeeting requirement is described as follows:

This is NetMeeting's version of AGC. The microphone gain is lowered when clipping is detected and raised during low input levels.

4.6.1 Analysis

The software AGC will be supported on the stream object. The stream object will configure the encoder or the silence suppressor to do it.

4.6.2 Time estimates

The following table lists the work items required to answer NetMeeting’s requirement:

Component
Work Item
Time Estimate

Add AGC support to silence suppressor
Architecture
2 days

Implementation
5 days

Total

7 days

4.7 Polling or notifications for signal level (for visual VU meter), device status, and stream status

This NetMeeting requirement is described as follows:

· A method on the audio terminals is needed to find out what the current signal level is such that a visual "VU meter" can be implemented.

· TAPI issues TE_TERMINAL/TME_FAILED if an audio device fails to open. NetMeeting could inform the user when this condition occurs. Being able to receive notifications when a stream is paused or stopped (due to call control commands from the other side) would also be helpful.

· TAPI does not deliver TE_CALLMEDIA notifications consistently. For example, if the receive video stream does not get negotiated when the call starts up, but does get established later, the notification through the ITTAPIEventNotification interface gets sent. If the channel got started at call connect time, the notification never gets sent. It would be preferable if the UI always got these kinds of notifications delivered to it.

4.7.1 Analysis

Similar to section 4.5, this method will be in the same interfaces where the app and stream can configure silence levels.

The CME_STREAM_ACTIVE event is now fired on all streams, the app can listen to this event to find out when a stream is active.

On the render side, the interface will only support the VU meter. The implementer will be the output pin of the decoder filter.

4.7.2 Time estimates

The following table lists the work items required to answer NetMeeting’s requirement:

Component
Work Item
Time Estimate

Add the method to get the signal level
Architecture
1 days

Implementation
2 days

Total

5 days

4.8 Ability to pause audio streams

This NetMeeting requirement is described as follows:

· Some sound card drivers may not support a mute function on their mixers, so the ability to specify a "pause" operation to the capture and render terminals is needed. In the case of pausing a incoming stream, this operation could be tied to a remote signaling operation in call control.

· Ability to mute independent streams in a multi-point conference.

4.8.1 Analysis

The application can pause a stream locally by calling the ITStream::PauseStream or ITStream::StopStream method. The filters will stop passing samples but the channel stays open. The packets sent from the other party will get dropped.

By default, the stream object will issue an H.245 command to pause the remote endpoint.

When in a multicast conference, it is important to be able to mute individual participants because of different reasons. For example, that participant could be sending a disturbing noise or blank packets, that participant could be sending data we don’t care to receive, we could be low in resources and want to discard that participant’s data as soon as possible. In order to provide this functionality, the source network filters need the ability to mute specific sources.

In the case of an MCU supported multipoint call, we need special support from H.245 stack to control the MCU on a stream basis. We need to do some more research on how to implement this feature.

4.8.2 Time estimates

The following table lists the work items required to answer NetMeeting’s requirement:

Component
Work Item
Time Estimate

Add H245 specific interface
Architecture
2 days

Implementation
3 days

Mute specific SSRC RTP sources
Architecture
2 days

Implementation
2 days

MCU based stream control
Architecture
5 days

Implementation
5 days

Total

19 days

4.9 Audio codec selection

This NetMeeting requirement is described as follows:

An application should have a way to enumerate over all the available codecs (e.g. G711 and G723). It should also be allowed to specify which is the preferred codec. Failure to use or negotiate the preferred codec should not cause an error. In this case, TAPI should pick a more appropriate codec.

4.9.1 Analysis

This is handled by enumerating supported formats on the stream object via the ITFormatControl interface. This interface also allows the application to query for and set a new format on the stream.

We also need to develop a registration mechanism for audio encoders and decoders so that only the codecs registered with TAPI are exposed.

4.9.2 Time estimates

The following table lists the work items required to answer NetMeeting’s requirement:

Component
Work Item
Time Estimate

ITFomatControl interface
Architecture
3 days

Implementation
5 days

Total

8 days

4.10 Acoustic echo cancellation

This NetMeeting requirement is described as follows:

This is a feature that NetMeeting would like to have in the future. Jay Stokes has been consulting with both the NetMeeting and TAPI teams on how to provide this functionality once the PictureTel code is licensed.

4.10.1 Analysis

Important parts of the architecture to support AEC are still being worked out. There are many issues due to the fact that there are two driver stacks (PortClass and Stream). We will have to wait for Jay Stoke to finalize his design work before we can expose this feature to applications.

Still, there are many good reasons to anticipate the availability of this feature in the future. We need to create an interface to the stream to allow the application to query for AEC support, current mode, and set a new mode. If the AEC support algorithms enumeration, we will add an enumeration function to the interface. The application would be responsible for selecting the right algorithm.

4.10.2 External dependencies

Depends on the multimedia team to deliver the AEC.

4.10.3 Time estimates

The following table lists the work items required to answer NetMeeting’s requirement:

Component
Work Item
Time Estimate

Add interface to use AEC
Architecture
2 days

Implementation
4 days

Total

6 days

5. References

NetMeeting and TAPI Integration – Functional Overview

[image: image1.wmf]"NetMeeting and

TAPI Integration.doc"

NetMeeting and TAPI Integration Requirements

[image: image2.wmf]MoreTapi.doc

� All functional requirements are extracted from the NetMeeting documents included in the reference section.

Microsoft Corporation Company Confidential

10/13/98 Draft - Microsoft Corporation Company Confidential 4:47 PM

_969285601.doc
NetMeeting and TAPI Integration

Functional Overview

Draft

Authors: Philippe Ferriere, John Selbie

Revision 0.0.16, 26 June, 1998

21.
Introduction

1.1
Intended audience
2

1.2
Document organization
2

2.
NetMeeting media streaming strengths
2

2.1
Video capture
2

2.2
Audio recording
3

2.3
Video playback
4

2.4
Audio playback
4

2.5
CPU and bandwidth usage monitoring
5

2.6
H.245 commands and miscellaneous indications
5

3.
Functional requirements for TAPI 3.x
5

3.1
Video capture
5

3.1.1
Minimum feature set
5

3.1.2
TAPI only features
5

3.2
Audio recording
6

3.2.1
Minimum feature set
6

3.2.2
TAPI only features
6

3.3
Video playback
6

3.3.1
Minimum feature set
6

3.3.2
TAPI only features
6

3.4
Audio playback
6

3.4.1
Minimum feature set
6

3.4.2
TAPI only features
7

3.5
CPU and bandwidth usage monitoring
7

3.5.1
Minimum feature set
7

3.5.2
TAPI only features
7

3.6
H.245 commands and indications
7

3.6.1
Minimum feature set
7

3.6.2
TAPI only features
7

4.
References
7

1. Introduction

This short document presents an introductory list of functional requirements for the TAPI team in order to allow NetMeeting
 to run on top of TAPI 3.x on Win98 and NT5, with performances as good or better than what NetMeeting 2.11 already achieves on Win9x and NT4.0.

There is no reason for the NetMeeting A\V team to use - or design from scratch - another media streaming platform if a slightly modified version of TAPI can run on Win98 and NT5, and provide the necessary level of performances.

In order to help and scope the modifications that may have to be applied to TAPI 3.0, it is important to understand how strong an application NetMeeting 2.11 is on Win9x and NT4.0 platforms, and what makes it work well.

This document lists NetMeeting’s strengths, verbalizes them as functional specifications for TAPI to achieve parity in performance, and elaborates on additional requirements to guarantee higher performance on TAPI.

1.1 Intended audience

This document is intended for TAPI team members in charge of providing the NetMeeting team with a media streaming platform with performances and functionality as good, and preferably better, than what NetMeeting 2.11 achieves on all Windows operating systems.

1.2 Document organization

Section 2 describes the current streaming capabilities and functionality of NetMeeting 2.11 on all platforms.

Section 3 summarizes the list of functionalities that TAPI is required to provide in order to achieve the same level of functionality than NetMeeting 2.11, and elaborates on the list of features required to make NetMeeting stronger on TAPI.

2. NetMeeting media streaming strengths

This section provides an overview of NetMeeting’s audio and video streaming strengths and features that will need to be matched by TAPI’s own streaming architecture.

2.1 Video capture

Most of the video streaming performances exhibited by NetMeeting come from its knowledgeable capture layer. NetMeeting will only make use of advanced features with VfW capture devices – and now WDM devices – after the NetMeeting test and development teams have effectively validated those features through exhaustive testing. This guarantees the best and consistent experience to NetMeeting users. For devices that support streaming, capture at a high frame rate can be achieved. For devices that do not support streaming, a safer and simpler approach is found in using frame-grabbing, yielding certainly lower performances. However, the device do not AV, nor hang, as is frequently the case in competitive products. This consistency in reliability, performance, and overall user experience has been key to NetMeeting's success in technical Press reviews.

NetMeeting currently supports three video sizes (“Small”, “Medium”, and “Large” UI sizes) that match the ITU-T sizes known as SQCIF, QCIF and CIF. Those sizes can be changed quickly, and at anytime during a call. It several capture devices are installed, the user can select which device to use from a drop down list.

NetMeeting renders a preview version of the captured video stream in its Local Video window. This window can be docked/undocked in NetMeeting’s main UI, as well as stretched.

2.2 Audio recording

Audio recording can occur through any Windows audio device that supports a recording format used by the codecs. At the present time, all NetMeeting codecs operate on 8000hz-16 bit PCM samples, so all recording devices must support this format.

User Interface stream controls.

From the NetMeeting UI components, the user can has the ability to do the following:

· Select which recording device to use. Only devices that support the 8000-16 format are available for the user to choose from.

· Control the recording and microphone gain on the Wave device’s mixer. A feature known as “AutoMix” is provided that adjusts the mixer settings based on occurrences of clipping and low volume inputs.

· Manually adjust the silence threshold if he desires, although an “automatic” mode is provided that adapts to the background noise of the room.

· If the recording device’s mixer supports automatic gain control (AGC) or a “Microphone Boost” control, a UI component is available for the user to enable this feature.

· Enable full or half duplex recording. Full duplex is enabled by default. Some sound cards do no support full duplex operations, or only function well in half duplex mode.

· The ability to pause the recording stream so as to achieve a “mute” effect. This a stream control, not a mixer control.

The duplex, mixer settings, and silence level can be changed while in a call. It is not necessary to support the changing of the audio device while streaming.

While in a call, a signal level meter is displayed on the UI to indicate speech input, speech signal strength, and transmission.

Codecs

NetMeeting’s default codec is G723.1, and it can operate at a sampling rate of 6400 or 5333 bits per second. Other codecs that ship with NetMeeting include G.711 (uLaw or ALaw) and the L&H codecs.

Advanced features of audio capture

An advanced feature of audio capture is the ability for the user to select a particular codec to use in subsequent calls. Manual codec selection doesn’t always imply that the codec will be used. Capabilities, bandwidth, and interoperability may require use of a different codec.

The NetMeeting UI could benefit from notifications or polling mechanisms that indicate the audio stream status. Information to indicate that a device failed to open and stream activation (on/off) would be beneficial.

The NetMeeting team has experimented with different techniques of Acoustic Echo Cancellation (AEC) and speakerphone algorithms. While it is desirable for AEC to be built into the hardware itself, a software approach built into TAPI would be beneficial to all NetMeeting users.

2.3 Video playback

NetMeeting renders the incoming video stream into a Remote Video window that can be docked/undocked in NetMeeting’s main UI, as well as stretched.

2.4 Audio playback

Most of the functionality of audio recording that is described above also applies to audio playback. NetMeeting currently supports audio playback through the older set of “WaveOut” APIs as well as through DirectSound (version 5 or later only).

User interface stream controls

· Device Selection – NetMeeting only allows the use of playback devices that support the 8000-16 format. This may change if a codec is available with a different sampling rate.

· Volume control – The playback volume can be set by the user.

· Pause control – the ability to pause the stream in order to achieve a mute effect.

· Full Duplex – Can be turned on or off. As a requirement to support half-duplex, silence detection by the playback stream may be necessary.

DirectSound

NetMeeting users can gain the benefits of low latency audio if DirectSound (version 5 or later) is available. NetMeeting 2.1 would default to using DirectSound if it was available. However, many popular sound cards (Ensoniq, Gravis, Aztech) don’t function well when used in full duplex mode with DirectSound available. As a result of PSS complaints and other bug reports, a UI control to NetMeeting 3.0 has been added to turn DirectSound use off.

It’s not unreasonable to require a compatible DirectSound sound card for multi-point playback.

2.5 CPU and bandwidth usage monitoring

NetMeeting also has its own internal QoS module that monitors CPU as well as local bandwidth usage. It is important to regulate CPU usage so that application sharing gets a higher share of the CPU than video streaming when run concurrently. It is also important that audio packets get higher priority than video packets when going over the wire. When journalists review, or people simply use NetMeeting, their machine is always responsive, even when application sharing, audio, and video streaming are occurring at the same time. Similarly, audio playback isn't cut when video bandwidth usage increases.

2.6 H.245 commands and miscellaneous indications

H.245 commands and indications provide a way for H.323 endpoints (including NetMeeting) to influence the behavior of other remote H.323 endpoints. Being able to send and receive temporal/spatial trade-off, flow control and frame update requests (among others) is crucial to NetMeeting. A temporal/spatial trade-off command allows users to modify the frame rate and video quality of incoming video streams. Fast update requests are generally issued when source switching occurs in multipoint applications, or packet loss has been detected by a remote endpoint, or a video incoming stream needs to be restarted. The flow control command is used to allow the bit rate of the video stream to be controlled by the remote endpoint. This has a number of purposes: interworking with terminals that only support a finite number of bit rates; multi-point applications where the rates from different sources should be matched; and flow control in congested networks.

3. Functional requirements for TAPI 3.x

This section summarizes the list of functionalities that TAPI is required to provide in order to achieve the same level of functionality than NetMeeting 2.11, and elaborates on the list of features required to make NetMeeting stronger on TAPI.

3.1 Video capture

3.1.1 Minimum feature set

· Legacy VfW and new WDM capture devices support

· Source dialog settings for VfW devices, VideoProcAmp and CameraControl dialogs for WDM devices

· On-the-fly video frame size changes

· Multiple capture device selection dialog

· Simple image size stretch (x2, x3, and x4)

3.1.2 TAPI only features

· Hardware acceleration of capture in compressed format

· DirectDraw Blit and Stretch hardware acceleration for Local Video preview window

· Arbitrary size stretch

· Picture-In-Picture

· Multi-monitor support

· High-resolution still snapshots

3.2 Audio recording

3.2.1 Minimum feature set

APIs and interfaces for:

· Device selection

· Controlling Duplex (full or half)

· Recording volume controls and AGC

· Silence threshold controls, including “automatic and adaptive” silence detection

· AutoMix microphone feature.

· Polling or notifications for signal level (for visual VU meter), device status, and stream status.

· Mute/Pause control of microphone and outgoing audio stream

· Codec Selection

3.2.2 TAPI only features

Acoustic echo cancellation

3.3 Video playback

3.3.1 Minimum feature set

· Simple image size stretch (x2, x3, and x4)

3.3.2 TAPI only features

· Hardware decompression acceleration of incoming video stream

· DirectDraw Blit and Stretch hardware acceleration for Remote Video window

· Arbitrary size stretch

· Picture-In-Picture

· Multi-monitor support

3.4 Audio playback

3.4.1 Minimum feature set

APIs and interfaces for:

· Device selection

· Playback volume controls

· Polling or notifications for signal level (for visual VU meter), device status, and stream status.

· Enabling/Disabling of DirectSound

· Mute/Pause control of incoming audio stream

3.4.2 TAPI only features

Multi-point audio and audio mixing

3.5 CPU and bandwidth usage monitoring

3.5.1 Minimum feature set

· Monitor CPU usage and adjust capture frame rate if necessary

· Monitor bandwidth usage and adjust compression ratio if necessary

· Use RSVP when available to reserve bandwidth

· Privilege audio packets over video packets when sent over the wire

3.5.2 TAPI only features

· Use RTCP reports to monitor packet loss and modify the frame rate or compression ratio if necessary

3.6 H.245 commands and indications

3.6.1 Minimum feature set

· Issue and collect Temporal/Spatial trade-off command

· Issue and collect Flow Control command

· Issue and collect Fast Update Picture command

3.6.2 TAPI only features

· Issue and collect Fast Update Group Of Blocks command

· Issue and collect Fast Update Macro-Blocks command

4. References

NetMeeting specification documents can be found on the NetMeeting team web site at http://mnmweb/

� Unless stated otherwise all references to NetMeeting apply to version 3.0

Microsoft Corporation Company Confidential

06/26/98 Draft - Microsoft Corporation Company Confidential 10:06 AM

_969285620.doc
NetMeeting and TAPI Integration Requirements

September 23, 1998

John Selbie and Philippe Ferriere

This document is provided as an addendum to an earlier document entitled “NetMeeting and TAPI Integration Functional Overview”. The original document provided a list of audio/video features that NetMeeting currently supported as well as additional features being considered for a future release.

In order for NetMeeting to be at parity through TAPI as it is today requires that TAPI implement the majority of the features discussed below.

The list of requirements only addresses areas relating to audio and video streaming. It does not address other TAPI issues such as T.120, MCU, gateway, or gatekeeper support.

Audio

Minimum Feature Set

For NetMeeting to continue to provide the same audio features through TAPI that it has today, TAPI must provide the following types of APIs and interfaces.

Device selection

This has already been implemented. The application can simply enumerate all the available terminals for a given address object and provide the user with a list to choose from.

Need support for system policies on devices

An OEM or ISS manager may want to configure a machine with a registry key or system policy editor to disallow certain terminals from being used. An example scenario would be to prevent the user from accidentally choosing a voice modem that also supports a WAVE device as the terminal to use in an audio call.

Controlling Duplex (full or half)

While most all devices support full duplex operations, some users prefer a half-duplex experience to eliminate problems with echo.

Recording volume controls and AGC

Currently, NetMeeting performs volume control through the mixer APIs provided by MMSYSTEM.DLL (e.g. “mixerOpen”). Not only does NetMeeting provide volume and gain controls, but also un-mutes the Wave and Speaker volume controls as well as insures the microphone input is enabled.

Silence threshold controls, including “automatic and adaptive” silence detection

TAPI should provide auto-silence detection by default and provide an interface method such that the application can specify it’s own silence threshold.

AutoMix microphone feature

This is NetMeeting’s version of AGC. The microphone gain is lowered when clipping is detected and raised during low input levels.

Polling or notifications for signal level (for visual VU meter), device status, and stream status.

A method on the audio terminals is needed to find out what the current signal level is such that a visual “VU meter” can be implemented.

TAPI issues TE_TERMINAL/TME_FAILED if an audio device fails to open. NetMeeting could inform the user when this condition occurs. Being able to receive notifications when a stream is paused or stopped (due to call control commands from the other side) would also be helpful.

TAPI does not deliver TE_CALLMEDIA notifications consistently. For example, if the receive video stream does not get negotiated when the call starts up, but does get established later, the notification through the ITTAPIEventNotification interface gets sent. If the channel got started at call connect time, the notification never gets sent. It would be preferable if the UI always got these kinds of notifications delivered to it.

Ability to pause audio streams

Some sound card drivers may not support a mute function on their mixers, so the ability to specify a “pause” operation to the capture and render terminals is needed. In the case of pausing a incoming stream, this operation could be tied to a remote signaling operation in call control.

Ability to mute independent streams in a multi-point conference

Codec Selection

An application should have a way to enumerate over all the available codecs (e.g. G711 and G723). It should also be allowed to specify which is the preferred codec. Failure to use or negotiate the preferred codec should not cause an error. In this case, TAPI should pick a more appropriate codec.

Other advanced features that may be exposed through TAPI

These are features that NetMeeting would like to have in the future.

Acoustic echo cancellation

Jay Stokes has been consulting with both the NetMeeting and TAPI teams on how to provide this functionality once the PictureTel code is licensed.

Video

Minimum Feature Set

For NetMeeting to continue to provide the same audio features through TAPI that is does today, TAPI must provide the following types of APIs and interfaces.

Legacy VFW and new WDM capture devices support

TAPI should provide video capture terminals corresponding to all VFW and WDM capture drivers. The ability to enumerate the available terminals appears to already exist.

Source dialog settings for VFW devices, and expose interfaces for WDM drivers.

Older VFW drivers provide their own “source” and “format” dialog boxes for the user to configure the hardware. An application will need a way to display such dialogs.

For newer WDM drivers, exposing IAMVideoControl, IAMVideoProcAmp, IAMCameraControl, and IAMXBar interfaces will be sufficient. TAPI may elect to implement their own dialogs for these controls to be consistent with the activation of VFW dialogs.

On-the-fly video frame size changes (QCIF, CIF, SQCIF)

An application should be able to enumerate all the available formats and apply size changes to the active send stream

Multiple capture device selection dialog

Already implemented via enumeration methods (ITTerminalSupport).

Simple image size stretch (x2, x3, and x4)

The application should be able to enlarge video capture or receive windows to an integral multiple of the frame size that is actually being sent or received.

Video preview while not in a call

Currently, TAPI does not provide a way for an application to preview local video while not in a call.

Signaling for remote pausing

If A pauses remote video, message (H.245) should be sent to B so that B can stop streaming. Likewise, when the stream becomes started again, the remote sender should start streaming again.

Codec Selection

An application should have a way to enumerate over all the available codecs (e.g. G263 and G261). It should also be allowed to specify which is the preferred codec. Failure to use or negotiate the preferred codec should not cause an error. In this case, TAPI should pick a more appropriate codec.

Interface methods to control frame rate, bitrates

Currently, TAPI is optimized for 16 kbits/sec video transmission. This results in poor quality on LAN settings. TAPI should expose methods such that the application can specify the following in regards to the type of video connections it wants to have:

Set preview frame rate and send frame rate independently

Set render frame rate independent of the receive frame rate

Set maximum receive and send bitrates

Provides support for “System policies” (codec, device, and QOS restrictions)

Other advanced video features that may be exposed through TAPI

These are features that NetMeeting would like to have available in the future. The ability to query for support, enable, and disable these features should be considered as well.

Hardware acceleration of capture in compressed format

DirectDraw Blit and Stretch hardware acceleration for Local Video preview window

Arbitrary size stretch

Picture-In-Picture

Multiple-monitor support

High-resolution still snapshots

The ability to query for support and trigger a request from the send or receive side

H.245 commands and indications

Minimum Feature Set

Issue and collect Temporal/Spatial trade-off command

TAPI should provide a simple interface to set either quality parameter or latency parameter to control overall call quality.

Issue and collect Flow Control command

Cf. Set maximum bitrate on send and receive

Remote signaling for pausing channels (as mentioned above in audio and video sections)

