Microsoft TAPI Audio Filters

 SUBJECT * MERGEFORMAT
Design Specification – Draft

Authors: Mu Han, Philippe Ferriere, Andres Vega-Garcia, Michael VanBuskirk

Revision 1.0.1, 7 May, 1999
This documentation is an early release of the final product documentation. It is meant to accompany software that is still in development. Some of the information in this documentation may be inaccurate or may not be an accurate representation of the functionality of the final retail product. Microsoft assumes no responsibility for any damages that might occur either directly or indirectly from these inaccuracies.
41.
Introduction

2.
Document organization
5
3.
Overview of all the audio components
5
3.1
Outgoing Audio Stream
6
3.1.1
The default case
6
3.1.2
The Hardware accelerated encoding case
7
3.1.3
The installable codec case
8
3.1.4
The File Terminal and Media Streaming Terminal case
9
3.2
Incoming Audio stream
10
3.2.1
The default case
10
3.2.2
The File Terminal and Media Streaming Terminal case
10
4.
TAPI Audio Encoding Handler
11
4.1
The IAMStreamConfig interface
12
4.1.1
SetFormat method
12
4.1.2
GetFormat method
13
4.1.3
GetNumberOfCapabilities method
13
4.1.4
GetStreamCaps method
13
4.2
The IAMBufferNegotiation interface
14
4.3
The IEncodingControl interface
15
4.3.1
QueryCaptureFormat method
15
4.3.2
FreeCaptureFormat method
16
4.3.3
QueryBufferSizes method
16
4.3.4
EnableAGC method
17
4.3.5
Reset method
17
4.3.6
Transform method
17
4.4
The IH245AudioCapability interface
18
4.4.1
GetH245VersionID method
19
4.4.2
GetNumberOfCapabilities method
19
4.4.3
GetStreamCaps method
20
4.4.4
IntersectFormats method
21
4.4.5
ReleaseNegotiatedCapability method
22
4.4.6
SetIDBase method
22
4.4.7
FindIDByRange method
23
4.4.8
FindIDByMode method
23
4.4.9
SetAcknowledgedCapabilityLimits method
24
4.5
The IBitRateControl interface
24
4.5.1
SetMaxBitrate method
24
4.5.2
GetMaxBitrate method
25
4.5.3
GetMaxBitrateRange method
26
4.6
The ICPUControl interface
26
4.6.1
SetMaxProcessingTime method
27
4.6.2
GetMaxProcessingTime method
27
4.6.3
SetMaxCPULoad method
28
4.6.4
GetMaxCPULoad method
28
4.7
The ISilenceControl interface
29
4.7.1
SetSilenceDetection method
30
4.7.2
GetSilenceDetection method
30
4.7.3
SetSilenceCompression method
30
4.7.4
GetSilenceCompression method
31
4.7.5
GetAudioLevel method
31
4.7.6
GetAudioLevelRange method
32
4.7.7
SetSilenceLevel method
32
4.7.8
GetSilenceLevel method
33
4.7.9
GetSilenceLevelRange method
33
4.8
Noise reduction
34
5.
TAPI Audio Capture Filter (WAV, DSound)
35
5.1
Threading model
35
5.2
Buffer management
35
5.3
Sample Manipulation
36
5.3.1
Timestamps
36
5.3.2
In-band Format changes
37
5.3.3
Multiple Media Samples in one packet
37
5.4
IAMStreamConfig interface
37
5.5
IAudioInputMix interface
37
5.6
ITAudioDeviceControl interface
37
5.7
IAudioCaptureModeControl interface
38
5.7.1
StartCapture method
38
5.7.2
StopCapture method
38
5.7.3
ReleaseCapture method
39
5.8
TAPI Audio Capture using hardware acceleration
39
6.
TAPI Audio Encoding Filter
39
6.1
Buffer management
40
7.
TAPI Audio Render Filter (DSound)
40
7.1
Mixing
40
7.2
Buffer management
40
7.3
Timing control
40
7.4
IAudioSettings
40
7.5
IAudioRenderModeControl interface
41
7.5.1
SetCaptureModeControl method
41
7.5.2
StopRender method
42
7.6
Stereo playout
42
8.
TAPI Audio Render Filter (WAV)
42
8.1
Mixing
42
8.2
Buffer management
43
8.3
IAudioSettings
43
9.
TAPI Audio Mixing Filter
43
9.1
Mixing
43
9.2
Buffer management
43
9.3
IAudioSettings
44
10.
TAPI Audio Decoding Filter
44
10.1
Buffer management
44
10.2
Sample Manipulation
44
10.2.1
Timestamps
44
10.2.2
Format changes
45
10.3
IAMStreamConfig interface
45
10.4
The IH245AudioCapability interface
45
10.5
The IBitRateControl interface
45
10.6
The ICPUControl interface
46
11.
Device Enumeration
46
11.1
The IDeviceEnumerator interface
46
11.1.1
GetTerminals method
47
11.2
The IAudioDeviceConfig interface
47
11.2.1
SetDeviceID method
48
12.
References
48

1. Introduction

This document describes the design of the audio related filters for TAPI3.1. It will fulfill the following feature requirements:

1. Low latency

Latency could be the single biggest reason why people refuse to use our product. The best latency we have achieved so far is 100ms between two machines on LAN. This design will try to keep low latency as the first priority while adding new features. This document carefully specified the timing control in each filter. And, all the advanced features that incur latency can be disabled by the user to cut latency.

2. Automatic Gain Control

The differences in volume caused by the differences in microphone sensitivity and gain setting is a very annoying problem when using PCs to make voice calls, especially in multi-party calls. Therefore, smart and accurate automatic gain control is a must-have feature to improve the user experience. The new capture filter added build-in AGC support. (Basic encoders are also built into the capture filter).

3. Supporting non-hardware source and sink

For IVR applications, the ability to play a message and record a message is very important. The design of the audio filters supports this feature by having a separate encoding filter to handle date from non-hardware sources and a separate mixing filter to render date to no-hardware sinks.

4. Bandwidth control

This feature will be supported to control the maximum bandwidth generated by the audio stream. The bandwidth control can be achieved by either controlling the bitrate of a variable bitrate CODEC or changing the packet size to reduce the total bandwidth consumption. Since most audio packets are very small, the latter method can be more effective.

5. CPU control

This feature will be supported to control the maximum CPU used by the audio stream. All advanced features will be restricted within the CPU limits set by the user.

6. Acoustic Echo cancellation

Most people hate to use headphones when making phone calls. The audio stream will support the system AEC if it is available. If AEC is not available, the audio stream supports half-duplex emulation to work around the problem.

7. Noise Reduction

This is an advanced feature. It requires more CPU and might introduce more latency. It should be combined with the AEC or the encoder to save CPU cycle. The final design of this feature is still TBD.

8. Hardware accelerated encoding

This is an advanced feature that only applies to certain hardware. The audio stream needs to be aware of the fact that the hardware does encoding and take actions accordingly. Proxy to kernel streaming filter will be used to achieve this.

2. Document organization

Section 3 of this document is the overview of the audio streams.

Section 4 of this document describes the design of an Encoding Handler that will be used in the capture filter and the standalone encoding filter.

Section 5 of this document describes the design of the TAPI Audio Capture filter.

Section 6 of this document describes the design of the TAPI Audio Encoding filter.

Section 7 of this document describes the design of the TAPI Render filter using DSound.

Section 8 of this document describes the design of the TAPI Render filter using WAV.

Section 9 of this document describes the design of the TAPI Mixing filter.

Section 10 of this document describes the design of the TAPI Decoding filter.

3. Overview of all the audio components

In tapi3 model, there are two kinds of audio streams, incoming audio streams and outgoing audio streams. They are the controlling objects for streaming audio data to or from other machines. The stream object interacts with the call control objects and the quality control object to control the streaming. Internally, each stream object uses several Dshow filters to process the data. The relationship among these objects are illustrated in the following diagram:

All the stream objects support the ITStream, ITSubStream, ITQualityControl, and ITFormatControl interfaces. Audio streams also support two additional interfaces: the ITAudioDeviceControl interface and the ITAudioSettings interface. All these interfaces are used by the application. Please refer to the SDK document for information about ITStream and ITSubStream. ITQualityControl is used to set limits on the CPU usage and bandwidth usage on the stream object. ITFormatControl is used to control the format used in transmitting the audio data. ITAudioDeviceControl is used to choose what kinds of drivers should be used; the choices are WAV, Dsound, and WDM. The ITAudioSettings interface allows the app to query and configure the property of the audio data.

The stream object also exposes the ITStreamControl and the IH245AudioCapability interface to the channel object. The channel object uses the ITStreamControl interface to control the stream and uses the IH245AudioCapability interface to query the capability of the stream. At the same time, the stream object uses the IChannelControl interface to delegate channel related calls to the channel object. The details of these interfaces are in H323MSP.doc.

Internally the stream object uses a couple of filters to handle the audio data. A filter graph object maintains the filters. The steam object uses the quality controller to calculate the settings on the filters based on the limits set by the app and the current bandwidth and CPU usage.

3.1 Outgoing Audio Stream

The outgoing audio stream handles sending audio data from the local machine to the network. There are several cases of graph building. In the default case, there are two filters used inside the filter graph: the TAPI MSP audio capture filter and the TAPI MSP RTP render filter. The TAPI MSP audio capture filter handles silence suppression, AGC and generates G.711, G.723.1, and other formats that ACM handles. This case is used most of the time with two exceptions: hardware acceleration and installable CODEC. In the hardware acceleration case, the hardware implements all the functionality and the TAPI MSP audio capture filter serves only as a proxy. In the installable CODEC case, the TAPI MSP audio capture filter handles only AGC and leaves the encoding to the installed encoder. In addition, if the application selects non-hardware related terminals like the file terminal or the Media Streaming Terminal, the stream has to use a standalone encoder to deal with encoding and possibly voice detection and AGC. The details of the four cases are explained in the following sections.

3.1.1 The default case

The following filter graph is used inside the outgoing audio stream if the following conditions are met:

1. There is no installable CODEC to handle the selected format.

2. The hardware cannot generate the format directly.

3. The TAPI MSP audio capture filter can support the format.

This filter graph contains two filters, the TAPI MSP Audio Capture filter and the TAPI MSP RTP Render filter. The capture filter talks to the driver to get the audio data, encode them, and give them to the RTP render filter to send them to the network. The capture filter implements all the interfaces that the Stream needs to manipulate the audio device and data. IAMAudioInputMixer is used to configure different sound sources such as mic, linein, CD, etc. ITAudioDeviceControl is used to select which driver mode to use, WAV, DSound, or WDM. IAudioCaptureModeControl is used to change the capture mode during half-duplex audio calls. IH245AudioCapability is used to expose the capability of the capture device. IBitRateControl, ICPUControl, and INetworkStats are used to dynamically adjust the encoding based on the status of system resources. ISilenceControl is used to control the silence suppression algorithm.

3.1.2 The Hardware accelerated encoding case

If the audio capture device supports the encoding acceleration as defined in “Audio Conferencing Acceleration with WDM G.Series Audio Encoding, by Philippe Ferriere,” the TAPI MSP capture filter will simply delegate all the functionality to the hardware.

This graph also contains two filters, the TAPI MSP Audio Capture filter and the TAPI MSP RTP render filter. The TAPI MSP Audio Capture filter implements all the interfaces by delegating all the calls to the kernel mode driver. The ITAudioDeviceControl interface is not supported in this case because the only way to access this kind of device is through the WDM ksproxy. We can either use the ksproxy filter and implement interface handlers to achieve this functionality or integrate part of the ksproxy code into the TAPI MSP audio capture filter to talk to the device directly. The final decision is still TBD.

The installable codec case

In the case that a third-part encoder is installed to handle the selected format, the installed codec has higher priority than the default codec. The details of how to register an Encoder and its capability is still TBD. Assuming that the stream object can find the encoder and create it, the TAPI MSP audio capture filter will generate linear PCM samples to be consumed by the encoder. The filter graph is shown in the following diagram:

This graph contains three filters, the TAPI MSP Audio Capture filter, the encoder filter and the TAPI MSP RTP Render filter. The capture filter talks to the driver to get the audio data and give them to the encoder filter in linear PCM format. The encoder filter encodes the data and gives them to the RTP render filter to send them to the network. The encoder filter should implement the IH245AudioCapability, IBitRateControl, ICPUControl, INetworkStats, and ISilenceControl interfaces. The IAMAudioInputMixer, ITAudioDeviceControl, and IAudioCaptureModeControl interfaces on the capture filter are still used by the stream.

The File Terminal and Media Streaming Terminal case

In the case that non-hardware related terminals are selected, the filter graph will look like the following:

The filter graph has a source filter that generates linear PCM data. The encoder filter that follows the source filter needs to implement all the interfaces needed by the stream. It does silence suppression and encoding. AGC is not supported in this case since the data are most likely from a pre-recorded file or a text to speech engine where the gains are already controlled. Many server apps might also disable the silence suppression as well since they only send data when there is a message. The TAPI Audio Encoder filter might be replaced by plug-in encoder in this case, all the interfaces stay the same.

Incoming Audio stream

The outgoing audio stream handles rendering audio data received from the network. The filter graphs used in the incoming audio stream is more complicated than the outgoing audio stream because there are multiple decoding paths allocated for decoding audio data from multiple sources at the same time. The audio data also need to be mixed before being played out. The number of decoding paths is determined by the max number of sources that the user wants to hear simultaneously. The RTP source filter handles dynamic reusing of the audio decoders based on which sources are active.

3.1.3 The default case

In this case, DSound is selected as the render device. The render filter supports multiple input pins, each of which uses a secondary buffer and DSound mixes the audio data from different sources.

The application could also specify that WAV API should be used to render the sound. This might happen if the DSound driver for the device is broken, or the device doesn’t have a DSound driver and the app doesn’t want to use emulated DSound on top of WAV. The render filter will have to support mixing internally.

The encoded audio samples are passed from the RTP source filter to the decoding filter. The decoded data are then passed to the audio render filter to render them out. The input pin of the audio decoding filter implements IH245AudioCapability interface for configuring the receive capability of the audio stream; ICPUControl for controlling CPU usage; and IBitRateControl for configuring bitrate. The audio render filter implements IAudioSettings to configure the play out settings for each sound source.

3.1.4 The File Terminal and Media Streaming Terminal case

If the application selected a File Terminal or Media Streaming Terminal in place of the audio render terminal, the graph might have to put a mixer before the terminal’s filter. If there is only one participant for the lifetime of the call, the mixer will not be used. Otherwise, the mixer will always be inserted.

4. TAPI Audio Encoding Handler

After analyzing the four cases of the outgoing audio stream, we find out that, except for the hardware accelerated encoding case, all cases need some degrees of post-processing on the PCM samples. The TAPI Audio Encoding Handler is abstracted out to handle the common code path.

The Encoding Handler implements the following functionality:

· Voice detection

· Automatic gain control

· Encoding

The capture filter and the encoder filter create the Encoding handler and use the IEncodingControl to control it and process data. The encoding handler supports several TAPI-specific interfaces and can be aggregated by the output pin object in both the capture filter and the encoder filter.

The voice detection module first classified the input data as sound or silence. Then the AGC module makes gain control suggestion base on the statistics of the samples. Finally, the encoding module is called to encode the data if needed.

4.1 The IAMStreamConfig interface

This is one of the DShow interfaces used to configure the formats. The TAPI Encoding Handler supports it to make the life of the filter easier. The pin object can delegate the calls on its IAMStreamConfig interface to the IAMStreamConfig interface on the encoding handler. However, the pin object might need to do more on SetFormat() if the allocator properties are affected by the format change.

SetFormat

Used to set the format for the encoded data.

GetFormat

Get the encoding format currently in use.

GetNumberOfCapabilities

Get the number of capabilites of the Encoding Handler.

GetStreamCaps

Get one specific capability. This function returns a pair of an AM_MEDIA_TYPE structure and an AUDIO_STREAM_CONFIG_CAPS structure.

4.1.1 SetFormat method

The SetFormat() method can be called both before the encoding handler starts and while it is streaming. The encoding handler will start generating the new format with the next TransForm() call. The user of this encoding handler is responsible for ensuring that the new source buffer size fulfills the requirement of the format. The proper buffer size can be obtained by calling QueryBufferSizes() after the new format is set.

HRESULT SetFormat (

[in] AM_MEDIA_TYPE *pmt

);

where

pmt

The new encoding format.

This method returns an HRESULT value that depends on the implementation of the interface. HRESULT can be one of the following standard constants, or other values not listed here:

HRESULT
Meaning

E_FAIL
Failure

E_POINTER
Null pointer argument

E_INVALIDARG
Wrong format

S_OK
No error

4.1.2 GetFormat method

The GetFormat method is used to retrieve the current encoding format. The format is allocated by using CoTaskMemAlloc().

HRESULT GetFormat (

[in] AM_MEDIA_TYPE **ppmt

);

where

ppmt

A pointer to the pointer to the format returned.

This method returns an HRESULT value that depends on the implementation of the interface. HRESULT can be one of the following standard constants, or other values not listed here:

HRESULT
Meaning

E_FAIL
Failure

E_POINTER
Null pointer argument

E_OUTOFMEM
No memory for the format

S_OK
No error

4.1.3 GetNumberOfCapabilities method

The GetNumberOfCapabilities method is used to retrieve the number of capabilities and the size of the structure.

HRESULT GetNumberOfCapabilities(

[out] int *piCount,

[out] int *piSize

);

where

piCount

A pointer to the number of capabilities.

piSize

A pointer to the size of the structure.

This method returns an HRESULT value that depends on the implementation of the interface. HRESULT can be one of the following standard constants, or other values not listed here:

HRESULT
Meaning

E_FAIL
Failure

E_POINTER
Null pointer argument

S_OK
No error

4.1.4 GetStreamCaps method

The GetStreamCaps method is used to retrieve a specific capability entry. It returns a (media type, capabilities) pair. The AUDIO_STREAM_CONFIG_CAPS data structure is used in describing the capability.

TODO: The default AUDIO_STREAM_CONFIG_CAPS structure doesn’t have a range for bit rate. It can’t describe variable bitrate CODECs when the BitPerSample is less than 1. We need to extend the structure and use a different GUID.

typedef struct _TAPI_AUDIO_STREAM_CONFIG_CAPS {

GUID guid; // will be MEDIATYPE_TAPI_Audio

ULONG MinimumChannels;

ULONG MaximumChannels;

ULONG ChannelsGranularity;

ULONG MinimumBitsPerSample;

ULONG MaximumBitsPerSample;

ULONG BitsPerSampleGranularity;

ULONG MinimumSampleFrequency;

ULONG MaximumSampleFrequency;

ULONG SampleFrequencyGranularity;

ULONG MinimumAvgBytesPerSec;

ULONG MaximumAvgBytesPerSec;

ULONG AvgBytesPerSecGranularity;

} TAPI_AUDIO_STREAM_CONFIG_CAPS;

HRESULT GetStreamCaps(

[in] int iIndex,

[out] AM_MEDIA_TYPE **ppmt,

[out] BYTE *pSCC);

);

where

iIndex

The index of the capability. It should be from 0 to the number of capabilities –1.

ppmt

A pointer to pointer to the media type structure. The memory used by this structure is allocated by calling CoTaskMemAlloc().

pSCC

A pointer to a buffer that stores the returned capability structure.

This method returns an HRESULT value that depends on the implementation of the interface. HRESULT can be one of the following standard constants, or other values not listed here:

HRESULT
Meaning

E_FAIL
Failure

E_POINTER
Null pointer argument

S_FALSE
Index too big. (according to axextend.idl)

S_OK
No error

4.2 The IAMBufferNegotiation interface

This interface is defined by DShow to configure the allocator property. This interface is only useful when the downstream filter has specific allocator requirement. For example, if the down stream filter handles encoding, it will ask the capture filter to generate PCM samples with specific size.

SuggestAllocatorProperties

Used to set the properties of the allocator. This function fails if the current format is not PCM L16. Only the cbBuffer field will be processed in the ALLOCATOR_PROPERTIES structure.

GetAllocatorProperties

Used to get the properties of the allocator.

4.3 The IEncodingControl interface

This is the main control interface used to configure the encoding handler and transform data. It controls the enabling of functionality and setting parameters.

QueryCaptureFormat

Used to get the WAVEFORMATEX data structure to be set on the capture device.

FreeCaptureFormat

Free the format in case the format was dynamically allocated.

QueryBufferSizes

Used to get the buffer size required for capture and encoding based on the current format.

EnableAGC

Used to enable or disable the AGC algorithm.

Reset

Used to notify the encoder handler the start of the data stream.

TransForm

Used to encode a buffer filled with PCM sample into the desired format.

4.3.1 QueryCaptureFormat method

The QueryCaptureFormat is used to find out the format to be set on the capture device. This method is needed because different encoding formats have different requirements on the capture device. The encoder currently uses only L16 PCM as the input format. However, the sample rate can be 8KHz or 16KHz. In the future, the Encoding Handler might be extended to handle more complicated encoding formats.

HRESULT QueryCaptureFormat (

[out] DWORD * pdwSize,

[out] BYTE **
 ppbFormat

);

where

pdwSize

The size of the WAVEFORMATEX data structure returned.

ppbFormat

The pointer to a pointer that points to a WAVEFORMATEX structure.

This method returns an HRESULT value that depends on the implementation of the interface. HRESULT can be one of the following standard constants, or other values not listed here:

HRESULT
Meaning

E_FAIL
Failure

E_POINTER
Null pointer argument

S_OK
No error

4.3.2 FreeCaptureFormat method

The FreeCaptureFormat is used to free the capture format returned by QueryCaptureFormat. If it is not dynamically allocated, the encoding handler will just return S_OK.

HRESULT FreeCaptureFormat (

[in] BYTE * pbFormat

);

where

pbFormat

The pointer that points to a WAVEFORMATEX data structure returned by QueryCaptureFormat().

This method returns an HRESULT value that depends on the implementation of the interface. HRESULT can be one of the following standard constants, or other values not listed here:

HRESULT
Meaning

E_FAIL
Failure

E_POINTER
Bad pointer

S_OK
No error

4.3.3 QueryBufferSizes method

This method is used to find out the size of the buffers required for the source and destination data.

HRESULT QueryBufferSizes(

[out] DWORD * pdwSourceBufferSize,

[out] DWORD * pdwNumSourceBuffers,

[out] DWORD * pdwDestinationBufferSize

);

where

pdwSourceBufferSize

Pointer to the size of the source buffer. The capture device will be configured to fill buffers of this size

pdwNumSourceBuffers

Pointer to the number of source buffers needed.

pdwDestinationBufferSize

Pointer to the size of the destination buffer. This will be the size of the buffers allocated for the samples passed to down stream filters.

This method returns an HRESULT value that depends on the implementation of the interface. HRESULT can be one of the following standard constants, or other values not listed here:

HRESULT
Meaning

E_FAIL
Failure

E_POINTER
Null pointer argument

S_OK
No error

4.3.4 EnableAGC method

This method is used to enable or disable the AGC algorithm in the encoding handler.

HRESULT EnableAGC(

[in] BOOL fEnable

);

where

fEnable

Setting it to TRUE enable AGC, to FALSE disables AGC.

This method returns an HRESULT value that depends on the implementation of the interface. HRESULT can be one of the following standard constants, or other values not listed here:

HRESULT
Meaning

E_FAIL
Failure

S_OK
No error

4.3.5 Reset method

This method is used to notify the encoding handler that it should reset its state machine for its algorithms. This method will be called when the filter that contains the handler starts.

HRESULT Reset();

This method returns an HRESULT value that depends on the implementation of the interface. HRESULT can be one of the following standard constants, or other values not listed here:

HRESULT
Meaning

E_FAIL
Failure

S_OK
No error

4.3.6
Transform method

This method is used to transform data from the captured format to the format required. This function will also return the suggestion for gain-control if AGC is enabled. If the output format is the same as the input format, the data is copied from the source buffer to the destination buffer. This is needed because we don’t want to lock the driver’s buffer when we pass the samples to the downstream filters. The detail of this is explained later in the audio capture filter.

HRESULT Transfrom(

[in] BYTE *
pSourceBuffer,

[in] DWORD
dwSourceDataSize,

[in] BYTE *
pDestBuffer,

[in, out] DWORD *
pdwDestBufferSize,

[out] LONG *
plGainAdjustment,

 [out] BOOL *
pfDataDiscontinuity

);

where

pSourceBuffer

Pointer to the source buffer that contains data to be encoded.

dwSourceDataSize

The size of the source buffer, in bytes.

pDestBuffer

Pointer to the source buffer that contains data to be encoded.

pdwDestBufferSize

The size of the source buffer, in bytes. After the function returns, it contains the number bytes for the encoded data.

plGainAdjustMent

The suggested adjustment for the microphone gain, in percentage. 0 means no adjustment. A positive number means the percent of increase. A negative number, [-100, -1], means the percent of decrease. This number will always be 0 if the AGC is not enabled.

pfDataDiscontinuity

This flag will be set on the first and the last buffer of a talk spurt.

This method returns an HRESULT value that depends on the implementation of the interface. HRESULT can be one of the following standard constants, or other values not listed here:

HRESULT
Meaning

E_FAIL
Failure

E_POINTER
Bad pointer argument

E_INVALIDARG
Invalid argument

S_SILENCE
Silence data that should be discarded.

S_PENDING
Send the sample together with the next sample.

S_OK
No error.

4.4 The IH245AudioCapability interface

The IH245AudioCapability interface contains methods to enumerate, translate, and compare audio formats.

The IH245AudioCapability interface contains the following methods:

GetH245VersionID

Used to retrieve a version identifier that indicates the version of H.245 that was in effect when the filter module was compiled.

GetNumberOfCapabilities

Used to retrieve the number of capabilities the filter supports.

GetStreamCaps

Used to get a specific capability item.

IntersectFormats

Used to compare a local capability and remote capability and produce filter configuration structures and parameters that are compatible with both.

ReleaseNegotiatedCapability

Used to release resources that were allocated by IntersectFormats.

SetIDBase

Used to control the range of sequential numbers that uniquely identify individual capabilities

FindIDByRange

Used to find a specific capability that corresponds to a formatted AM_MEDIA_TYPE structure.

FindIDByMode

Used to find a specific capability that corresponds to a H245 mode element.

SetAcknowledgedCapabilityLimits

Used to find a specific capability that corresponds to a H245 mode element.

4.4.1 GetH245VersionID method

This method returns a DWORD value that identifies the platform version that the filter was designed for. The platform version is defined as TAPI_H245_VERSION_ID. The GetH245VersionID method is declared as:

DWORD GetH245VersionID()

4.4.2 GetNumberOfCapabilities method

This method is used to retrieve the number of stream capability structure and format structure pairs. Capability structures are used to express the kinds of audio formats supported by the filter, beyond what is contained in the AM_MEDIA_TYPE structure. The GetNumberOfCapabilities method is declared as follows:

HRESULT GetNumberOfCapabilities(

[out]int *piCount,

[out]int *piSize

)

where

piCount

Pointer to the number of TAPI_AUDIO_STREAM_CONFIG_CAPS structures supported by the stream.

piSize

Pointer to the size of TAPI_AUDIO_STREAM_CONFIG_CAPS structure.

This method returns an HRESULT value that depends on the implementation of the interface. HRESULT can be one of the following standard constants, or other values not listed here:

HRESULT
Meaning

E_FAIL
Failure

E_INVALIDARG
Invalid argument

E_NOTIMPL
Method is not supported

S_OK
No error

4.4.3 GetStreamCaps method

This method is used to obtain audio capabilities of a filter. The GetStreamCaps method is declared as follows:

HRESULT GetStreamCaps(

[in]int iIndex,

[out] H245Capability* ph245Capability,

[out]AM_MEDIA_TYPE **ppMediaType,

[out]BYTE *pStreamConfigCaps,

[out]BOOL *pfEnabled,

[out]DWORD*pdwUniqueID

)

where

iIndex

Index to the desired format structure and stream capability structure pair. Use the GetNumberOfCapabilities method to retrieve the total number of these pairs. Possible index values range from zero to one less than the total number of pairs. The preferred format has the smallest index value.

ph245Capability

Address of a pointer to an H245Capability structure.

ppMediaType

Address of a pointer to an AM_MEDIA_TYPE structure.

pStreamConfigCaps

Pointer to a TAPI_ AUDIO_STREAM_CONFIG_CAPS structure.

pfEnabled

Pointer to a boolean indicating if the format is enabled or disabled for this call.

pdwUniqueID

Pointer to a DWORD that uniquely identifies the format

The filter capability with the smallest iIndex value is the preferred format.

This method returns an HRESULT value that depends on the implementation of the interface. HRESULT can include one of the following standard constants, or other values not listed:

HRESULT
Meaning

E_FAIL
Failure

E_INVALIDARG
Invalid argument

E_POINTER
Null pointer argument

E_NOTIMPL
Method is not supported

S_OK
No error

4.4.4 IntersectFormats method

This method is used to compare and intersect one local capability and one remote capability and to obtain filter configuration parameters. The IntersectFormats method is declared as follows:

HRESULT IntersectFormats(

[in]H245Capability *pLocalCapability,

[in]H245Capability *pRemoteCapability,

[out]HANDLE *phIntersectionCookie,

[out]H245Capability *pIntersectedCapability,

[in]AM_MEDIA_TYPE *pAMMediaType

)

where

pLocalCapability

Specifies the H.245 local audio capability. If it is NULL, the filter is free to find the best match for the remote capability from all of its capabilities.

pRemoteCapability

Specifies the H.245 remote audio capability.

phIntersectionCookie

Identifies the dynamic instance of intersected capabilities. When a filter creates the intersection, it may allocate memory for the intersected capability parameters. The intersection cookie identifies this allocation.

pIntersectedCapability

Specifies the H.245 audio format, of the resolved common local and remote capability options and limits.

pAMMediaType

Pointer to an AM_MEDIA_TYPE structure that has been initialized to regard negotiated options.

This method returns an HRESULT value that depends on the implementation of the interface. HRESULT can include one of the following standard constants, or other values not listed:

HRESULT
Meaning

E_INCOMPATIBLECAPS
Failure

E_FAIL
Failure

E_POINTER
Null pointer argument

E_INVALIDARG
Invalid argument

E_NOTIMPL
Method is not supported

S_OK
No error

4.4.5 ReleaseNegotiatedCapability method

This method is used to release a filter's internal memory allocated by the IntersectFormats method. The ReleaseNegotiatedCapability method is declared as follows:

HRESULT ReleaseNegotiatedCapability(

[IN]HANDLE hIntersectionCookie

)

where

hIntersectionCookie

Identifies the dynamic instance of intersected capabilities.

This method returns an HRESULT value that depends on the implementation of the interface. HRESULT can include one of the following standard constants, or other values not listed:

HRESULT
Meaning

E_FAIL
Failure

E_INVALIDARG
Invalid argument

E_NOTIMPL
Method is not supported

NOERROR
No error

4.4.6 SetIDBase method

This method is used to control the sequential numbering range used to uniquely identify a Filter’s capabilities. The SetIDBase method is declared as follows:

HRESULT SetIDBase(

[in]DWORD dwIDBase

)

where

dwIDBase

A DWORD value that indicates the beginning number in the sequence .

This method returns an HRESULT value that depends on the implementation of the interface. HRESULT can include one of the following standard constants, or other values not listed:

HRESULT
Meaning

E_FAIL
Failure

E_INVALIDARG
Invalid argument

E_NOTIMPL
Method is not supported

S_OK
No error

4.4.7 FindIDByRange method

This method is used to obtain the unique format ID of a capability that corresponds to an AM_MEDIA_TYPE. The FindIDByRange method is declared as follows:

HRESULT FindIDByRange(

[in]AM_MEDIA_TYPE *pAMMediaType,

[out]DWORD *pdwID

)

where

pAMMediaType

Pointer to an AM_MEDIA_TYPE structure that has been initialized to indicate a specific format.

pdwID

Pointer to a DWORD output parameter that will contain the unique format ID.

This method returns an HRESULT value that depends on the implementation of the interface. HRESULT can include one of the following standard constants, or other values not listed:

HRESULT
Meaning

E_FAIL
Failure

E_INVALIDARG
Invalid argument

E_NOTIMPL
Method is not supported

S_OK
No error

4.4.8 FindIDByMode method

This method is used to obtain the unique format ID of a capability that corresponds to an H245 mode element. The FindIDByMode method is declared as follows:

HRESULT FindIDByMode(

[in] H245_MODE_ELEMENT *pModeElement,

[out] DWORD *pdwUniqueID

)

where

pModeElement

Pointer to an H245 mode element structure.

pdwUniqueID

Pointer to a DWORD output parameter that will contain the unique format ID.

This method returns an HRESULT value that depends on the implementation of the interface. HRESULT can include one of the following standard constants, or other values not listed:

HRESULT
Meaning

E_FAIL
Failure

E_INVALIDARG
Invalid argument

E_NOTIMPL
Method is not supported

S_OK
No error

4.4.9 SetAcknowledgedCapabilityLimits method

This method is used to notify the encoder about the limits set by the OLC acknowledgement. The SetAcknowledgedCapabilityLimits method is declared as follows:

HRESULT SetAcknowledgedCapabilityLimits (

 [in] H245Capability* ph245Capability

)

where

ph245Capability

Pointer to an H245 capability structure.

This method returns an HRESULT value that depends on the implementation of the interface. HRESULT can include one of the following standard constants, or other values not listed:

HRESULT
Meaning

E_FAIL
Failure

E_INVALIDARG
Invalid argument

E_NOTIMPL
Method is not supported

S_OK
No error

4.5 The IBitRateControl interface

IBitRateControl interface sets the maximum bitrate on the encoder.

SetMaxBitrate

Sets the upper limit of the bitrate of encoded data.

GetMaxBitrate

Get the current setting of bitrate upper limit.

GetMaxBitrateRange

Used to retrieve support, minimum, maximum, and default values for the upper limit in bandwidth transmission the compressed audio output pin may be setup for.

4.5.1 SetMaxBitrate method

This method is used to set the upper limit of the bitrate generated by the audio encoder. If the maximum bitrate is smaller than the capability of the encoder, this function will fail.

HRESULT SetMaxBitrate(

[in]DWORD dwMaxBitrate,

[in]DWORD dwLayerId

)

where

dwMaxBitrate

The upper limit of bit rate.

dwLayerId

The LayerId for layered encoding. It is 0 for now.

This method returns an HRESULT value that depends on the implementation of the interface. HRESULT can be one of the following standard constants, or other values not listed here:

HRESULT
Meaning

E_FAIL
Failure

E_INVALIDARG
Invalid argument

E_NOTIMPL
Method is not supported

S_OK
No error

Currently only G723 has limited capability of changing bitrate. All the other formats we support are fixed bitrate formats. However, bandwidth consumption can be reduced if more data are put into one packet. Within the limit of maximum frames per packet, the encoder handler changes the data length per packet to fulfill the requirement of this method.

4.5.2 GetMaxBitrate method

This method is used to get the current setting of the bitrate limit.

HRESULT GetMaxBitrate(

[out]DWORD * pdwMaxBitrate,

[in]DWORD dwLayerId

)

where

pdwMaxBitrate

A pointer to a dword to receive the current MaxBitrate setting.

dwLayerId

The LayerId for layered encoding. It is 0 for now.

This method returns an HRESULT value that depends on the implementation of the interface. HRESULT can be one of the following standard constants, or other values not listed here:

HRESULT
Meaning

E_FAIL
Failure

E_INVALIDARG
Invalid argument

E_NOTIMPL
Method is not supported

S_OK
No error

4.5.3 GetMaxBitrateRange method

This method is used to retrieve support, minimum, maximum, and default values for the upper limit in bandwidth transmission the compressed audio output pin may be setup for. The GetMaxBitrateRange method is declared as follows:

HRESULT GetMaxBitrateRange(

[out]LPDWORD pdwMin,

[out]LPDWORD pdwMax,

[out]LPDWORD pdwSteppingDelta,

[out]LPDWORD pdwDefault,

[in]DWORD dwLayerId

)

where

pdwMin

Used to retrieve the minimum limit in bandwidth transmission the compressed audio output pin maybe setup for, in bits/s.

pdwMax

Used to retrieve the maximum limit in bandwidth transmission the compressed audio output pin maybe setup for, in bits/s.

pdwSteppingDelta

Used to retrieve the stepping delta in bandwidth transmission the compressed audio output pin maybe setup for, in bits/s.

pdwDefault

Used to retrieve the default limit in bandwidth transmission the compressed audio output pin is setup for, in bits/s.

dwLayerId

Specifies the ID of the encoding layer the command applies to. For audio encoding filter, this field is always set to 0.

This method returns an HRESULT value that depends on the implementation of the interface. HRESULT can include one of the following standard constants, or other values not listed:

HRESULT
Meaning

E_FAIL
Failure

E_POINTER
Null pointer argument

E_NOTIMPL
Method is not supported

S_OK
No error

4.6 The ICPUControl interface

The ICPUControl interface is used to control the bounds of encoding time and CPU consumption.

SetMaxProcessingTime

Used to specify the max processing delay.

GetMaxProcessingTime

Used to get the current setting of maximum processing time.

SetMaxCPULoad

Used to specify the max CPU load used by the encoder.

GetMaxCPULoad

Used to get the current setting of the CPU load.

4.6.1 SetMaxProcessingTime method

This method is currently not supported by the Encoding Handler.

HRESULT SetMaxProcessingTime(

 [in] REFERENCE_TIME MaxProcessingTime

)

where

MaxProcessingTime

Specifies the maximum encoding time for samples in a second, in 100-nanosecond units.

This method returns an HRESULT value that depends on the implementation of the interface. HRESULT can be one of the following standard constants, or other values not listed here:

HRESULT
Meaning

E_NOTIMPL
Method is not supported

4.6.2 GetMaxProcessingTime method

This method is currently not supported by the Encoding Handler.

HRESULT GetMaxProcessingTime(

 [out] REFERENCE_TIME *pMaxProcessingTime

)

where

pMaxProcessingTime

The returned maximum encoding time for samples in a second, in 100-nanosecond units.

This method returns an HRESULT value that depends on the implementation of the interface. HRESULT can be one of the following standard constants, or other values not listed here:

HRESULT
Meaning

E_NOTIMPL
Method is not supported

4.6.3 SetMaxCPULoad method

This method is used to set the maximum CPU load used by the Encoding Handler. It is the MIPs of the encoding algorithm / MIPs of the machine. If this method is called by the app before the stream is negotiated, it will affect the capability enumeration. Only the formats that meet the requirements will be considered. If this method is called while the streams is running and the number is too small, it will fail.

HRESULT SetMaxCPULoad(

 [in] DWORD dwMaxCPULoad

)

where

dwMaxCPULoad

Specifies the maximum encoding algorithm CPU load, in percentage units.

This method returns an HRESULT value that depends on the implementation of the interface. HRESULT can be one of the following standard constants, or other values not listed here:

HRESULT
Meaning

E_FAIL
Failure

E_INVALIDARG
Invalid argument

E_NOTIMPL
Method is not supported

S_OK
No error

4.6.4 GetMaxCPULoad method

This method is used to get the current setting of the maximum CPU load used by the Encoding Handler.

HRESULT GetMaxCPULoad(

 [out] DWORD* pdwMaxCPULoad

)

where

pdwMaxCPULoad

Used to receive the current setting of maximum CPU load.

This method returns an HRESULT value that depends on the implementation of the interface. HRESULT can be one of the following standard constants, or other values not listed here:

HRESULT
Meaning

E_FAIL
Failure

E_INVALIDARG
Invalid argument

E_NOTIMPL
Method is not supported

S_OK
No error

4.7 The ISilenceControl interface

The ISilenceControl interface is used to control the silence suppression settings. Currently there are four silence detection algorithms available, our current algorithm which is based on running average of the PCM value of silent packets, Billyb’s algorithm which is based on short time average of mulaw value, Whisper projects’ algorithm that uses a histogram to determine threshold, and G723 encoder’s VAD. The first two have been evaluated and compared. The last two will also be evaluated and the best will be used in the TAPI Encoding Handler.

The audio level and the silence level are relative to the range given by the encoder. They could be the PCM value, or Root Mean Square, or whatever measurement the encoder is using. They are not guaranteed to use the same measurement either. However, this encoding handler will use the same range and unit for both.

SetSilenceDetection

Used to enable/disable silence detection. The default setting of silence detection is enabled.

GetSilenceDetection

Used to query if silence detection is disabled or enabled.

SetSilenceCompression

Used to enable/disable silence compression. If this enabled, the samples are always giving to the encoding module for process. Formats that do not have this feature return E_NOTIMPL.

Silence detection ON
Silence detection OFF

SilenceComression ON
Compress silence
Send all

SilenceComression OFF
Discard silence
Send all

GetSilenceCompression

Used to query if silence compression is supported, disabled or enabled.

GetAudioLevel

Used to retrieve the current audio level expressed as an average magnitude of the audio signal.

GetAudioLevelRange

Used to retrieve support, minimum, maximum, and default values for the audio level.

SetSilenceLevel

Used to set the current silence level. If this function is never called by the application, the encoder works in auto mode. The silence threshold adapts to the environment. Once the app calls this method, auto mode is disabled and the silence level the app set will be used.

GetSilenceLevel

Used to retrieve the silence level the audio capture pin is currently setup for.

GetSilenceLevelRange

Used to retrieve support, minimum, maximum, and default values for the silence level the audio capture pin is currently setup for.

4.7.1 SetSilenceDetection method

This method is used to enable or disable silence detection. The silence detection routine is activated and marks each packet as silence or sound. The encoding module can then choose to ignore the packet or do silence compression if silence compression is enabled.

HRESULT SetSilenceDetection (

 [in]BOOL fEnable

)

where

fEnable

Boolean used to enable or disable silence detection. If set to TRUE, silence detection is enabled. If set to FALSE, silence detection is disabled.

This method returns an HRESULT value that depends on the implementation of the interface. HRESULT can be one of the following standard constants, or other values not listed here:

HRESULT
Meaning

E_FAIL
Failure

S_OK
No error

4.7.2 GetSilenceDetection method

This method is used to query whether silence detection is currently enabled or disabled.

HRESULT GetSilenceDetection (

 [out]LPBOOL pfEnable

)

where

pfEnable

Pointer to a boolean used to query whether silence detection is enabled of disabled. If set to TRUE, silence detection is enabled. If set to FALSE, silence detection is disabled.

This method returns an HRESULT value that depends on the implementation of the interface. HRESULT can be one of the following standard constants, or other values not listed here:

HRESULT
Meaning

E_FAIL
Failure

E_POINTER
Null pointer argument

S_OK
No error

4.7.3 SetSilenceCompression method

This method is used to enable or disable silence compression. Among the formats we support, only G723.1 has this mode. This method only succeeds when G723.1 is the current format.

HRESULT SetSilenceCompression (

 [in]BOOL fEnable

)

where

fEnable

Boolean used to enable or disable silence compression. If it is set to TRUE, silence detection is enabled. If it is set to FALSE, silence detection is disabled.

This method returns an HRESULT value that depends on the implementation of the interface. HRESULT can be one of the following standard constants, or other values not listed here:

HRESULT
Meaning

E_FAIL
Failure

E_NOTIMPL
Method is not supported

S_OK
No error

4.7.4 GetSilenceCompression method

This method is used to query whether silence compression is currently enabled or disabled.

HRESULT GetSilenceCompression (

 [out]LPBOOL pfEnable

)

where

pfEnable

Pointer to a boolean used to query whether silence compression is enabled of disabled. If set to TRUE, silence detection is enabled. If set to FALSE, silence comression is disabled.

This method returns an HRESULT value that depends on the implementation of the interface. HRESULT can be one of the following standard constants, or other values not listed here:

HRESULT
Meaning

E_FAIL
Failure

E_NOTIMPL
Method is not supported

E_POINTER
Null pointer argument

S_OK
No error

4.7.5 GetAudioLevel method

This method is used to get the current value of the audio signal level. The TAPI encoding object returns average PCM value of the latest 10ms of samples. TODO: Ideally, we should return the dB value of Root Mean Square of the latest 10ms of sample, since it is the closest to what human ears will perceive.

HRESULT GetAudioLevel(

 [out]LPLONG plAudioLevel

)

where

plAudioLevel

Pointer used to retrieve the current value of the audio signal level.

This method returns an HRESULT value that depends on the implementation of the interface. HRESULT can be one of the following standard constants, or other values not listed here:

HRESULT
Meaning

E_FAIL
Failure

E_POINTER
Null pointer argument

S_OK
No error

4.7.6 GetAudioLevelRange method

This method is used to retrieve support, minimum, maximum, and stepping values for the audio level the encoding handler may generate.

HRESULT GetAudioLevelRange(

[out]LPLONG plMin,

[out]LPLONG plMax,

[out]LPLONG plSteppingDelta

)

where

plMin

Used to retrieve the minimum audio level the Encoding Handler may generate.

plMax

Used to retrieve the maximum audio level the Encoding Handler may generate.

plSteppingDelta

Used to retrieve the stepping delta values of the audio level the Encoding Handler may generate.

This method returns an HRESULT value that depends on the implementation of the interface. HRESULT can be one of the following standard constants, or other values not listed here:

HRESULT
Meaning

E_FAIL
Failure

E_POINTER
Null pointer argument

E_NOTIMPL
Method is not supported

S_OK
No error

4.7.7 SetSilenceLevel method

This method is used to set the value of the silence audio level. If silence detection is enabled and this method is not called, the encoding handler will try to adapt the threshold to the background noise. If this function is called by the app, the adaptive algorithm is disabled.

HRESULT SetSilenceLevel(

 [in]LONG lSilenceLevel

)

where

lSilenceLevel

Used to specify the new value of the audio silence level setting.

This method returns an HRESULT value that depends on the implementation of the interface. HRESULT can be one of the following standard constants, or other values not listed here:

HRESULT
Meaning

E_FAIL
Failure

E_INVALIDARG
Invalid argument

E_NOTIMPL
Method is not supported

S_OK
No error

4.7.8 GetSilenceLevel method

This method is used to get the current value of the audio silence level setting.

HRESULT GetSilenceLevel(

 [out]LPLONG plSilenceLevel

)

where

plSilenceLevel

Pointer used to retrieve the current value of the silence level setting.

This method returns an HRESULT value that depends on the implementation of the interface. HRESULT can be one of the following standard constants, or other values not listed here:

HRESULT
Meaning

E_FAIL
Failure

E_POINTER
Null pointer argument

E_NOTIMPL
Method is not supported

S_OK
No error

4.7.9 GetSilenceLevelRange method

This method is used to retrieve support, minimum, maximum, and default values for the audio silence level setting the Encoding Handler is using.

HRESULT GetSilenceLevelRange(

[out]LPLONG plMin,

[out]LPLONG plMax,

[out]LPLONG plSteppingDelta,

[out]LPLONG plDefault

)

where

plMin

Used to retrieve the minimum silence level the Encoding Handler allows.

plMax

Used to retrieve the maximum silence level the Encoding Handler allows.

plSteppingDelta

Used to retrieve the stepping delta values of silence level.

plDefault

Used to retrieve the default silence level.

This method returns an HRESULT value that depends on the implementation of the interface. HRESULT can be one of the following standard constants, or other values not listed here:

HRESULT
Meaning

E_FAIL
Failure

E_POINTER
Null pointer argument

E_NOTIMPL
Method is not supported

S_OK
No error

4.8 Noise reduction

The noise reduction feature should be part of the encoding handler. The principle of noise reduction is quite sample. The filter calculates the profile of the background noise in silence period and subtracts the silence from the samples while the user is talking. However, this operation has to be done in the frequency domain, which means extra CPU usage and more latency. We are still working with people in the research group to get algorithms. Noise may not be a big problem for voice coders like G723.1.

TAPI Audio Capture Filter (WAV, DSound)

This filter uses either WAV or Dsound interface to capture audio data. It uses the TAPI Audio Encoding Handler to process the data before it gives the data to the next filter. It also performs adjusting of the gain of the microphone based on the feedback of the Encoding Handler.

The Encoding Handler is aggregated by the filter’s output pin so that the pin exposes the interfaces supported by the handler.

4.9 Threading model

The capture filter has a worker thread listening for the completion of the capture sample and pushing the data down stream. In the WAV case, although there is a wavin callback function, it shouldn’t be used to perform complicated calculations. Therefore, the samples completed will be put in a queue and the worker thread is signaled to encode them and push them to the downstream filters. In the Dsound case, a worker thread is required to listen on a handle that will be signaled when the capture buffer reaches a certain point. The worker thread is a real-time thread in order to reduce latency.

Open issue: Whether this worker thread will be a shared thread or a private worker thread of the filter is TBD.

4.10 Buffer management

The capture buffer has one block of memory used for capturing. The block consists of equally sized blocks base on the requirement of the format that is obtained by calling the GetBufferSizes() function on the TAPI Audio Encoding Handler.

In the case of WAV, waveinPrepareHeader() is called using each block before the capture filter starts to run. When a block is filled with data, the callback function will be called, which puts the block in a queue and signals the worker thread to process it. The worker thread gets a Media Sample from the output pin and calls TransForm() method of the encoding handler. After this function returns, the worker thread returns the block to the driver and sends the Media Sample that contains the encoded data downstream.

In the case of DSound, a capture buffer is created using IDirectSoundCapture’s CreateCaptureBuffer() method. SetNotificationPositions() is called using the size of the blocks required by the encoding handler. When the capture reaches the position, an event is signaled and the worker thread wakes up to process the data. The worker thread locks the memory block, get a Media Sample from the output pin, and calls TransForm(). Then the worker thread unlocks the memory block and sends the Media Sample downstream.

The encoding handler might suggest discarding the frame if it contains only silence. It might also suggest queuing up the frame and later send several frame in one call to ReceiveMultiple() on the input pin. If the Encoding Handler suggests any gain adjustment, the worker thread will also carry it out after the Media Sample is delivered.

The allocator on the output pin might be provided by the down stream filter. If the downstream filter doesn’t provide one, the output pin creates its own. In either case, the size of the buffers fulfills the requirements given by the GetBufferSizes() call.

Open issue: if we want to support the changing of audio encoding format on the fly, we might run into a situation that one format prefers 30ms samples while the other prefers 20ms. This particular example can be solved by capturing at 10ms and using total block size multiple of 60ms. The filter gets notifications every 10ms, but only every 20ms or 30ms will a Media Sample be delivered. The benefit of this feature is the smooth transition of format. The drawbacks are the extra context switches and the complexity of the buffer management. If 99% of the time users don’t change format that results in a change of capture buffer size, I suggest restarting the capture device with new buffer size when a conflict happens.

4.11 Sample Manipulation

4.11.1 Timestamps

If there is no external clock, the audio clock is used. The first sample starts from the current system time and timestamps are calculated based on the number of samples captured. If there is a period of silence, there will be a gap in the timestamps reflecting the number of samples skipped and AM_SAMPLE_DATADISCONTINUITY will be set on the first sample of the new talk spurt. This flag will also be set on the last media sample before a silence period.

If there is an external clock, the filter syncs up the audio clock with the external clock whenever there is a silence period. The first sample starts from the first reading of the external clock and the subsequent timestamps are calculated based on the number of samples captured as long as there is no silence. When there is a silence period, the first non-silence sample sent after it uses a new reading of the external clock as the new starting timestamp.

A better approach than using the silence period to sync up is to adjust the sample rate to match the external clock. However, this requires adjusting of the sample rate with very fine granularity. The capture card may not support it. If the drift is not significant, the above algorithm should be good enough.

If lip sync is required, the audio capture and video capture filters need to use the same clock. Besides that, we need to compensate for the latency between the time when a buffer is filled by the sound card and the time when the filter get a reading from the clock. The clock reading needs to be adjusted based on the latency number to get the accurate timestamp. This number may vary from system to system and is also affected by other activities in the system. We can calculate the variation but it is hard to find the offset. This number might have to be based on experiments.

4.11.2 In-band Format changes

If the encoding format is changed on the fly, the RTP network filter needs to be notified about the payload type change and the sample rate change. AM_SAMPLE_TYPECHANGED will be set on the first sample that changed. The RTP filter needs to call GetMediaType() on the sample to get the new format.

4.11.3 Multiple Media Samples in one packet

If the capture filter decides to send bigger packets in order to save bandwidth, it will call ReceiveMultiple() method on the input pin of the RTP filter to send multiple samples in one RTP packet.

4.12 IAMStreamConfig interface

This is a DShow interface used to configure the formats. The output pin of the capture filter supports this interface to intercepts format changes.

SetFormat

Used to set the format used for the streaming. The filter delegates this function call to the TAPI Encoder Handler. If the format change causes a change in the buffer size for capturing, the filter will stop the capture and restarted it with the new capture size setting.

GetFormat

This function is delegated to the TAPI Encoding Handler.

GetNumberOfCapabilities

This function is delegated to the TAPI Encoding Handler.

GetStreamCaps

This function is delegated to the TAPI Encoding Handler.

4.13 IAudioInputMix interface

This is a DShow interface that uses the mixer API to control the capture settings. The same code will be used in the TAPI audio capture filter.

4.14 ITAudioDeviceControl interface

The TAPI Audio Capture Filter supports this interface to configure device-related settings. The definition of this interface is in “Microsoft TAPI Media Control Interface”. The capture filters supports the setting of AudioDevice_DuplexMode, AudioDevice_DriverType, AudioDevice_AutomaticGainControl, and AudioDevice_AccousticEchoCancellation. The method of this interface can only be called when the stream is in a stopped state.

AudioDevice_DuplexMode

Used to set the mode on the device. If half-duplex is specified, the capture device stops when the render side is active.

AudioDevice_DriverType

Used to select driver types. The capture filter will use either DSound or WAV based on the request.

AudioDevice_AutomaticGainControl

Used to specify if automatic gain control should be used.

AudioDevice_AccousticEchoCancellation

Used to enable and disable AEC.

4.15 IAudioCaptureModeControl interface

This interface allows the render filter to control the capture device in half-duplex mode.

StartCapture

Used to start the capture device again.

StopCapture

Used to switch the capturing state but allows the device to stay opened.

ReleaseCapture

Used to release the capture device if the device doesn’t support full duplex.

4.15.1 StartCapture method

This method is used to start the capture device. If the device was in paused state, the filter resumes the device and continues capturing. If the device was closed, the filter will reopen the device to capture.

HRESULT StartCapture()

This method returns an HRESULT value that depends on the implementation of the interface. HRESULT can be one of the following standard constants, or other values not listed here:

HRESULT
Meaning

E_FAIL
Failure

E_DEVICE_INUSE
Device is in use

S_OK
No error

4.15.2 StopCapture method

This method is used to stop the capture device when the render is rendering data. The capture filter can still keep the device open.

HRESULT StopCapture()

This method returns an HRESULT value that depends on the implementation of the interface. HRESULT can be one of the following standard constants, or other values not listed here:

HRESULT
Meaning

E_FAIL
Failure

S_OK
No error

4.15.3 ReleaseCapture method

This method is used to tell the capture filter to release the device. This happens when the device supports only half-duplex.

HRESULT ReleaseCapture()

This method returns an HRESULT value that depends on the implementation of the interface. HRESULT can be one of the following standard constants, or other values not listed here:

HRESULT
Meaning

E_FAIL
Failure

E_DEVICE_INUSE
Device is in use

S_OK
No error

4.16 TAPI Audio Capture using hardware acceleration

The detail of this scenario is described in the “AudioConferencing acceleration with WDM, Philippe Ferriere.”

There are two approaches to implement this feature. We can either use the ksproxy filter and add interface handlers on it or use the ksproxy code in the TAPI Audio capture filter. For the first approach, Philippe has already got running code. If we don’t have blocking issues, the first approach will be used. If we do have blocking issues, we will cut the code out and construct a new filter.

5. TAPI Audio Encoding Filter

This filter is used when the data source can generate only PCM data and doesn’t do any other processing. The encoder filter loads the TAPI Audio Encoding Handler to process the data before giving them to the network filter. The Encoding Handler is also aggregated by the output pin of the encoder filter to handle the TAPI specific interfaces.

The audio encoding filter is just a simplified TAPI MSP Audio Capture Filter without the sound driver manipulation code. It is an in-place transform filter that does synchronous transform on the samples passed in.

5.1 Buffer management

Since this filter does in-place transform, the same media samples are normally passed to the downstream filter with the original timestamps and flags. The only thing special about this filter is that it has to tell the upstream filter the length of the sample buffer it expects. For this purpose, GetAllocatorRequirements() method is implemented to tell the upstream filter the required buffer size. However, if the upstream filter doesn’t fulfill the requirement, the encoder filter creates its own allocator and copies the data. If the encoding format changed while the graph is running, the buffer size requirement might change. If there is a conflict, the encoder filter copies the samples too.

6. TAPI Audio Render Filter (DSound)

This filter supports multiple input pins and uses DSound secondary buffers to render audio data so that voice from multiple participants can be mixed together. It does jitter buffering based on the timestamps set by the network filter.

6.1 Mixing

Each input pin of this render filter has a DSound secondary buffer. It is a circular buffer that stores 2 seconds worth of data. If there is no sound to play in 2 seconds, the buffer needs to be filled with silence or comfortable noise before the driver plays the same sound again. A timer of 500ms is set up using the timeSetEvent() function. When the timer goes off, the callback function goes through all the pins and cleanup stale data. The timeSetEvent() function uses one worker thread per process. The filter doesn’t create its own thread to do mixing.

6.2 Buffer management

DSound render filter itself doesn’t provide an allocator. It copies the data provided by the upstream filter into the circular buffer and releases the media sample. If the buffer is full, the sample will be dropped.

6.3 Timing control

The RTP source filter is responsible of calculating the jitter of the incoming packets. On the first sample of a new talk spurt, the RTP filter sets the AM_SAMPLE_DATADISCONTINUITY flag to true and it also sets the start time to current time + jitter buffer time. The render filters shares the same clock with the RTP filter so that it can put the sample into the right place in the play out buffer. This algorithm also works for lip-sync.

Clock slaving is not considered for this release since the silence suppression syncs the clocks so frequently that the drift between clocks is not a significant problem.

6.4 IAudioSettings

The filter supports IAudioSettings interface to control audio related properties. It is basically the same as the ITAudioSettings interface, but it supports one more parameter, the SSRC of a participant. If the SSRC is 0, the method applies to the mixed data. If the SSRC is not 0, the method applies to a certain participant. Internally, the filter maintains a table of all the SSRCs to their settings. Based on who is talking, the setting will be applied to the pin that receives the data.

In order to tell the render filter which participant is talking, the RTP filter needs to send the SSRC in the first media sample. The following data structure is added at the end of the AM_SAMPLE2_PROPERTIES data structure:

#define TAPI_MEDIASAMPLE_KEY ((DWORD)'TA31')

typedef struct _TAPI_SAMPLE_PROPERTIES {

 AM_SAMPLE2_PROPERTIES Sample2Props;

 DWORD dwKey; // Should be TAPI_MEDIASAMPLE_KEY

 DWORD dwSSRC;

} TAPI_SAMPLE_PROPERTIES;

The cbData field of the AM_SAMPLE2_PROPERTIES data structure should be not less than (sizeof AM_SAMPLE2_PROPERTIES + sizeof TAPI_SAMPLE_PROPERTIES).

Note: The default implementation of CMediaSampe::GetProperties doesn’t handle anything bigger than the size of AM_SAMPLE2_PROPERTIES, even though they put a cbData field as the first field! We need to push Dshow to fix the base class.

The IAudioSettings interface has the following methods, each of which takes an extra dwSSRC as the first parameter than the same methods in ITAudioSettings interface.

GetRange

Used to retrieve minimum, maximum, and default values of an audio setting.

Set

Used to set the value of an audio setting.

Get

Used to retrieve the value of an audio setting.

6.5 IAudioRenderModeControl interface

This interface is used to control the render filter in half-duplex mode. It is only called when the half-duplex mode is enabled.

SetCaptureModeControl

Give the render filter an IAudioCaptureModeContorl interface so that the render filter can mute the capture device when it is rendering sound.

StopRender

Force the render filter to give up so that the capture filter can work.

6.5.1 SetCaptureModeControl method

This method is used to give an IAudioCaptureModeContorl to the render filter. Setting a valid interface pointer configures the render filter to work in half-duplex mode. The render filter first has to decide if the audio device supports full duplex. It first open its device and then calls StartCapture() on the IAudioCaptureModeContorl interface to let the capture filter open the device. If either of them fails with device-in-use, it means that the capture device can’t support full duplex. In this case, the audio render will call ReleaseCapture() before rendering data and close the render device before calling StartCapture(). If the device does support full duplex, StartCapture() and StopCapture() will be called to switch the capture on and off.

HRESULT SetCaptureModeControl(

 IAudioCaptureModeControl * pCaptureModeControl

)

where

pCaptureModeControl

An interface pointer to an IAudioCaptureModeControl interface provided by a capture filter. If it is NULL, render mode is set to full duplex again.

This method returns an HRESULT value that depends on the implementation of the interface. HRESULT can be one of the following standard constants, or other values not listed here:

HRESULT
Meaning

E_FAIL
Failure

E_POINTER
Bad Pointer

S_OK
No error

6.5.2 StopRender method

This method is used to stop the render filter. It is used to implement push-to-talk feature in the half-duplex mode. The render filter is forced into mute state and it will also start the capture device if it has been stopped.

HRESULT StopRender()

This method returns an HRESULT value that depends on the implementation of the interface. HRESULT can be one of the following standard constants, or other values not listed here:

HRESULT
Meaning

E_FAIL
Failure

S_OK
No error

6.6 Stereo playout

This is an advanced feature. The render filter can create two channels for playing back the audio data. Based on the balance setting of each SSRC, the mono data is copied into the two channels with different attenuation, which can produce the illusion of position. This feature will be added after the basic mono playback.

7. TAPI Audio Render Filter (WAV)

WAV API doesn’t support mixing so that the render filter has to handle the mixing before giving the samples to the driver. It differs from the DSound render in the following areas:

7.1 Mixing

This filter maintains one circular mixing buffer that can store 2 seconds worth of data. It is split into 100 20ms buffers. waveoutPrepareHeader() is called on these buffers. When samples are received, they are copied into certain positions in the mixing buffer based on the start time set by the RTP filter. If the samples’ timestamps overlap, they will be mixed while being copied into the mixing buffer. The filter needs to keep track of the depth of mixing in order to scale the samples properly. Mixing samples directly into the mixing buffer avoids having a 2-second secondary buffer in each input pin.

At the beginning of a talk spurt, two 20ms buffers at the beginning of the mixing buffer are sent to the waveout device. After that, every time the waveout callback happens, another 20ms buffer will be fed to the device as long as there are still data in the buffer. In this way, the render filter relies on the sound card clock to pull the data out of the buffer. If there is a silence period, no data will be sent. When the next talk spurt starts, the same cycle starts again. Experience shown that using the waveout device this way produces the smallest latency.

7.2 Buffer management

Like the DSound render filter, WAV render filter itself doesn’t provide an allocator either. It copies the data provided by the upstream filter into the mixing buffer and releases the media sample immediately.

7.3 IAudioSettings

WAV render filter supports the same IAudioSettings interface as the DSound Render filter. However, it doesn’t have a secondary buffer to apply the settings. The function in the input pin that copies data into the mixing buffer simulates the setting in software.

8. TAPI Audio Mixing Filter

This filter is used to mix the audio data in a conference and to send the result of the mixing to a PCM sink, which can be a file filter or a media-streaming filter. An important observation is that these sinks are not real-time sinks. There is no deadline of delivering data to the sink. Under this assumption, the mixing filter uses the system clock to decide when to deliver samples.

8.1 Mixing

This filter uses the same mixing algorithm as the WAV render filter. It maintains one circular mixing buffer that can store 2 seconds worth of data. When samples are received from the decoder, they are copied into certain positions in the mixing buffer based on the start time set by the RTP filter. If the samples’ timestamps overlap, they will be mixed while being copied into the mixing buffer. The filter needs to keep track of the depth of mixing in order to scale the samples properly.

The difference between the WAV render filter and this filter is that there is no driver clock or driver callback. As a result, the system clock is chosen and a multimedia timer is used to simulate a driver callback.

8.2 Buffer management

The mixing filter doesn’t provide an allocator for the upstream filter. It copies the data provided by the upstream filter into the mixing buffer and releases the media sample immediately. However, it uses its own allocator for the mixed samples. The 2-seconds circular mixing buffer is divided into 100 20ms media samples. A multimedia timer of 20ms is created to checking the mixing buffer periodically. If the difference between the timestamp of the first sample and the current clock is bigger than 20ms, the first 20ms sample in the mixing buffer is delivered to the next filter.

8.3 IAudioSettings

The mixer filter supports the same IAudioSettings interface as the DSound Render filter. However, it doesn’t have a secondary buffer to apply the settings. The function in the input pin that copies data into the mixing buffer simulates the setting in software.

9. TAPI Audio Decoding Filter

This filter handles the decoding of the well-known formats and supports the interfaces required by TAPI. It is a simple transform filter with one input pin and one output pin. The filters itself doesn’t have any special interface. Only the input pin supports several TAPI specific interfaces.

9.1 Buffer management

RFC 1890 specifies that every audio endpoint should be capable of receiving audio packets between 0ms and 200ms. If fact, anything bigger than 200ms is not practical because of the huge latency. Therefore, the decoder sets the maximum packet size to not more that 200ms in the H245 capability and prepares to receive up to 200ms of data in one packet.

GetAllocatorRequirements() method on the input pin is used to tell the upstream filter the largest possible packet it could get. The RTP filter can use this information to allocate receiving buffers. If the downstream filter provides an allocator, SetProperties() is called on the allocator to specify the buffer size requirement. If the downstream filter can’t fulfill the requirement, the Decoding Filter creates its own allocator. If the downstream filter doesn’t provide an allocator at all, the Decoding Filter also creates its own allocator. Only one decoding buffer is needed if the downstream filter doesn’t hold the buffer for very long.

9.2 Sample Manipulation

9.2.1 Timestamps

The timestamps and other properties of the media sample will be copied form the input sample to the output sample without modification.

9.2.2 Format changes

When the stream object wants to set the audio format, not matter the filter graph is running or not, it needs to call the SetFormat() method on the RTP output pin together with the new payload type value that the RTP filter should be expecting. When the RTP filter receives the first packet with the new payload type, it needs to set AM_SAMPLE_TYPECHANGED on the media sample delivered to the decoding filter. The decoding filter reads the new format from the sample and changes the decoding algorithm on the fly. This rule also applies to the very first sample after the graph starts running.

The stream object guarantees that the new format is within the capability of the Decoding Filter. Otherwise, the stream object should have used a different filter for the new format.

This feature requires the remote endpoint to use a different payload type for the format being changed to. If not, the RTP filter will not be able to figure out when the format changed.

9.3 IAMStreamConfig interface

This is a DShow interface used to configure the formats. The input pin of the Decoding Filter supports this interface to expose the capabilities of the filter.

SetFormat

The Decoding Filter relies on in-band format changes signaled by the samples. Therefore, this function is not called directly by the stream object. While the pin is being connected, the output pin of the RTP filter calls this function to set the negotiated format. After the graph starts running, the filter will ignore the calls to this function and will change format only with the first sample that has AM_SAMPLE_TYPECHANGED flag set.
GetFormat

Get the format currently in use.

GetNumberOfCapabilities

Get the number of capabilites of the Encoding Handler.

GetStreamCaps

Get one specific capability. This function returns a pair of AM_MEDIA_TYPE structure and an AUDIO_STREAM_CONFIG_CAPS structure.

9.4 The IBitRateControl interface

IBitRateControl interface sets the maximum bitrate on the encoder. TODO: We need to add a method to get the Bitrate Range and steps.

SetMaxBitrate

Sets the upper limit of the bitrate of data before decoding. Not implemented.

GetMaxBitrate

Get the current bitrate upper limits of data before decoding that the current format uses.

9.5 The ICPUControl interface

The ICPUControl interface is used to control the bounds of encoding time and CPU consumption.

SetMaxProcessingTime

Used to specify the max processing delay. Not implemented.

GetMaxProcessingTime

Used to get the current setting of maximum processing time. Not implemented.

SetMaxCPULoad

This method is used to set the maximum CPU load by the Decoding Filter. It is the MIPs of the decoding algorithm / MIPs of the machine. If this method is called by the app before the stream is negotiated, it will affect the capability enumeration. Only the formats that meet the requirements will be considered. If this method is called while the streams is running and the number is too small, it will fail.

GetMaxCPULoad

Used to get the current setting of the CPU load.

10. Device Enumeration

DSound devices can be enumerated by using DirectSoundEnumerate and DirectSoundCaptureEnumerate. Each device is identified by a GUID and a device name. The name can be displayed to the user and the GUID can be used in DirectSoundCreate to open the device.

WAV devices can be enumerated by using waveInGetNumDevs, waveInGetDevCaps, waveOutGetNumDevs, and waveOutGetDevCaps. Each device is identified by an ID and a name.

DevEnum.dll provided by DShow has a CLSID_SystemDeviceEnum object that uses the above APIs to enumerate devices. It also implements caching, PnP, and enumeration of other devices. The CLSID_CWaveinClassManager and CLSID_CWaveOutClassManager are the two categories that we need. It would be ideal to leverage the code in DevEnum. However, it doesn’t enumerate DSound capture devices. The reason for this is that DShow doesn’t have a DSound capture filter. We can either postpone the support for DSound capture or we will have to have special code for DSound capture enumeration.

When enumerating the devices with the two sets of APIs, we will get two devices for each piece of hardware. The only way to match the results of the two enumerations is to match the device name. (Currently DeeEnum adds “DirectSound:” at the beginning of the name property of the device.) A TAPIAudioDeviceEnumerator is designed to achieve this goal. It enumerates all the WAV devices and DirectSound devices and merge them based on their name. The MSP Address object uses it as a helper object to create audio terminals.

10.1 The IDeviceEnumerator interface

The IDeviceEnumerator interface is used to enumerate terminals, which identify devices.

GetTerminals

Used to get the list of terminals.

10.1.1 GetTerminals method

This method is used get the list of terminals available.

HRESULT GetTerminals(

 [in] TERMINAL_DIRECTION
Direction,

 [in,out] int * piNumTerminals,

 [out] ITTerminal ** ppTerminals

 [out] int * piPreferred,

)

where

Direction

It can be either TD_CAPTURE for capture devices or TD_RENDER for render devices.

piNumTerminals

Used to specify the number of terminals needed. The return value is the number of terminals returned in the array. If the ppTerminal filter is NULL, the returned number is the total number of terminals.

ppTerminals

Memory space to store an array of terminal pointers.

plPreferred

The index of the preferred device in the array.

This method returns an HRESULT value that depends on the implementation of the interface. HRESULT can be one of the following standard constants, or other values not listed here:

HRESULT
Meaning

E_FAIL
Failure

E_POINTER
Bad pointer

TAPI_E_NOTENOUGHMEMORY
The array is too small.

S_OK
No error

10.2 The IAudioDeviceConfig interface

The terminal object creates the filter. It uses IAudioDeviceConfig to configure the filter. This interface is supported on both the audio capture filter and audio render filter.

The IAudioDeviceConfig interface is used to enumerate audio devices and to create audio terminals out of these devices.

SetDeviceID

Used to set the ID of the audio device

10.2.1 SetDeviceID method

The method is used to set tell the filter the device ID.

HRESULT SetDeviceID(

 [in] GUID *
pDSoundGUID,

 [in] UNIT
uiWaveID

)

where

pDSoundGUID

The GUID to create the dsound device.

uiWaveID

The ID to open the wave device.

This method returns an HRESULT value that depends on the implementation of the interface. HRESULT can be one of the following standard constants, or other values not listed here:

HRESULT
Meaning

E_FAIL
Failure

E_POINTER
Bad pointer

S_OK
No error

11. References

SDK documents on DShow, DSound, WAV.

ITU standard G.711, G.723.1.

RFC 1889, 1890.

ITStream/

ITSubStream

ITQualityControl

ITFormatControl

ITAudioDeviceControl

ITAudioSettings

MSP

Tapi3 app

Channel Object

IGraphBuilder

IStreamControl

IQualityControl

Filter graph

Quality Controller

IH245Audio

Capability

Audio Stream object

IChannelControl

TAPI MSP Audio Capture Filter

ITAudioDeviceControl IAudioCaptureModeControl

IAMStreamConfig

IH245AudioCapability

IBitrateControl

ICPUControl

INetworkStats

ISilenceControl

TAPI MSP RTP Render filter

Voice Detection

Audio Driver

(WAV, DS)

Encoder

(G.711, G.723.1, ACM codecs)

Automatic Gain Control

TAPI MSP Audio Capture Filter

IAudioSettings

TAPI MSP RTP Source filter

IAMStreamConfig

IH245AudioCapability

IBitrateControl

ICPUControl

TAPI Audio Encoding

Handler

TAPI Audio

Encoding

Handler

TAPI MSP Audio Encoding Filter

Audio Driver

(WAV, DS)

TAPI MSP Audio Capture Filter

IPin

IAudioSettings

IAMStreamConfig

IAMBufferNegotiation IEncodingControl

IH245AudioCapability

IBitrateControl

ICPUControl

ISilenceControl

Audio Decoding Filter

TAPI MSP RTP Source filter

Mixer

Audio Decoding Filter

Any other render filter that supports PCM

IAMStreamConfig

IH245AudioCapability

IBitrateControl

ICPUControl

TAPI MSP Audio Decoding Filter

Automatic Gain Control

Encoding

(G.711, G.723.1, ACM codecs)

Voice Detection

TAPI MSP Audio Encoding Handler

IAMStreamConfig

IH245AudioCapability

IBitrateControl

ICPUControl

INetworkStats

ISilenceControl

IAMAudioInputMixer

ITAudioDeviceControl IAudioCaptureModeControl

IAMStreamConfig

IAMBufferNegotiation

IH245AudioCapability

IBitrateControl

ICPUControl

INetworkStats

ISilenceControl

IAMAudioInputMixer

Ksproxy

TAPI MSP RTP Render filter

Automatic Gain Control

Encoder

TAPI MSP RTP Render filter

IAMStreamConfig

IH245AudioCapability

IBitrateControl

ICPUControl

INetworkStats

ISilenceControl

IAudioCaptureModeControl

IAMAudioInputMixer

Voice Detection

Audio Driver

(WAV, DS)

TAPI MSP Audio Capture Filter

IAMStreamConfig

IH245AudioCapability

IBitrateControl

ICPUControl

INetworkStats

ISilenceControl

ITAudioDeviceControl IAudioCaptureModeControl

IAMAudioInputMixer

IAMStreamConfig

IAMBufferNegotiation

IAMStreamConfig

IH245AudioCapability

IBitrateControl

ICPUControl

A PCM Source Filter

IAMAudioInputMixer

IAMStreamConfig

IH245AudioCapability

IBitrateControl

ICPUControl

INetworkStats

ISilenceControl

TAPI MSP RTP Render filter

Encoder

(G.711, G.723.1, ACM codecs)

Voice Detection

IAMStreamConfig

IAMBufferNegotiation

TAPI Audio Encoder Filter

Audio Render Filter

(DSound, WAV)

Audio Decoding Filter

Audio Decoding Filter

Microsoft Corporation Company Confidential

5/13/99 Draft - Microsoft Corporation Company Confidential 5:55 PM

